
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 10, OCTOBER 1998 863

Automatic Support for Usability Evaluation
Andreas Lecerof and Fabio Paternò

Abstract —The main goal of this work is to propose a method to evaluate user interfaces using task models and logs generated from
a user test of an application. The method can be incorporated into an automatic tool which gives the designer information useful to
evaluate and improve the user interface. These results include an analysis of the tasks which have been accomplished, those which
failed and those never tried, user errors and their type, time-related information, task patterns among the accomplished tasks, and
the available tasks from the current state of the user session. This information is also useful to an evaluator checking whether the
specified usability goals have been accomplished.

Index Terms —User interfaces, usability engineering, formal methods for human-computer interaction, task models, user
interface evaluation.

——————————���F���——————————

1 INTRODUCTION

NTEREST in human factors in connection with the devel-
opment of interactive software applications has in-

creased considerably over the last few years. A key concept
in the Human Computer Interaction (HCI) field is usability,
which is concerned with making systems easy to learn and
easy to use. An important step towards the goal of usability
is the evaluation of the user interface. The results from the
evaluation should provide information to the designer
about how to improve the user interface and thus reach
good usability.

Usability engineering is an area in HCI which aims to
achieve usable systems by applying different methods at
different stages of the design and development process in a
structured and systematic manner. In the early stages of the
design process usability evaluation is used to sort out alter-
native user interface designs and then to identify the pre-
ferred design. Later on, evaluation is performed to deter-
mine whether the design meets its requirements.

Before an evaluation is performed it is important to know
what the goal of the evaluation is. The main purpose for per-
forming an evaluation is usually one of the following [20]:

• � Engineering towards a target: is the design good
enough?

• � Comparing alternative designs: which is the best?
• � Understanding the real world: how well does the de-

sign work in the real world?
• � Checking conformance to a standard: does this prod-

uct conform to the standard?

There are several methods which have proved to be use-
ful in supporting usability engineering. In heuristic evalua-
tion [14] user interface designers study the interface and
look for properties that they know lead to usability prob-

lems. Evaluators with good experience are likely to find
many problems with this approach although non-experts
too may also find some problems. The main problem is that
usually the list of identified problems is useful to improve
the current design but it may overlook other relevant us-
ability problems.

Another approach is usability testing [4]. In this case the
designer studies the user performing some tasks and gath-
ers data on the problems that arise. The problems with us-
ability testing is that it is based only on observational data
and to be able to interpret the data some user interface ex-
perience is needed and some problems may still not be
identified. There is also the problem of cost, the time of the
users and the observers is taken, and it may be difficult to
get the appropriate users for the test.

In this work we want to show how automatic support can
be given in usability evaluation in such a way to have
more complete and reliable results which can reinforce
and complement those obtained by other methods such as
user testing.

We propose a method of evaluating a user interface with
the use of a task model and the logs generated from user
tests of the application considered. The information from
the analysis should then be used to improve the usability of
the application. The method we propose is intended to be
carried out by designers. We try to combine empirical test-
ing with the information from the task model of the appli-
cation. The aim is to give the designer information on how
to improve the interface.

More specifically, the goals of this work are:

• � To find a method of evaluating a user interface using task
models and logs from user tests of an application

After an evaluation the evaluator should have measur-
able quantities, such as the number of tasks and errors per-
formed, making it possible to see if the usability goals set
up were met. The results should also give the designer nec-
essary information about how to improve the interface.

• � To develop a tool that uses the above method, in order to fa-
cilitate and give automatic support to the evaluation process.

0098-5589/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

• � A. Lecerof is with CNUCE-CNR, Via S. Maria 36, 56126 Pisa Italy, and
the Department of Computer and Information Science, Linköping
University, Sweden. E-mail: andle@iname.com.

• � F. Paternò is with CNUCE-CNR, Via S. Maria 36, 56126 Pisa Italy.
E-mail: f.paterno@cnuce.cnr.it.

Manuscript received 13 May 1997; revised 28 Apr. 1998.
Recommended for acceptance by J. Gannon.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 105050.

I

864 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 10, OCTOBER 1998

The tool should support the evaluator when applying
the method. It should also give the results of the evaluation
in different formats, thus enabling the user to choose how
s/he wants to present the results.

The paper is organized as follows: Section 2 introduces
the possible results of usability engineering and user inter-
face evaluation, and discusses and compares some evalua-
tion approaches. Section 3 explains the notation and the
method of building task models used in this work and how
it can be used for user interface evaluation. Section 4 de-
scribes the proposed method for evaluation and its results.
It also provides an example of use. Section 5 describes the
tools used in this work, the tool to record the user logs and
the USINE tool to execute the evaluation method. Section 6
gives an example of an application evaluated according to
the proposed method. The user interface and the task
model of the application are explained, then the results
from the evaluation are described and discussed. Finally we
discuss the costs and benefits of our method and we draw
some conclusions from this work and provide some sug-
gestions for future work.

2 BACKGROUND

2.1 Basic Concepts in Usability Engineering
The main goal of usability engineering [14] is to improve the
user interface. Usability is concerned with making systems
easy to use and easy to learn. But this is not all. For example,
if users cannot carry out all the tasks they want, because a
feature is missing in the system, it is not likely they will agree
that the system is usable. A broader definition is therefore
preferable, a definition that at least includes the following:

• � The relevance of the system, how well it serves the us-
ers’ needs.

• � The efficiency, how efficiently users can carry out their
tasks using the system.

• � The users’ attitude to the system, their subjective
feelings.

• � The learnability of the system, how easy the system is
to learn for initial use and how well the users remem-
ber how to use the system.

• � The safety of the system, giving the users the right to
“undo” actions and not allowing the system to act in
a destructive way, e.g., to delete files without telling
the user.

The most important part of usability depends though on
the actual system. For some programs, e.g., for children, it
is very important that they are easy to use. For other sys-
tems, such as banking systems, efficiency is one of the im-
portant parts.

In usability engineering you try to operationalize “your”
definition of usability for the current system to make meas-
urable goals. This means that you have to define usability
in terms of measurable factors, e.g.,

• � User performance on specified tasks, measured in
terms of task completion rate, completion time or
number of errors;

• � Users’ subjective preference or degree of satisfaction;

• � Learnability, measured in task completion rate, com-
pletion time, number of errors, or use of documenta-
tion and help desk.

• � Flexibility, how well the system can change when the
requirements change.

These and other similar factors can be the result of an
evaluation of a user interface. Some of the benefits of hav-
ing measurable terms are:

• � It is likely that the resources put into designing for
usability will increase. This means, that if you have
measurable goals of usability that you must reach, it
is likely that you will work to achieve these goals.

• � It will be easier to compare requirements of alterna-
tive designs and how much more work is required to
improve them though it is not possible to convert ex-
actly the measurable goals into the amount of time
necessary to achieve them.

2.2 User Interface Evaluation
When evaluating a user interface, it is important to know
what usability means for the current application. For exam-
ple, a flight control program must have certain features that
a word processor does not have to have. This is why an
analysis of users and their needs is important. If we do not
know what the user wants and needs, we cannot know
which tasks s/he must be able to perform. Evaluation can
be performed at different times in the development process.
During the early stages evaluations tend to be done to pre-
dict the usability of the product or to check the design
team’s understanding of the users’ requirements. Later on
in the design process the focus is more on identifying us-
ability problems and improving the user interface. This is
the focus we use in this work.

It is important to consider task-related aspects in the
evaluation of the user interface. A task is an activity per-
formed to reach a goal. We can think of tasks at different
abstraction levels, ranging from high level tasks (such as
retrieving information on film projections available today) to
very low level tasks (such as selecting a button on the screen).
In both cases we can think of tasks which can or cannot be
performed and of temporal ordering among tasks. More
specifically, in case of high level tasks the temporal relation-
ships are determined by the logical dependencies among
tasks (for example printing a file can be performed only
after indicating the name of the file to print) whereas in the
case of the low level tasks temporal relationships may de-
pend also on constraints provided by the implementation of
the user interface.

Generally speaking an evaluation of a user interface after
performing a user test should include the following:

The tasks the user was able to perform

When testing the user interface the user should be given
different tasks that s/he should be able to perform. If the
user succeeds in performing the tasks it is likely that the
interface is usable. But there is also a risk that the tasks
specified were too easy.

The tasks the user was not able to perform

LECEROF AND PATERNÒ: AUTOMATIC SUPPORT FOR USABILITY EVALUATION 865

These tasks are important because they indicate prob-
lems the user had with the user interface. It is likely that the
user needs some help to perform these tasks.

How many times each task was performed

If a task is performed frequently its performance should
be supported efficiently (for example, designers can decide
to provide shortcuts or macros).

In which order the tasks were performed

The designer often has an opinion on which order the
user will perform the tasks. If the user wants to break this
order it could mean that the designer must make it possible
to perform the tasks in a different order. Another issue is
whether the user always chooses to perform one task before
another. Then the second task could be activated automati-
cally when the first one is performed.

The different errors the user made

The user errors can be of different types. If the user
makes an unnecessary action in performing the current task
this is, in most cases, an error. However, the user may have
wanted to go backwards in the interaction to a previous
step. The reason for this could be the user wants to be sure
s/he is on the right track before continuing. For example,
before the user decides to delete some selected files s/he
may want to be sure that s/he has made a correct selection,
i.e., so only the files meant to be deleted are selected.

A common type of error is an action performed belong-
ing to the task, but the user has failed to do some actions
needed before. For example, if the user tries to print a file
without specifying the name of the file. In this case the user
performed the right action (pushing the print button) but
the precondition of the task (specifying the name of the file)
was not satisfied. An error could also arise if the user inputs
something to the program that is not correct. For example,
if the user is trying to divide a number by zero, then the
user lacks information about the current domain.

The user’s subjective opinion of the user interface

The user’s opinion is important because if the user does
not like the interface it is not likely that s/he will use it. The
user can give useful information to the designer as to which
part of the user interface s/he liked or disliked.

How much help the user needed

If the user needed a lot of help the user interface was
probably too difficult, i.e., this is a measure of how easy the
user interface was.

How many times the user had to restart from the beginning

This measures how difficult it was to navigate within the
program.

How long it took the user to perform the tasks

If time is an important factor for users of an application,
which is often the case, then it is necessary to measure the
time required to perform tasks by the current design.

This is a nonexhaustive list of information which should
suggest to the designer what improvements could be made
to the user interface.

2.3 Related Works
The MUSiC performance measurement method [13] was devel-
oped by the European MUSiC (Metrics for Usability Stan-
dards in Computing) project to provide a valid and reliable
means of specifying and measuring usability. The method
gives useful feedback on how to improve the usability of
the design. MUSiC also includes tools and techniques for
measuring user performance and satisfaction.

