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Abstract

We propose a new framework for automatic surveillance camera calibration by ob-

serving videos of pedestrians walking through the scene. Unlike existing methods that

require accurate pedestrian detection and tracking, our method takes noisy foreground

masks as input and automatically estimates the necessary intrinsic and extrinsic camera

parameters using prior knowledge about the distribution of relative human heights. Our

algorithm is computationally efficient enough for online parameter estimation. Exper-

imental results on both synthetic and real data show the robustness of our method to

camera pose and noisy foreground detections.

1 Introduction

The main goal of surveillance camera calibration is to compute a mapping between objects

in the 3D scene and their projections in the 2D image plane [10]. This helps to infer object

locations and allows for more accurate object detection and tracking. For example, sampling-

based pedestrian detection [6] yields better performance when hypotheses are generated in

3D and then projected into one or more image views. Detection approaches based on sliding

windows can also benefit from calibration, since the search over orientation and scale can be

constrained to a small range, reducing false positives [14].

In this paper, we present an automated calibration method that enables smart sampling

of object size and orientation given either a 2D location in the image or 3D location in

the scene. The method works directly on noisy observations collected by the surveillance

system, which is appealing because traditional photogrammetric calibration from surveyed

points is time-consuming and expensive.

Under the assumption of a single, flat ground plane, most existing work for automatic

surveillance calibration requires relatively clean pedestrian detection results to estimate a

foot-head homology: [14] uses an expensive human detector and locates multiple control

points on human contours to establish correspondence constraints; [15] assumes that humans

are vertical in the image and uses a rectangular bounding box to localize the pedestrians; [13]

requires accurate detection of leg-crossings for calibrating the camera. These methods have
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(a) (b)

(c) (d)

Figure 1: An example of surveillance camera calibration on Seq.1. (a) one video frame; (b)

foreground masks after adaptive background subtraction, overlaid with major axis of each

2D blob; (c) after RANSAC vanishing point estimation and height distribution analysis, the

RANSAC inliers from this frame