The basic outputs of the MUSiC performance measure-
ment method include measures of: Effectiveness—how cor-
rectly and completely goals are achieved in a certain con-
text; Efficiency–effectiveness related to cost of performance
(calculated as effectiveness divided by the time). Together
with the DRUM tool, which supports the analysis of a video
recording of a usability test, the full (video supported)
method also includes the following measures and diagnos-
tic data: Relative User Efficiency–an indicator of learnability;
how easy the system was to learn, relating the efficiency of
users to that of experts. Productive Period—the proportion of
time the user spent not having problems. Snag, Search, and
Help times–time spent overcoming problems, searching un-
productively through a system, and seeking help. These
measures provide valuable data about specific areas where
the design fails to support the users’ performance. The
method provides suggestions for causes of the problems. A
benefit of these quantitative data is that they enable a com-
parison of alternative designs. The diagnostic information
of the full method also helps to identify where improve-
ments to the user interface have to be made.

Unlike the MUSiC method, cognitive walkthrough [23],
[12] can be performed very early in the design phase. Cog-
nitive walkthrough is an evaluation method mainly focused
on how easy a system is to learn, especially through explo-
ration. Users often prefer to learn a program by exploration
instead of taking a course or reading the manual. The users
tend first to learn how to perform the tasks important for
their work and then learn new features when needed.

The idea of cognitive walkthrough comes from “code
walkthrough” used in software engineering. In code walk-
through the sequence of code is stepped through to find bugs
and to check the quality of the code. The aim of cognitive
walkthrough is to get the users’ thoughts and actions when
using an interface for the first time. First of all it is necessary
to have a prototype or a detailed design of the interface as
well as facts about the users, who they are and which tasks
they have to do in their work. Then a relevant task that the
design is intended to support is chosen. After this you try to
tell a believable story about each step and action the user has
to do to accomplish the task. To make the story believable
you have to motivate every action the user performs, based
on knowledge about the user and the feedback the user gets
from the system. If you cannot tell a believable story about
an action, you have found a problem with the interface. Be-
fore performing a cognitive walkthrough you must have the
following: a description or a prototype of the user interface; a
textual informal description of one of the tasks the user
should be able to perform with the program; a complete list of
the actions needed to accomplish the task; knowledge about
the user and his/her work tasks.

866 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 10, OCTOBER 1998

There are other inspection-based evaluation techniques.
For example, think aloud evaluation [11] where the user
during the test is continuously thinking out loud thus al-
lowing the evaluator to better understand when and why
s/he has problems with the interface. All of these tech-
niques require the usability specialist to be continuously
present and actively involved in every evaluation. This can
be very expensive, especially for large tests. Our proposal
(USINE) aims to decrease such involvement, while at the
same time allowing evaluators to have a good under-
standing of real user behavior in the workplace through the
support of automatic tools when they have to improve the
user interface design.

Jeffries et al. [8] compared four evaluation techniques—
heuristic evaluation, software guidelines, usability testing
and cognitive walkthrough. They found that cognitive
walkthrough misses general and recurring problems. For
walk-up-and-use systems, where it is especially important
that the user can understand and use the interface quickly
and easily, cognitive walkthrough still remains as a good
alternative. One must remember though that cognitive
walkthrough does not test real users on the system. There-
fore, you must be aware that you are not likely to find all
the existing problems with the user interface by this
method, though we should say that no method guarantees
all usability problems will be found.

Empirical testing, e.g., testing used in the MUSiC
method, consists of testing performed by end users and
collecting related data. It is often used in iterative design
revisions where real users test and help to find usability
problems. The involvement of real users makes it more ex-
pensive but at the same time more reliable, at least from the
users’ point of view. The major disadvantage with this
method is that it is expensive. This is because you use the
time of the users, thus preventing them from carrying out
their real work. It is also a problem finding the necessary
numbers of users who are both domain experts and who
belong to the target group. Because of this, “discount meth-
ods” [14] and “inspection methods” (e.g., cognitive walk-
through) have been developed, for assessing the usability of
an interface design very quickly and at a lower cost. The
lower cost is due to the fact that you do not use real users in
the methods.

Another possibility is model-based approaches to usability
evaluation. They often aim to produce quantitative predictions
of how well users will be able to perform tasks with a pro-
posed design. The goal is also to capture the essence of the
design in an inspectable representation. Usually the designer
starts with an initial task analysis and a proposed first inter-
face design. The designer should then use an engineering
model (like GOMS, [2]) to find the applicable usability prob-
lems of the interface. A GOMS model is a representation of
the procedural knowledge users must have in order to carry out
tasks, their “how to do it” knowledge. One of the purposes of
GOMS is to predict the execution time which is simulated by
executing the actions required to perform the tasks. Each
action is divided into smaller parts until the remaining action
is a simple keystroke or a mouse click. The times for all ac-
tions are then counted and summed up into a prediction of
the time it will take to perform the whole task. The detail of

the evaluation is very precise, down to keystrokes. Therefore,
it is associated with “keystroke-level analysis.” This method
makes it possible to predict the time needed to complete a
task within a 20 percent margin [12]. Works such as GLEAN
[9] allow interface designers or analysts to easily develop and
rapidly apply GOMS model techniques in order to evaluate a
user interface. The GLEAN user (the interface designer) de-
velops a GOMS model for an existing or proposed interface
and supply a representative task and a description of the
interface behavior. GLEAN then simulates the user interac-
tion and generates usability parameters such as the learning
time for the task. The most important factor of GLEAN is
that it automates the tedious calculations required to gener-
ate usability predictions from the GOMS model. However,
the designer still needs to perform a task analysis to deter-
mine what goals the user is trying to accomplish. Another
advantage of GLEAN is that it makes the GOMS model no-
tation more readable and easier to understand. An evolution
of this approach is EPIC (Executive-Process/Interactive
Control) [10] which provides a framework for constructing
models of human-computer interaction by taking into ac-
count results on human perceptual/motor performance,
cognitive modeling techniques, and task analysis methodol-
ogy implemented in the form of computer simulation soft-
ware. Then by running the model in a simulated interaction
they can obtain statistics that predict human performance
with the actual system.

AIDE [22] is a tool that uses “simple task descriptions”
to guide the design and evaluation of an interface. The aim
of the tool is to assist designers in creating and evaluating
layouts [21] for a given set of interface widgets. It is based
on five metrics: efficiency, alignment, horizontal balance,
vertical balance and constraints. The efficiency evaluates
how far the user must move a cursor to accomplish a task.
In contrast to our approach, AIDE does not involve user
testing, but is based merely on metrics. We are more con-
cerned about the users’ tasks and how the users perform
their tasks, and not only the efficiency of the layout.

In [18] a user interface is evaluated using the architec-
tural specification and task model of the user interface. Our
approach is similar but we omit the architectural specifica-
tion and use a more advanced task model, allowing design-
ers to express a richer set of relationships among tasks. This
gives more useful information to understand why the er-
rors occurred during the user test. The reasons for the er-
rors can guide the designer to find out how the user inter-
face can be improved.

Approaches such as GLEAN are methods best used early
in the design to predict the execution time. It is not easy to
use for non-experts. Another disadvantage of models like
GLEAN, is that they presume an error-free behavior of the
user when performing the task. This means that you do not
take user errors into consideration. The measures from
MUSiC are good if you want to compare different interface
alternatives, but they are hard to use in order to improve
the user interface, which is the purpose of our evaluation
method. Cognitive walkthrough and GLEAN do not di-
rectly involve users in the evaluation. We believe that in-
volving users can give better information on how to im-
prove the usability of the user interface. Unlike GLEAN our

LECEROF AND PATERNÒ: AUTOMATIC SUPPORT FOR USABILITY EVALUATION 867

approach also takes into account the user errors, because
we think they can give important information, guiding the
designer on how to improve the interface. We also want our
method to be easy, so that the designer does not have to
spend most of the time on evaluating, but on improving the
user interface. The proposed method should, unlike
GLEAN and cognitive walkthrough, be used later in the
design, to evaluate an existing user interface.

More specifically, the aim of our method is to overcome
some of the limitations of the methods described in this sec-
tion: it is based on the task model of the user interface and
logs from a user test of the application considered. The tasks
and the errors the user performs are the central parts. The
proposed method shows how an analysis of the tasks and the
errors can give suggestions on how to improve the interface.

3 TASK MODELS

This section describes the notation and the approach we
used for building task models in this work. We also intro-
duce how it can be used for user interface evaluation.

Task models can give useful information for evaluating
user interfaces. Task analysis [3] usually begins with inves-
tigating the users’ current problem and breaking down the
tasks that potential users of the system do or could do. A
task model describes the set of activities required to reach
the users’ goals and how these activities are related to each
other. A goal is a state of an application that the user wishes
to achieve or the access to an application to get information.
We will use the task model to describe both logical activities
and the use of the interaction techniques supported by ex-
isting user interfaces. This means we will refine the task
model specification in more detail.

Task models have been used to develop interactive ap-
plications. Methods such as TLIM (Task LOTOS Interactor
Modeling) [17] and Adept [24] use task models to support
user interface design. The idea is to create the user interface
from a declarative specification that gives an abstract de-
scription of the user interface.

The usual application of task models is thus in the devel-
opment and design of computer systems. In this work we
will use task models differently, because in our view they
can also give useful support to engineering the usability
evaluation phase.

The notation for specifying the task model we use is Con-
curTaskTrees [16]: this notation allows designers to specify the
temporal relationships among tasks and other information,
useful for the design of the user interface. It is supported by a
graphical editor (http://giove.cnuce.cnr.it/ctte.html) for creating
the task tree and specifying relationships among tasks ac-
cording to its syntax and semantics (see Fig. 1).

Only the parts of the TLIM method and the Concur-
TaskTrees notation of interest for this work are described
here. For example, the TLIM method includes a transfor-
mation, from the task model to an architectural model of
the system being developed, that is not described below
(for more information, see [17]).

3.1 The ConcurTaskTrees Notation
A task model is useful to understand what the current in-
tention of the user is. In ConcurTaskTrees the task model is
represented by a hierarchy of tasks where higher levels are
more abstract and logical and lower levels are more refined
and concrete and oriented to describe the physical actions
required to interact with the user interface. The leaves in

Fig. 1. The ConcurTaskTrees model editor.

868 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 10, OCTOBER 1998

the task tree, the tasks which are not further decomposed,
are called basic tasks.

In the ConcurTaskTrees notation there are four categories
of tasks (see Fig. 2.):

• � User tasks, tasks performed by the user, e.g., to read a
message. The user tasks are performed without any
interaction with the system.

• � Application tasks, tasks completely executed by the ap-
plication, e.g., presenting results given by a database.
Application tasks receive information from the system
but they can also supply information to the user.

• � Interaction tasks, tasks performed by the user inter-
acting with the system, e.g., pushing a button.

• � Abstract tasks, tasks which require complex actions
whose performance allocation has not yet been de-
cided, e.g., a user session with a system.

The task model in ConcurTaskTrees is built in three
phases:

• � Firstly, we make a hierarchical and logical decompo-
sition of the tasks represented in a tree structure. High
level tasks are decomposed into subtasks which de-
scribe more precisely possible activities.

• � Secondly, we identify the temporal relationships be-
tween the tasks.

• � Then, we identify the objects associated with each
task. Objects are things which are manipulated to per-
form the task, e.g., the object of the Send a letter task is
the letter itself. Finally, actions which describe how
these objects can communicate with each other are
also considered. This part of the notation (the specifi-
cation of objects and actions) is not used in the work
presented in this paper.

3.1.1 The Temporal Relationships Among Tasks
The temporal relationships between the tasks are expressed
by extending operators of the LOTOS notation [7]. Concur-
TaskTrees allows designers to describe concurrent tasks
unlike GOMS [2] which can only analyse sequential tasks.

The main operators we use are:

• � T1 ||| T2, interleaving, task T1 and task T2 can be
performed in any order.

• � T1 |[]| T2, synchronization, the two tasks T1 and T2
have to synchronize, i.e., they have to perform some
actions at the same time, to exchange information.

• � T1 >> T2, enabling, the performance of task T1 makes
it possible to perform T2. Task T2 cannot be per-
formed until T1 is terminated.

• � T1 []>> T2, enabling with information passing, when
task T1 terminates it gives information to T2 besides
activating it.

• � T1 [] T2, choice, at the start both tasks are available but
when one of them is started, the other is no longer
available.

• � T1 [> T2, deactivation, when task T2 is performed it is
not longer possible to perform T1.

• � T1*, iteration, the task is iterative and can be per-
formed more than once.

We can also specify optional tasks, tasks the user decides
whether s/he wants to perform or not. An example is default
values, such as the number of copies that are to be printed,
usually set to one. If the user is satisfied with the default
value, s/he does not have to do anything. Optional tasks are
marked within brackets “[]” e.g., [Choose number of copies].

A problem when building task models using these op-
erators is the possibility of ambiguity of expressions. For
example, in Fig. 3, we can interpret the specification in two
ways:

(T1 [] T2) ||| T3 or T1 [] (T2 ||| T3).

To solve the ambiguity problem we have two possibili-
ties. The first possibility is to use the priority order among
operators defined by the standard LOTOS:

choice > parallel composition > disabling > enabling

If the designer does not want to use this priority another
possibility is to introduce a task (Task D) which disambigu-
ates the expression, see Fig. 4.

Fig. 2. Graphic representations of task categories.

Fig. 3. An example of ambiguity.

Fig. 4. A solution to solve ambiguity.

LECEROF AND PATERNÒ: AUTOMATIC SUPPORT FOR USABILITY EVALUATION 869

3.1.2 A Small Example of a Task Model Using
ConcurTaskTrees

In the tree in Fig. 5 we can see that the Cancel task disables
the PrintSession task and the whole left part of the task tree.
This means that after we have performed Cancel we cannot
perform anything else. The Choose file task enables the Print
task. This means that the task Print gets the necessary infor-
mation from the Choose file task to be available to the user.

Fig. 5. A small example of a task tree.

3.2 How the Task Model can be Used for Evaluation
Task models are often used in the development and design
of applications. In this work however we use them for a
different purpose: to evaluate a user interface. This means
that we will use tasks differently. Our interest is concen-
trated on interaction tasks because we want to evaluate the
user interactions. However, we use other category of tasks
as well, e.g., abstract task to specify complex tasks.

When we design the task model for evaluation purposes we specify the
tasks in more detail until we obtain interaction basic tasks which are
tasks which require one single user action to be performed.

The advantage of the task model is that it indicates the
tasks that can be performed at any time. This is due to the
description of the temporal relationships among tasks. For
example, look at PrintSession task in Fig. 5 which is con-
nected to Cancel with the disabling operator. If Cancel is per-
formed we will know that the PrintSession task and its entire
subtree is impossible to carry out anymore, because the Can-
cel task disables the PrintSession task. Another example is the
Choose file task above, enabling Print. Thus we know that
Choose file must be done before it is possible to perform Print.
Choose file is the precondition of Print. If Choose file is done
then, and only then, can we perform Print.

When the user performs a task s/he may change the set
of available tasks to perform according to indications given
by the model represented by the task tree. By analyzing the
task tree and considering the tasks the user has performed,
it is possible to know which tasks at each time the user can
perform. These tasks, the available tasks, can be found due to
the specification of the temporal relationships among tasks.

The available tasks can be used for evaluation purposes
to find the errors performed by the user. An error occurs
when the user tries to perform a task not allowed according
to the ConcurTaskTrees specification, e.g., when the pre-
condition of a task is not satisfied.

The context-sensitive information given by the task tree
is not only useful for evaluating a user interface but also for
generating task-oriented contextual help [15].

In the evaluation of the user interface we examine the
tasks the user tries to perform. If the user tries to perform a
task which is not allowed in the current state of the appli-
cation, we will record this as an error. The reasons for the
errors differ. For example, it could be because the precondi-
tion of the task the user tried to perform was not satisfied
or that the task was already disabled by another task.

4 THE PROPOSED METHOD

This section describes the proposed method for evaluating
a user interface and the results achieved.

4.1 The Input
Fig. 6 shows the structure of the method. The designer cre-
ates the task model with the ConcurTaskTrees editor (see
Section 3) and the log-task table with the USINE tool (see
Section 5) that has been developed to provide automatic
support for usability evaluation. This table allows designers
to map physical actions performed by the user onto basic
tasks of the task model. The user logs are provided by the log
recording tool, Replay (see Section 5), from a user test of the
current application. One or a few logs are sufficient to build
the log-task table associated with one application whereas
many more logs are used for evaluating the application.

The precondition table is then created automatically
from the task model. The evaluation method finds the
available tasks in the current state of the user session which
is indicated by the actions stored in the log file, and at the
end of the analysis of the session provides the results from
the evaluation.

Fig. 6. Overview of the method.

870 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 10, OCTOBER 1998

From Fig. 6 it can be seen that as input our method re-
quires four things:

1)�Log files generated by user sessions with the appli-
cation considered

2)�The task model of the application
3)�The log-task table, created with information from the

task model and one log file
4)�The precondition table, automatically created from

the task model

4.1.1 The Logs
We got the logs from user tests by recording the actions
performed by the user with the Replay tool (see Section 5).
However other logging tools (such as JavaStar) can be used
by requiring very minimal modifications to our environ-
ment. The logs are simple text files. Before we can use the
logs we have to clean them from redundant information.
For example, Replay creates logs such as “popup” and
“popdown” indicating that a window is visible or not.
These logs make it possible to replay the user session, how-
ever we do not use this feature.

4.1.2 The Task Model
The task model, as described in Section 3, is created by us-
ing the ConcurTaskTrees editor. We use the task model in
order to specify the temporal relationships among tasks,
i.e., the enabling and disabling tasks. The hierarchical task
tree is decomposed so detailed that every basic task is com-
pleted by one action (one log) in the log file.

4.1.3 The Log-Task Table
In the log-task table, logs and tasks are associated by using
the USINE tool. That is, on one line we will find a log and
the corresponding basic task the log executes. The log-task
table thus consists of two columns (see Fig. 7).

Fig. 7. Examples from a log-task table; logs to the left, tasks to the right.

The first column contains the physical user actions in the
log file. The actions specified in the log-task table consist of
the type of action and the target of the action. For example
the type could be a mouse click and the target the name of
the widget, e.g., a list.

The second column contains the name of the corre-
sponding basic task that the action executes. That is, when
the action is performed the task is accomplished. Thus we
associate each basic task with a corresponding action. If
the task is not an interaction basic task we put a “#” in-
stead of the log.

In Fig. 7 “click {/Vote}” executes the Send vote task. The
Session task is an abstract task and it is thus associated
with a “#”.

4.1.4 The Precondition Table
In the task model of the application it is possible to see the
tasks enabling and disabling other tasks (see Section 3).

From the task model we automatically create a table of pre-
conditions, the preconditions table, used internally in the
method. In the preconditions table we have the name of the
task and the precondition or preconditions (if more than
one) that must be performed before the task can be com-
pleted. Each precondition is associated with a Boolean
value indicating whether or not it is verified.

Thus, the notation used is:

<task>| precondition1<Boolean value>|

precondition2<Boolean value>

At the beginning of the session the Boolean variables have
the false value:

<task>| precondition1<false>|

precondition2<false>

When the user performs a precondition we change the
value of the Boolean variable associated with true, indicat-
ing that the precondition has been performed. Thus, for
example, if precondition1 is verified we have:

<task>| precondition1<true>|

precondition2<false>

For example, the Send vote task has one task as precondition,
Write your name. In the preconditions table we would write:

Send vote | Write your name<false>

If the user performs the Write your name task the field is
changed to true:

Send vote | Write your name<true>

If the task has more preconditions than one, we write them
one after the other, separated with a “|”. For example, the
Select/insert data task (an abstract task) has the following tasks
as preconditions—Choose cinema, Write a name, and Write pho-
nenr. In the preconditions table we would thus write:

Select/insert data|Choose cinema<false>|

Write a name<false>| Write phonenr<false>

This is because three tasks must be completed before the
Select/insert data task itself can be accomplished. If we per-
formed the Write a name task the precondition table would
change to the following:

Select/insert data|Choose cinema<false>|

Write a name<true>|Write phonenr<false>

If the user undoes a precondition, e.g., unselects an object
previously selected then the precondition in the table be-
comes false again.

If the precondition for a task is one task which can be
chosen from multiple tasks we insert one line for each task
which can be chosen and when one of these tasks is per-
formed the related line is set to true. In this case, in order to
check whether the precondition of the task considered is
verified, it is sufficient to perform a logical OR among the
tasks which can be precondition. For example, if either the
Choice director or the Choice category must be performed be-
fore performing Select a movie then in the precondition table
we have at the beginning of the session:

Select a movie|Choice director<false>

Select a movie|Choice category<false>

And if, for example, the Choice director task is performed
then the table is updated in the following way:

LECEROF AND PATERNÒ: AUTOMATIC SUPPORT FOR USABILITY EVALUATION 871

Select a movie|Choice director<true>

Select a movie|Choice category<false>

This will be sufficient to consider the precondition for the
Select a movie task verified as the logical OR among the
tasks which can be preconditions now gives true as a result.

4.2 The Method for Getting the Preconditions from
the Task Model

The method for finding the preconditions and creating the
precondition table searches through a preorder traversal of
the task tree. For every nonoptional task we check if its left
brother is an enabling task. If so we know that the left
brother is the precondition of the current task and write this
(the task and its precondition) to the result.

If the current task is abstract then the left enabling
brother is a precondition also for the children of the abstract
task that are available at the beginning of its performance.
The children available at the beginning of the performance
of the parent task are those which are on the left of the left-
most enabling operator. If there is no enabling operator it
means that all the children are available at the beginning.

In any case when we consider an abstract task we have
to search for its preconditions which are among its children.
While searching the method collects the results.

The method is thus as described above and divided into
two parts. The main steps of the method are described in
the upper part of Fig. 8:

• � If the current task has a left enabling brother, the left
brother is the precondition of the current task. For ex-
ample (see Fig. 9), if the current task is Login we will
find that it has a left enabling brother, WritePassword.
This means that WritePassword is the precondition of
Login.

• � If the current task that has a left enabling brother is an
abstract task, then also its children that are available
at the beginning of its performance have the left ena-
bling brother as a precondition. This is the case of
LoginDialog in Fig. 9 with the abstract left enabling
brother PersonInfo. We will first put PersonInfo as the
precondition of LoginDialog. Then we find also that
PersonInfo is a precondition for WritePassword.

We can have multiple tasks which share the same left ena-
bling task which thus have the same precondition.

The description of the step concerning abstract tasks is
expanded in the lower part of Fig. 8. The method of getting
the preconditions of an abstract task searches its children.
The method starts with testing whether all children are
checked. It has the following characteristics:

• � If the current task (a child of an abstract task) is an
optional task, because of its type, the task does not
need to be performed, it is not counted as a needed
precondition and thus is not included in the results.

• � If there are tasks composed by the choice operator
(“[]”) or the disabling operator (“[>“) we will add
these tasks as a precondition to their parent but on
different lines (the performance of only one of them is
sufficient to satisfy the precondition).

• � If the current task is the rightmost and has the ena-
bling operator on the left we will add this task as a

precondition to its parent. This is because in this case
the current task has another precondition that must be
performed before, and we only want the strictly
needed preconditions of the parent of the current task.

• � If the current task is on the left of the rightmost ena-
bling and has a right brother that is optional we must
select the current task as a precondition to its parent.
This is because we do not know if the optional task
will be performed or not.

• � If the children of the abstract task are composed by
the interleaving operator (|||) then we will add them
as a precondition. When all the children have been
performed then this precondition is verified.

More specifically, if we apply the algorithm to the exam-
ple in Fig. 9 we will find that LoginSession and Quit are pre-
conditions for the LoginExample task, since they are com-
posed by the disabling operator, the performance of one of
them is a sufficient precondition for terminating the LoginEx-
ample task. Then we consider the subtasks of the LoginSession
tasks, there is an enabling operator and thus we can find first
that PersonInfo is a precondition of LoginDialog and next that
it is a precondition of WritePassword too. Next, the method
will find Write name and Write phonenr, which are composed
by the interleaving operator, as preconditions for the Person-
Info task. Finally, we can find that Login has WritePassword,
which is a left enabling brother, as precondition, and Login is
precondition for LoginDialogue, in addition to PersonInfo
which was found before.

In the preconditions table we will write the following:

Login example |Quit

Login example |Login Session

LoginDialog |PersonInfo|Login

PersonInfo |Write name

|Write phonenr

LoginSession |LoginDialog

WritePassword |PersonInfo

Login |WritePassword

4.3 The Available Tasks
When the user has succeeded in accomplishing a task the
precondition table is updated and it is possible to get the
updated list of available tasks from it by identifying the
tasks which have the precondition satisfied with the addi-
tion of those which have no precondition and so they are
available at any time. The available tasks are those the user
can perform right after s/he has performed the current
task. The evaluator can use the available tasks to under-
stand the user’s preferences, within the alternatives pro-
vided by the system, when performing a task.

When we are analyzing the task tree to identify the avail-
able tasks we are only interested in the interaction tasks,
which are those the user performs when interacting with the
system. The method for getting the available tasks is used
after the method for deciding if the task’s preconditions are
fulfilled or not. If the task’s preconditions were not accom-
plished we will not count this task as an available task.

4.4 The Evaluation Method
The evaluation process starts by considering the first action
in the log file. We first get an action from the log file and if
the action exists in the log-task table then we look up the

872 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 10, OCTOBER 1998

associated task, otherwise an error is generated. If the task
has preconditions we then see if they are satisfied and this
means that the task is accomplished. If the preconditions
are not satisfied then we have a precondition error. If the
accomplished task is a precondition of another task then we
change the precondition table. Then we get the available
tasks from the current state, and we move to consider the
next action in the log file.

Fig. 9. An example of a tree with preconditions.

4.5 An Example of the Evaluation Method in Use
The following example of the evaluation method uses the
task model shown in Fig. 10 below. The task model is re-
lated to a user interface (right part of Fig. 10) where it is
possible to make a reservation for a movie by inserting a
name and choosing a movie. The reservation is then exe-
cuted with the Book task. There is also a search possibility,
to search for movies.

The related initial precondition table is the following:

EvaluateEx |Close<false>

EvaluateEx |Session<false>

Session |Reservation<false>|Search<false>

Reservation |Book<false>

Search |Send query<false>

Book |Insert Data<false>

Send query |Insert criteria<false>

Insert Data |Write name<false>

|Choose movie<false>

At the beginning of the session the immediately avail-
able tasks (those which have no precondition) are Write
name, Choose movie, Insert criteria, and Close.

The first thing we do in the evaluation process is to read
an action from the log file (in this example only the impor-
tant part of the information in the log file is shown, the co-
ordinates are omitted). Before the beginning of the user
session all the preconditions are set to false. Below we show
how the elements of the precondition table are modified
according to the logs detected.

1. click {\Canvas 1}

This action is not found in the log-task table, i.e., it is not
associated with any task and we will record this as an error.

This error occurred because the designer did not specify
this action in the log-task table. In this case the user clicked
on an image thinking that something would happen. These
types of errors occur when the user clicks on or uses items
that exist in the user interface but lack a function, e.g.,
things like images, labels, or text strings.

2. click {\Send query}

This action is associated in the log-task table with the Send
query task. First we check whether the task has precondi-
tions by checking the precond-table:

Send query|Insert criteria<false>

Fig. 8. The method for getting the preconditions.

LECEROF AND PATERNÒ: AUTOMATIC SUPPORT FOR USABILITY EVALUATION 873

The answer is yes, the task has a precondition. Since we do
not find true after Send query the precondition of the task is
not satisfied. We will consider this user action as a precon-
dition error, because the precondition of the task that the
user tried to perform was not satisfied. That is, the user
tried to perform the Send query task before s/he had in-
serted the search criteria.

3. text {\Insert criteria}

The next action is associated with the Insert criteria task (to
insert a search criteria) in the log-task table. This task does
not have any preconditions so the task is completed or in
other words achieved. However, the Insert criteria task is
itself a precondition of another task, Send query. This means
that we must change in the preconditions table, the Insert
criteria field to true:

Send query|Insert criteria<true>

After having updated the precondition table the tool can
add Send query to the list of available tasks.

4. click {\Send query}

The next action is click {\Send query}. When we check
the precondition table this time, because of the previous
action, we will find that the precondition for this task now
is satisfied. The user has now successfully performed the
Send query task.

5. text {\Namefield}

Action No. 5 is found in the log-task table and the associ-
ated task is Write name. The task does not have a precondi-
tion and is therefore accomplished. However the task is a
precondition itself. It is the precondition for the Insert data
abstract task. Thus in the preconditions table we change the
field of this precondition for Insert data to true:

Insert data|Write name<true>|Choose

movie<false>

6. click {\Independence day}

The next action is associated with the Choose movie task. As in
the previous step the task does not have a precondition and it

is, therefore, accomplished, but it is a precondition itself. We
will change the related field in the precondition table:

Insert data|Write name<true>|Choose

movie<true>

The Insert data task is an abstract task and thus it cannot be
performed by interaction from the user. In this case it is
considered performed because both its subtasks are per-
formed at this point of the session considered, and thus it is
added to the list of available tasks.

7. click {\Book}

The next action is associated with the Book task. It has the
Insert data precondition which is, due to the previous step,
satisfied (all fields are true). Thus we will record Book as an
accomplished task.

4.6 The Results from the Evaluation
The results of our evaluation method concern how well users
succeed in performing their tasks and the errors the users
made. The results, derived from the evaluation method and
from the logs provided by Replay, include the following:

• � The accomplished and failed tasks, and those never
tried

• � The user errors of two kinds
• � Numerical and temporal information of the above.

For example, we can find how many times the tasks
and the errors were performed and the temporal or-
der of the tasks and the errors.

• � How long each task took to complete. This is calcu-
lated based on the time stamp that exists on every ac-
tion, showing how much time passed since the last
action was performed, information provided by the
recording tool (Replay).

• � The times for the abstract tasks are calculated by
summing up the time of the abstract task’s children.
The information about the completion time is useful
when measuring efficiency.

Fig. 10. The task tree of the example and the related user interface.

874 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 10, OCTOBER 1998

• � When (at what time) in the interaction, the errors oc-
curred. If the errors only occurred at the beginning it
could mean that the user should have more support
and help at the beginning of the interaction.

• � Task patterns, i.e., sequences of accomplished tasks that
occur more than once. This information can be used to
identify where macros should be implemented or
where some automation should be performed.

• � For example, if the Choose printer task always is fol-
lowed by the Print a file task, the Choose printer task
could be done or set automatically by the program.

• � The available tasks from the current state of the user
session, i.e., from a certain point in the log file.

• � Other useful information, such as the test time, how
many times the scrollbar was used and how many
times the window was resized.

These results are elaborated by the USINE tool (see Section
5) where they are presented in different ways.

4.6.1 The Accomplished, Failed, and Never Tried Tasks
The tasks the user accomplished, failed and never tried
during the user test are counted and recorded. The accom-
plished tasks are of two kinds, those with preconditions
and those without.

As failed tasks we count those tasks the user tried to per-
form but failed because the preconditions were not satis-
fied. In this case the user tried to perform a task but the
task’s preconditions were not satisfied.

Consider the following example: the Choose a file task is a
precondition of the Print task, and the Print task is executed
by pushing the “Print button.” If the user in this case tries
to perform the Print task without performing the Choose a
file task first, we will know that the user’s intention was to
perform the Print task, but s/he failed because the precon-
dition (the Choose a file task) was not satisfied.

The information about the tasks the user accomplished is
useful when usability goals have been specified (as men-
tioned in Section 2). For example, if the goal is that the user
must accomplish certain tasks, it is possible to see if the
goal was satisfied after the evaluation. It is possible to view
the results in the temporal order of the tasks, or ordered by
task, in our tool USINE (see Section 5).

The frequency of the tasks performed can tell the de-
signer if the current layout of the user interface is optimal.
For example, if some tasks in the same layout window are
performed frequently their corresponding widgets should
be close to each other or grouped in the layout. This would
require less mouse movements, thus making the interface
more efficient [22].

Likewise, the corresponding widgets for the tasks that
are never or very seldom performed could either be hidden
or removed. For example, different options that are avail-
able when printing a file such as setting the printer’s name,
which paper tray to use, etc. could be hidden in an option
dialogue box.

4.6.2 The User Errors
The user errors are of two kinds. The first kind consists of
actions needed to perform a task but the preconditions of
the related task were not fulfilled (precondition errors)

when they occurred. This type of error causes the failed
tasks described in the previous paragraph. The second kind
consists of actions not needed to perform any task. These
actions do not exist in the log-task table because they are
not associated with any tasks. The user thought these ac-
tions were useful to perform. For example, clicking on im-
ages that looked like buttons, clicking on labels or other
things that exist in the user interface but lack a function.

This information allows us to conclude how easy the user
can perform his/her tasks, and which tasks caused prob-
lems for the user. Errors are often a part of the usability
goals [4], for example, a goal could be that the user should
make no more than five errors.

Goals like this could be useful when you want to com-
pare two alternative designs. The alternative to be chosen
should thus have the least number of errors from the
evaluation. As a result the information from the evaluation
method provides the necessary information to measure if
such goals have been achieved.

4.6.3 Other Information

The time when the user errors occurred is also recorded to
see when during the user test the most errors occurred.
Other useful information which could indicate readability
problems with the interface is also included in the results.
This includes how many times the user used the scrollbar
and how many times the window was resized and moved.
Finally, the time the user test lasted is also recorded.

5 THE TOOLS TO SUPPORT THE METHOD

To support the method described in Section 4 we use two
tools, QC/Replay and USINE. QC/Replay is commercial
software while USINE is the tool developed as part of this
work.

To record the actions from the user test we used
QC/Replay (Replay) version 2.5 from CenterLine Soft-
ware.

1
 It works in X Window System environment and it

can support any toolkit for user interfaces in this environ-
ment without requiring any specific programming.

Replay saves the user’s actions in test scripts, which cap-
ture the user’s behavior as s/he interacts with the widgets
(buttons, menus, lists, etc.) of the user interface. The scripts
can then be replayed to examine the user’s behavior during
the test. Replay also includes other features like naming wid-
gets, taking snapshots of the screen and running test scripts
using Tcl (an interpreted command language).

The actions recorded by QC/Replay (see Fig. 11) include
pressing and releasing the mouse, double-clicks and keys
pressed. A typical line in the log file includes:

• � The type of user action such as a mouse click
• � The name of the widget affected, the target of the ac-

tion, e.g., a list
• � The mouse button used
• � The content of the widget affected, such as an item

in a list
• � The coordinates of the mouse click
• � The time elapsed from the previous log

1. Internet: http://www.centerline.com/productline/qcreplay/qcrplay.html

LECEROF AND PATERNÒ: AUTOMATIC SUPPORT FOR USABILITY EVALUATION 875

The advantage of Replay is that it saves the recordings in
a readable and editable file. This makes it possible to use
the logs as input for our tool. Another advantage is the
possibility to name the different widgets of the application
as required.

The tool (USINE—USer INterface Evaluator) we have de-
veloped automates and facilitates the evaluation process. It is
implemented in Java which makes it platform independent.
The tool is divided into two parts, the preparation part and
the result part. The preparation part is where the designer cre-
ates the log-task table and provides the names of the differ-
ent files needed for the evaluation. These files are:

1)�The log file
2)�The file with the task model
3)�The file with the log-task table

The result part contains the results from the evaluation and
possibilities for the designer to present them in different
ways.

5.1 The Preparation Part
The preparation part supports the creation of the log-task
table as described in Section 4. The designer can load the
tasks from the task model of the application on the right
side and the log file from the user test on the left side (see
Fig. 12). The tasks are indented depending on their level in
the task tree, the further to the right the deeper the level.

The designer then associates each basic task with the ac-
tion in the log file that executes it. One task can be per-
formed a multiple number of times in one session but the
association needs to be created only once. To this end we
need a log file which contains all the actions associated with
the tasks in the task model. This can be done directly by
considering a session performed by somebody who knows
the application well and who can rapidly perform all the
tasks. Alternatively we can consider a normal user session
and if there are some tasks which are not performed and
some which are performed in other user sessions, our tool
gives the possibility of updating the log-task table by using
the Add button showed in Fig. 12 whereas the Delete button

is useful for removing information inserted by the
QC/Replay tool which is not relevant in our method.

The task model is decomposed in such a way as to have
basic tasks corresponding to button selections, menu se-
lections and similar basic interactions. Abstract, user, and
application tasks, that do not have any corresponding ac-
tion in the user interface, are marked in the log-task table
with a “#”. Optional tasks (see Section 3) are marked
within brackets “[]”.

It is also possible to load an existing log-task table to edit
it. The home button in the user interface allows the evalua-
tor to go to the initial presentation of the USINE tool where
s/he can ask either to enter into the preparation part or the
evaluation part.

5.2 The Result Part
From the preparation part we can activate the result part by
selecting the See result button (Fig. 12). In the result part the
user starts the evaluation by pressing the Evaluate button
(see Fig. 13). The evaluation method of the tool is the one
described in Section 4. The evaluation is shown in the text
area as it proceeds. The results shown are the user actions
in temporal order and the type of the task or the associated
error, depending on whether the user succeeded in accom-
plishing the task or not. If the user succeeded in accom-
plishing a task, the following available tasks, which can be
performed in the next step, are shown.

The different formats used in USINE (see Fig. 13), when
printing the results from the evaluation in temporal order,
are the following:

A task accomplished without preconditions, i.e., the task
has no preconditions and is thus available at any time, e.g.,

Currentlog: click {/The movie database}

Task “See database part” without

 preconditions achieved

Available tasks:

Choose viewstyle, Choose director,

 Choose category, Premiers, All movies,

 Choose a movie, Done

A task accomplished with preconditions, i.e., the task is
accomplished with its preconditions satisfied, e.g.,

Fig. 11. The QC/Replay record control panel.

876 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 10, OCTOBER 1998

Fig. 12. The preparation part of USINE.

Fig. 13. The result part of the evaluation.

LECEROF AND PATERNÒ: AUTOMATIC SUPPORT FOR USABILITY EVALUATION 877

Currentlog: click {/timelist}

Task “Choose time” with precondition

 “Choose cinema” achieved

Available tasks:
Choose time, TheMovie, Choose the movie,

 [Where to sit], Select/insert data,

 SelData, Choose cinema, Write a name,

 Write phonenr, [Nr of persons],

 CancelBook

A precondition error, i.e., the user tried to accomplish a
task but its preconditions were not satisfied, e.g.,

Currentlog: click {/timelist}

-----> Preconderror: the precond

 “Choose cinema” not fulfilled for the

 task: “Choose time”

Other errors, i.e., not precondition errors and not associ-
ated with any task, for example clicking on images or other
things that lack a function in the interface, e.g.,

-----> Error (type1): click
 {canvas[2].canvas}

The upper set of buttons provides different ways for the
user to present the results:

• � The Eval info button activates the display of various
data from the evaluation such as the number of ac-
complished and missed tasks, the number of errors
and the time the test lasted (see Fig. 14).

• � The Completed tasks button activates the display of the
accomplished tasks and how many times they are
performed. The frequency of the tasks is useful when
deciding the layout of the interface. To make the inter-
face more efficient tasks performed frequently (in the
same window of the layout) should be close to each
other [22].

• � The Missed tasks button activates the display of the
tasks the user tried to perform but failed because their
preconditions were not satisfied, and how many times
each task failed.

• � The Never tried button activates the display of the
tasks the user never tried to perform.

• � The Errors button activates the display of all the errors
divided into precondition errors and others.

• � The Task patterns button activates the display of the
task patterns found (specific sequences of tasks)
among the accomplished tasks (see Fig. 15). The pres-
entation shows first the frequency and next the pat-
tern, and orders them by frequency.

The Show button (underneath the result window) acti-
vates the display of the entire result from the evaluation in
temporal order. It is also possible to save this result in a file
and load (with the Load button) at a later moment.

Finally, the lower set of buttons, provides different graphs
showing the data from the evaluation in different manners:

• � The Errors/Time button shows a graph with the num-
ber of errors on the y-scale and the time on the x-scale
(see Fig. 16).

• � The Tasks/Time button shows a chart graph with the
tasks on the x-scale and how long they took to per-
form on the y-scale (see Fig. 17).

• � The Tasks/Errors button shows a chart graph contain-
ing the number of precondition errors associated with
each task.

• � The Tasks/Completed button shows a chart graph con-
taining the number of times the tasks were performed.

• � The Errors & Tasks button shows one pie chart con-
taining the different types of errors and their percent-
age, and another containing the number of the tasks
accomplished, the tasks missed and those never at-
tempted (see Fig. 18).

Fig. 14. The data from an evaluation.

878 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 10, OCTOBER 1998

Fig. 15. Task patterns, the pattern, and how many times they occurred.

Fig. 16. When the errors occurred during the user test.

LECEROF AND PATERNÒ: AUTOMATIC SUPPORT FOR USABILITY EVALUATION 879

Fig. 17. How long each task took to perform.

Fig. 18. Pie charts of the tasks and the errors.

880 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 10, OCTOBER 1998

6 AN EXAMPLE OF APPLICATION

To apply the proposed evaluation method we chose to
evaluate the MovieGuide application which is a Java appli-
cation. In this example we used it in the X Window System
environment (UNIX).

6.1 The User Interface of the Application
The MovieGuide application (see Fig. 19) consists of one part
with a database of movies, where it is also possible to get
information about movies, and one part where it is possible
to make reservations for movie tickets. It is also possible to
cancel a reservation and to search for movies in the database.

The database part gives the opportunity to search for a
movie by director, by first openings, by category or all at
the same time. When a movie is chosen it is possible to see
a film clip from the movie, to read about the movie (the
story, the actors, etc.), to give a vote for the movie and to
see what other people have voted. The reservation part
(see Fig. 20) enables users to choose a movie from a list
and then make a reservation at a certain cinema, at a cer-
tain time and for a number of people. It is also possible to
decide where you want to sit in the cinema—at the front,
the middle or the back.

Fig. 19. The MovieGuide, main window.

Fig. 20. The reservation part of MovieGuide.

LECEROF AND PATERNÒ: AUTOMATIC SUPPORT FOR USABILITY EVALUATION 881

6.2 The Task Model of the Application
The task model of the application was made with the editor
for specifications in ConcurTaskTrees, the notation de-
scribed in Section 3. The task model was made according to
the existing user interface of the MovieGuide application.
The reason for this is because we want to evaluate an ex-
isting interface, not develop a new one. The task tree was
made so deep that every basic interaction task has a corre-
sponding action in the user interface.

Other characteristics of the task model include the fol-
lowing:

• � The Quit task disables the whole session of the appli-
cation.

• � The Session task is divided into four parts with the
choice operator between the parts. The different parts
are: Cancel reservation, Making reservation, Search and
See database part. The effect of the choice operator is
that when one of the children of Session is performed
their brothers are no longer available.

• � To be able to perform the Book task the user first has to
fill in the necessary data. These data include the movie,
the cinema, the time the movie is shown, the name and
the telephone number. CancelBook disables the possi-
bility to perform the reservation (the booking).

• � After the view style is chosen (Choose viewstyle task) it
is possible to perform the Choose a movie task, ena-
bling the Requesting Info optional task

• � Some tasks are optional, e.g., Where to sit and Nr of
persons. This means the user does not have to perform
these tasks. For example, the Nr of persons task, has
the default value “1”. If the user is satisfied with “1”
s/he will not do anything, i.e., no interaction with the
interface will occur.

6.2.1 The Precondition Table of the Example
From the task tree we automatically create the precondition
table by the method described in Section 4. This gives the
following precondition table of the task model (read as, y |
has x as a precondition):

In the precondition table we can see that Select/insert data
has four preconditions—Make reservation, Write a name,
Write phonenr and SelData. The Choose viewstyle task on the
other hand, needs only one of the tasks, Choose director,
Choose category, Premiers, or All movies to be accomplished
(other than the See database part task) because only one of
these four tasks can be chosen. ChooseTime enables SelData
because ChooseTime is the last subtask of SelData: this means
that whenever ChooseTime is terminated then also the Sel-
Data task is completed

6.2.2 The Log-Task Table of the Example
The log-task table was created by considering a log file gen-
erated by a user session. The purpose of this table is to as-
sociate the actions from the log file with the basic tasks in
the task model. The abstract tasks were marked “#”. This
gives the log-task table in Fig. 22.

Task Precondition Task Precondition

MovieGuide |Session All Movies |See database part

MovieGuide |Quit Choose a movie |Choose new style

Session |Cancel Reservation Request Info |Choose a movie|Voting
|Watch trailer
|Read reviews|Read about

Session |Making Reservation Request Info |Choose a movie|Close

Session |Search More Info |Choose a movie

Session |Managing database Done |Choose a movie

Making Reservation |Book SelData |Choose Time

Making Reservation |CancelBook Voting |More Info |Performing vote

Search |SendQuery Voting |More Info |Cancel vote

Managing database |Done Watch Trailer |More Info

Select/insert data |Make reservation|SelData
|Write a name|Write phonenr

Read Reviews |More Info

SelData | Make reservation Read about |More Info

Write a name | Make reservation Close |More Info

Write phonenr | Make reservation The movie |Choose the movie

Book | Select/insert data Choose cinema |The movie

CancelBook | Select/insert data Choose time |Choose cinema

Send query |Insert criteria Performing vote |Send vote |Vote

Choose view style |Choose director
|See database part

Cancel vote |Vote

Choose view style |Choose category
|See database part

Give grade |Vote

Choose view style |Premiers |See database part Comment |Vote

Choose view style |All Movies |See database part Write your name |Vote

Choose director |See database part Send Vote | Write your name

Choose category |See database part See Clip |Choose the Movie

Premiers |See database part

Fig. 21. The precondition table of the example.

882 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 10, OCTOBER 1998

6.3 The User Test of the Application
The user test of the application was performed by 18 different
users. The testers were computer science students aged from
24 to 26 who had never seen the application before and were,
therefore, total beginners. The users were given written in-
structions (see Fig. 23) on paper and an opportunity to ask any
questions they liked before the test started. When the test had
started questions were not answered directly, instead they
were answered with a question. For example, if the user asked
“What do I do now?” the answer would be of a general type
like “What do you think you could do”? No further help was
given during the test.

The test consisted of three goals the user had to reach
which were chosen in such a way to force the user to ex-
amine different features of the application. During the user
test the logs were recorded using the Replay tool (see Sec-
tion 5). After the test the users answered three questions
concerning their impression of the application:

1)�Did you have any problems during the test?
2)�Which part was the most difficult (if any), or the most

irritating?

3)�Would you use this software (an improved version) in
the future? Why, or why not?

6.4 The Evaluation of the Application
The purpose of the evaluation was to improve the user in-
terface. The aim was also to see which tasks the user per-
formed and the errors s/he made. We did not specify any
particular usability goals before we started the evaluation
because we were not testing towards a quantitative target,
e.g., to see if the application was good enough.

The evaluation of the application was performed fol-
lowing two different approaches. The first approach was
based on observations made during the performance of the
user tests. An advantage of performing a user test is that
you actually see the user using the application which can
give you additional information about how to improve the
user interface.

The second approach, using the task model and the pro-
posed method in Section 4, was performed after the user tests
by using the USINE tool. We discuss below the benefits of
the two approaches and their results. The first results from
the evaluation however, consist of the users’ answers to the
questions, asked immediately after a test was finished.

|MovieGuide

|Session

click {/Quit} |Quit

click {/Cancel a reservation} |Cancel reservation

}Making reservation

click {/Make a reservation} |Make reservation

|Search

click {/The movie database} |See database part

|Select/insert data

click {/Book} |Book

click {/Cancel} |Camce;Bppl

text {/searchfield} |Insert criteria

click {/Send} |Send query

|Choose viewstyle

click {canvas[12].slistSW[2].slist} |Choose a movie

|[Requesting info]

click {/More info\.\.\.} |More info

|Voting

click {/Done} |done

click {/In the front} |[Where to sit]

|SelData

text {/namefield} |Write a name

text {/phonefield} |Write phonenr

release {/4} |[Nr or persons]

click {/Directors} |Choose director

click {/Categories} |Choose category

click {/This week premiers} |Premiers

click {/All movies} |All movies

click {/Vote} |Vote

click {/Trailer} |Watch trailer

click {/Reviews} |Read reviews

click {/About} |Read about

click {/Close} |Close

|The Movie

click {/cinemalist} |Choose cinema

click {/timelislt} |Choose time

click {/1} |[Give grade]

test {textA} |[Comment]

text {textfield} |Write your name

click {/OK} |Send vote

click {/movielist} |Choose the movie

click {/See film clip} |[See clip]

Fig. 22. The log-task table of the example.

LECEROF AND PATERNÒ: AUTOMATIC SUPPORT FOR USABILITY EVALUATION 883

6.4.1 Evaluation Based on Observations
The authors observed the users during the tests of the appli-
cation, what they did and what they said, and what prob-
lems they seemed to have. Based on this data, i.e., observa-
tions of the users during their use of the application, we tried
to draw some conclusions as to how the user interface should
be changed and improved. These empirical conclusions are
based on the answers to the questions above and on our
background knowledge of user interface evaluation.

During the test we did not give any time constraint to
the users and users did not receive any help from the ob-
servers.

The time users took to fulfill the three goals (indicated in
Fig. 23) was different.

• � First goal: minimum time: 0.18 min, maximum time:
4.02 min, average time: 1.69 min.

• � Second goal: minimum time: 5.38 min, maximum time:
16.57 min, average time: 8.93 min.

• � Third goal: minimum time: 2.40 min, maximum time:
7.10 min, average time: 4.65 min.

The most important observations were:

• � The users clicked on images because they thought
they were buttons.

• � One problem was that the lists (containing movies,
etc.), when shown for the first time, were empty. Thus
the user clicked in empty lists because they did not
understand how to get the information from the list.
For example, to get the list of the times when the
movies were shown they first had to choose a cinema.

• � Double-clicking on items, where a single click was
sufficient.

• � The scrollbars in the timelist were too small.
• � Users tried to write in the empty list.
• � Users forgot to write their telephone number.
• � Users did not understand immediately that they had

to click in a text field before writing in it.
• � Users had problems returning to the main window.

• � Users pushed the “More info…” button twice thus
getting two windows.

Therefore, an improved version of the application should
include improvements on these issues. However, it was
expensive to obtain these suggestions because they re-
quired an evaluator completely dedicated to observe users
while they were working with the application.

6.4.2 The Answers to the Questions
We produced a short questionnaire. The questionnaire was
not meant to be exhaustive. We provided a limited set of
questions because in this case the questionnaire had a lim-
ited purpose: to get the subjective feeling of the users about
their experience with the use of the application, to receive
directly from the user comments on the main usability
problems found and to know whether the users would be
willing to use the application during their every day life.

A summary of the answers includes the following:

1)�Did you have any problems during the test?
• � Did not get any feedback when moving the mouse.
• � Nothing is shown in the lists when you go to the

database part.
• � Too small scrollbars in the cinema list and the time

list.
• � The controls of the video presentation.
• � To return to the main window.
• � Not enough feedback when moving the cursor.
• � At the beginning it was difficult because it was all

new, but then it was easy.
2)� Which part was the most difficult (if any), or the

most irritating?
• � Thought the images were buttons.
• � The time list was too small.
• � Many distracting images.

3)� Would you use this software (an improved version)
in the future? Why, or why not?
• � Yes, probably, it is useful because it allows easy ac-

cess to a useful service from home and work.

MovieGuide

MovieGuide is a tool where you can get information about movies and make ticket reservations for local cinemas.

Please try to reach the three following goals:

1)� You want to see a Bertolucci film but you have forgotten what the title was in English. Find the title.
2)� Compare the two movies Independence Day and Sleepers by using the information the MovieGuide can give you.

You can:

• � look at trailers,
• � read about the movie and
• � see reviews of the movie

Give your vote to the MovieGuide database.
One opinion for Independence Day and one for Sleepers.

q� Which category do these two movies belong to?
q� Are these movies premiers?

3)� You and your friends have decided to go and watch either Independence Day or Sleepers. The only time you and
your friends can go is Saturday 19.30.

Make a reservation for the movie that is shown at that time. Make the reservation for you and your three friends. You
want to sit at the front.

Fig. 23. The instruction for the users.

884 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 10, OCTOBER 1998

The answers to the questions cover some of the critical us-
ability problems with the application; problems with the
lists, the scrollbars, the images and the buttons.

6.5 Evaluation by the Proposed Method
Based on the task model and the user logs we performed an
evaluation according to the method described in Section 4.
We used the USINE tool (see Section 5) to get evaluation data
from the tests. In counting the tasks which were accom-
plished, failed or never tried the tool counted both high-level
tasks and their subtasks (including also basic tasks) which
were indicated in the task model and which were involved
during the session to reach the goals indicated.

The average results obtained (the averages were calcu-
lated on the data of all the 18 user sessions) are:

Accomplished tasks: 24
Failed tasks: 13
Never tried tasks: 5
Other errors: 7
Scrollbars moved: 56
Window resized: 9

We found that all users accomplished the three main
goals (they were the same three goals for all the users) de-
scribed in the instructions (see Fig. 23) although during the
sessions they made some errors and thus failed, at least at
the first attempt, to perform some tasks or subtasks which
were then eventually performed correctly during the same
session. This indicates that the user interface was easy to
use. The time it took the users to perform the tasks was too
long with respect to what is strictly required to perform the
actions needed to accomplish the goals indicated. This
means that some improvements in the design were needed.

The task that took the longest time to perform was the
Select/insert data abstract task, i.e., inserting the required
data for a reservation.

We also got information as to how many times each task
was performed. It showed that the Choose a movie and
Choose cinema tasks were performed most.

The scrollbars were used frequently and the window
was resized a few times. This could indicate that these lists
(as currently designed) did not make it easy to find the de-
sired information.

6.5.1 The Precondition Errors
The most frequent precondition errors, i.e., the tasks caus-
ing the users problems were Choose Time, More info, Send
Vote, and Book. To understand better what the problems
with these tasks were we can look at the results from the
evaluation to see which precondition users failed to per-
form before the current task.

The reasons for the precondition errors (failed tasks) can
guide us as to how to improve the user interface, e.g.,
where to provide better information and more help.

This is possible because USINE gives us the result in the
following format when a precond-error occurs, the task the
user tried to accomplish and the reason for the error.

Currentlog: click {/More info\.\.\.}

-----> Preconderror: the precond

 “Choose a movie” not fulfilled for the

 task: “More info”

The above means that the user did not, as required, perform
the Choose a movie task before the current task, More info.
When a task with a precondition is completed we will get a
result as below, including the available tasks:

Currentlog: click {/More info\.\.\.}

Task “More info” with precondition

 “Choose a movie” achieved

Available tasks: Vote, Watch trailer,

 Read reviews, Read about, Close

The approach is thus to see which preconditions were
not satisfied when the user failed to accomplish a task. The
task (or tasks) associated with the unsatisfied precondition
then indicates where improvements should be made to the
user interface.

The reasons for the precondition errors follow below, to-
gether with the improvements that could be made to pre-
vent the errors:

• � For Choose Time it was because the user after having
selected a movie had to choose a cinema before it was
possible to choose the time. The user tried to choose
the time before the cinema had been chosen.

An improvement to the interface would be to enable us-
ers to select the time before the cinema so that the user can
see where the movie of interest is showing at that time. This
would allow users to better perform tasks such as the third
in our test (Independence Day or Sleepers at 19.30) where a
movie and a time are predefined but not the cinema.

• � The error of More info was due to the fact that no
movie had been chosen before.

The interface could be provided with more information
and help on how to perform the task More info. For example
there could have been a more explicative label indicating that
you must choose a movie before you can view more info.

• � The errors of Send Vote were due to the fact that no
name had been inserted before sending the vote.

Again here there is a lack of information. It should be
more obvious that a name must be inserted before a vote
can be given.

• � The Book task failed because the user did not fill in the
required fields like name, telephone-number, etc.

The improvements in this case could include message
boxes occurring each time the user tries to make a reserva-
tion. The messages should include exactly what field or
fields are missing to perform the reservation. This task has
many preconditions. To make it easier for the user to per-
form the required actions, one way could be to highlight the
fields that must be completed.

This case study shows that it is possible to find various
causes for the errors detected. Possible examples are:

• � the user interface can impose temporal constraints in
performing tasks which are too rigid for the concep-
tual model of the user of the activities to perform;

• � the user interface does not provide enough guidance
on how a task should be performed

• � a label is not sufficiently explicative.

The reasons for the errors do not say explicitly how to im-
prove the interface. However, they show that improve-
ments must be made and indicate which part of the design

LECEROF AND PATERNÒ: AUTOMATIC SUPPORT FOR USABILITY EVALUATION 885

of the user interface should be improved. The performed
improvements must then be decided by the designer,
helped by these results.

These errors may be found by observing users. However,
our tool-supported method can guarantee a more reliable
and precise detection of these errors, especially if the appli-
cation is complex or things happen fast, and these errors are
detected automatically without having an observer spend-
ing time on analyzing user interactions.

6.5.2 The Never Tried Tasks
Among the never tried tasks we found the See a film clip
task located in the reservation part. We noticed that we had
an inconsistency between the Trailer task in the “More info”
window and this task. These tasks are in fact the same.

This failure in design could be very confusing for the
user, who may wonder what the difference is. We decided
therefore to remove this task, as it is not tightly connected
to the other tasks in this part. That is, it is not a part of the
tasks users normally perform when they want to make a
reservation.

This is an important result of our method as it was not
detected by interviewing and observing users and it is often
harder to find something that never happened with respect
to something that happened incorrectly.

6.5.3 Other Errors
The other errors were mainly caused by clicking on images.
This was probably caused by, as mentioned above, a lack of
feedback when moving the mouse. In other words, the
mouse pointer should be of one kind when moved over
buttons, and of another kind when moved over a “non-
clickable” area.

6.5.4 The Temporal Order of the Tasks
Among the task patterns we found that the user often chose a
cinema after s/he had chosen a movie. This is an indication

that the application after the user has chosen a movie should
automatically provide the cinemas that are showing it.

6.6 The Improved Version of the Application
Based on the evaluation above and the answers to the ques-
tions we decided to change the user interface as follows:

• � To add the possibility to select time first and then the
cinema

• � To make the difference between buttons and images
more distinct

• � To insert default choice of a cinema and a time after
the user has chosen a movie.

• � To provide some feedback when moving the mouse
over “clickable” and “nonclickable” objects

• � To make the information visible in all the lists from
the beginning

• � To make the lists bigger
• � To allow double-click on list items.
• � To add more labels and messages, providing useful

and helpful information
• � To take away the possibility of seeing a film clip in the

reservation part

This information did not change the user interface dras-
tically. That is, we did not perform major changes, such as
changing the structure of the program. Instead we made
smaller changes (as mentioned above) that users will notice
when they actually use the application. The most visible
changes were made in the reservation part (see Fig. 24). The
changes can be seen in the larger lists and the removal of
the “See film clip” button. Other changes include some (de-
fault) information always being shown in the lists and a
couple of instructive labels.

Fig. 24. The new version of the reservation part, after the evaluation.

886 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 10, OCTOBER 1998

6.7 Comparison of the Two Evaluation Approaches
and their Results

The two approaches found some similar usability problems
with the application. However, the results from the evalua-
tion based on the observations are supported and clearly
identified by the results from the evaluation made with our
method. For example, with our method we found certain
tasks that had caused problems. This means we have some-
thing concrete to work with, not just a feeling that something
is wrong with the current part of the interface. Furthermore,
with our tool-supported method we found additional prob-
lems which were not discovered by observing and inter-
viewing users, such as identifying tasks which were not per-
formed, thus indicating parts of the user interface difficult to
find for the end user or supporting unnecessary tasks.

Through the observations we found that the user clicked
in empty lists to get some information from the lists. With
our method though, we found the same problem but we
also automatically got which task caused the error and
which task the user should have performed first to avoid
the error. This may be detected by observers but they may
have problems finding it if the user interaction evolved fast
or when the users’ behavior does not make clear what their
intentions are. In other words, without the cost of an ob-
server and in a more reliable way we can detect the error,
i.e., the actual precondition was not satisfied and have use-
ful information for improving the user interface. That is, we
know exactly where in the interaction the problem oc-
curred. This means that our method could be of valuable
support when performing a usability test.

The results from the proposed method can give useful
information for deciding how the designer should improve
the user interface. We can also give specific information, to
say where in the interface improvements should be made.
This is due to the precondition errors, pointing out the tasks
that caused the user problems. However, the final decision
of whether improvements are to be made and how they
should be done, is still up to the designer.

Our method gives specific information, e.g., which tasks
(and subtasks) were performed and how many times. This
makes it possible to specify usability goals and to see if they
were satisfied, something that is very hard to do from only
observational data. The reason why we can set up usability
goals is because we have measurable quantities of the user
test. Reasonable usability goals (as described in [4]) of the
application could be, e.g., two precond-errors, two other
errors, and all tasks achieved. With these goals in mind we
can improve and redesign the application and perform the
test again. If the goals are satisfied this time we have ful-
filled the usability requirements of the application and can
stop iterating in our design process.

Another advantage of our approach is that it provides
consistent information with respect to all the sessions ana-
lysed whereas the results of observation-based approaches
may vary from one observer to another and one session to
another.

6.8 Evaluation of our Approach
One reasonable question is whether the benefits of our new
approach justify the extra time and effort involved.

The additional effort required only regards the design of
the task model for the application considered and to make
the log-task table (all the other tables in the preparation
part are automatically created completely).

We think that the task model is a useful exercise for user
interface designers to develop an understanding of the ap-
plication considered and it should be done even if our ap-
proach for user interface evaluation was not used. Indeed,
at this time the most common use of the task model is in the
design phase and not in the evaluation phase. It is used to
discuss design solutions among the different people in-
volved (designers, developers, managers, end users and so
on). Furthermore, the task model can also be useful to sup-
port the software development phase. We have developed a
method of using it to drive systematically the development
of the user interface [17].

The mapping between user actions in the log file and
tasks should be done only once for an application and then
it is valid for analyzing all the user tests of that application.
Thus it is a limited additional effort.

On the other hand, it is possible to have more reliable
evaluations of the application as no action to be analysed can
be omitted, we can detect automatically when they occur,
and the approach is also valid for large applications. Addi-
tional results such as tasks never tried are provided. When
our approach gives similar results to those obtained by ob-
serving users, it has some advantages because in our case we
can run various user tests in parallel in the users’ workplaces
without having to move them to a usability lab or to move
observers to their workplaces. Then we can let the automatic
tool evaluate the results whereas in the other case we need an
observer to follow sequentially each user and analyse manu-
ally his/her behavior with great effort in terms of time from
both the user and the observer and less reliability of the re-
sults especially when user interactions evolve rapidly. If
multiple observers are used then there is the problem of con-
sistency among the results of their observations.

One potential concern with our method is that the
evaluators could be missing some important information
that would only be gained by actually observing users and
hearing their comments. We thus propose its use comple-
mented with user interviews to gather direct comments.
The questions would be limited to the part of the interface
that our tool indicates the user found difficult to use.

Overall, we believe that our approach is worth using es-
pecially if the application considered has many dynamic
dialogues and a substantial complexity. It complements and
strongly reduces the need for evaluation done by observing
and interviewing users which can be limited to an addi-
tional analysis of the parts of the user interface which our
method finds problematic.

7 CONCLUSIONS AND FUTURE WORK

We have presented a method based on the use of a task
model that allows the designer to specify a rich set of tem-
poral relationships among tasks and the association be-
tween user actions and basic tasks. This makes it possible to
find the tasks causing the user problems, and therefore to
find the parts of the user interface that should be improved.

LECEROF AND PATERNÒ: AUTOMATIC SUPPORT FOR USABILITY EVALUATION 887

The development of the task model of an existing system
is also useful to force the designer to think of how different
parts of the user interface are developed and to analyse the
design choices.

Another advantage of our method is that its results give
the evaluator the possibility to measure the usability of the
current application. This can be done by specifying usabil-
ity goals. However, the goals must be of the kind “the time
to perform some tasks must not be more than two min-
utes,” or “the user may only make two errors in this task.”
If the evaluator sets up these kinds of goals it is possible to
see if they were satisfied or not after a user test, something
that is hard to do from only observational data.

The goal of this work was to find a method of evaluating
a user interface that finds the tasks and the errors per-
formed during a user test, and the reasons for most of the
errors. To this end, we have found a method of getting the
preconditions from the task model and the available tasks
from the current state of the user session. The latter is not
only useful for evaluation purposes but also for supplying
built-in task oriented help.

With respect to user testing our method can give the
evaluator more specified and concrete results as the tasks
and errors are performed. It does not give explicit recom-
mendations for the evaluator on how to improve the user
interface. However, it can give support when deciding
which improvements should be made and where in the
interface they should be made. This is possible due to the
precondition errors which point out those tasks that caused
user problems. We propose its use complemented with us-
ers’ interviews limited to the part of the user interface
which is found difficult for end-users by our tool.

The definition of usability includes relevance, efficiency,
attitude, learnability and safety. The proposed evaluation
method includes the possibility of measuring efficiency and
to a certain degree learnability and relevance. Learnability
can, for example, be measured by the time completion rate
and the number of errors. Relevance can be measured by
examining whether the user succeeded in completing the
desired tasks. However, we have not covered attitude and
safety. Future work could thus be directed to investigate
other aspects of usability.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their comments
which were very useful for improving the content and the
presentation of the paper.

REFERENCES

[1]� N. Bevan, “Measuring Usability as Quality of Use,” Software
Quality J. vol. 4, pp. 115–130. Chapman & Hall, 1995.

[2]� S.K. Card, T.P. Moran, and A. Newell, The Psychology of Human-
Computer Interaction. Hillsdale, N.J.: Lawrence Erlbaum Assoc.,
1983.

[3]� D.Diaper, Task Analysis for Human-Computer Interaction. Chiches-
ter: Ellis Horwood, 1989.

[4]� J.S. Dumas and J.C. Redish, A Practical Guide to Usability Testing.
Norwood, N.J.: Ablex, 1994.

[5]� M. Good, T.M. Spine, J. Whitside, and P. George, “User-Derived
Impact Analysis as a Tool for Usability Engineering,” Proc. Conf.
Human Factors in Computing Systems, CHI’86, M. Mantei and P.
Oberton, eds., pp. 241–246. New York: ACM Press, 1986.

[6]� D. Hix and H.R. Hartson, Developing User Interfaces: Ensuring
Usability Through Product and Process. New York: John Wiley &
Sons, 1993.

[7]� ISO Information Processing Systems—Open Systems Interconnec-
tion—LOTOS—A Formal Description Based on Temporal Ordering of
Observational Behavior, ISO/IS 8807. ISO Central Secretariat, 1988.

[8]� R. Jeffries, J.R. Miller, C. Wharton, and K.M. Uyeda, “User Inter-
face Evaluation in the Real World: A Comparison of Four Tech-
niques,” Proc. Conf. Human Factors in Computing Systems, CHI’91,
pp. 119–124, ACM Press, 1991.

[9]� D.E. Kieras, S.D. Wood, K. Abotel, and A. Hornof, “GLEAN: A
Computer-Based Tool for Rapid GOMS Model, Usability Evalua-
tion of User Interface Designs,” Proc. UIST’95, pp. 91–100, New
York: ACM Press, 1995.

[10]� D. Kieras, W. Scott, and D. Meyer, “Predictive Engineering Mod-
els Based on the EPIC Architecture for a Multimodal High-
Performance Human-Computer Interaction Task,” ACM Trans.
Computer-Human Interaction, vol. 4, no. 3, pp. 230–275, Sept. 1997.

[11]� C. Lewis, “Using the ‘Thinking Aloud’ Method in Cognitive Inter-
face Design,” Research Report RC9265, IBM Thomas J. Watson
Research Center, Yorktown Heights, N.Y., 1982.

[12]� C. Lewis and J. Rieman, Task-Centered User Interface Design: A Practical
Introduction, a shareware book published on the web by the authors:
www2.umassd.edu/Coursepp./HCI/hcireadings/TextVersion/index.htm. Also
available at ftp.cs.colorado.edu/pub/cs/distribs/clewis/HCI-Design-Book, 1993.

[13]� M. Macleod, R. Bowden, and N. Bevan, “The MUSiC Performance
Measurement Method,” HCI‘96, Tutorial 14, Measuring Usability—
MUSiC Methods, N. Bevan, London: The British HCI Group, 1994.

[14]� J. Nielsen, Usability Engineering. Boston: Academic Press, 1993.
[15]� S. Pangoli and F. Paternò, “Automatic Generation of Task-

Oriented Help,” Proc. ACM Symp. User Interfaces Software and
Technology., pp. 181–187, Pittsburgh: ACM Press, 1995.

[16]� F. Paternò, C. Mancini, and S. Meniconi, “ConcurTaskTrees: A
Diagrammatic Notation for Specifying Task Models,” Proc. Inter-
act’97, pp. 362–369, Sydney: Chapman & Hall, 1997.

[17]� F. Paternò, C. Mancini, and S. Meniconi, “Engineering Task Mod-
els,” IEEE Conf. Eng. Complex Systems, pp. 69–76, Como, IEEE CS
Press, Sept. 1997.

[18]� F. Paternò, M.S. Sciacchitano, and J. Löwgren, “A User Interface
Evaluation Mapping Physical User Actions to Task-Driven For-
mal Specifications,” Design, Specification and Verification of Interac-
tive Systems’95. Proc. Eurographics Workshop, P. Palanque and R.
Bastide, eds., pp. 35–53, Toulouse: Springer-Verlag, 1995.

[19]� P.G. Polson, C. Lewis, J. Rieman, and C. Wharton, “Cognitive
Walkthroughs: A Method for Theory-Based Evaluation of User
Interfaces,” Int’l J. Man-Machine Studies, vol. 36, pp. 741–773, 1992.

[20]� Human-Computer Interaction, J. Preece, Y. Rogers, H. Sharp, D.
Benyon, S. Holland, and T. Carey, eds. Workingham, England:
Addison-Wesley, 1994.

[21]� A. Sears, “Layout Appropriateness: A Metric for Evaluating User
Interface Widget Layout,” IEEE Trans. Software Eng., vol. 17, no. 7,
pp. 707–719, July 1993.

[22]� A. Sears, “AIDE: A Step Toward Metric-Based Interface Develop-
ment Tools,” Proc. UIST’95, pp. 101–110. New York: ACM Press,
1995.

[23]� C. Wharton, J. Rieman, C. Lewis, and P. Polson, “The Cognitive
Walkthrough: A Practitioner’s Guide,” Usability Inspection Methods,
J. Nielsen and R.L. Mack, eds. New York: John Wiley & Sons,
1994.

[24]� S. Wilson, P. Johnson, C. Kelly, J. Cunningham, and P. Markopou-
los, “Beyond Hacking: A Model-Based Approach to User Interface
Design,” Proc. HCI’93. J.L. Alty et al., eds., People and Computers VIII,
Proc. Conf., HCI’93 Loughborough, UK, Cambridge: CUP, 1993.

Andreas Lecerof received his MS degree in
computer science from Linköping University,
Sweden, in 1997. He wrote his master's thesis
while at CNUCE-CNR, Pisa, Italy, in 1996. He is
currently working as a software engineering
consultant at Cap Gemini, Sweden. His re-
search interests include usability engineering,
user interface design, and evaluation.

888 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 10, OCTOBER 1998

Fabio Paternò received the Laurea degree in
computer science from the University of Pisa,
Italy, and the PhD degree in computer science
from the University of York, UK. Since 1986, he
has been a researcher at CNUCE-CNR, Pisa,
where he is head of the HCI group. He has
worked on various national and international
projects on user interfaces-related topics. He is
the coordinator of the Modeling Evaluating and
Formalizing Interactive Systems Using Tasks
and Interaction Objects (MEFISTO) Long Term

Esprit European Project. He has developed the ConcurTaskTrees no-
tation for specifying task models, which has been used in many indus-
tries and universities, and related methods for supporting the design of
user interfaces. His current research interests include methods and
tools for user interface design and usability evaluation, formal methods
for interactive systems, and design of user interfaces for safety critical
interactive systems. Dr. Paternò was chair of the first International
Workshop on Design, Specification, and Verification of Interactive
Systems. He is co-editor of the book on Formal Methods in Human-
Computer Interaction. He has been a member of the program commit-
tee of the main international HCI conferences. He is a member of the
IFIP Technical Committee 13 on Human Computer Interaction.

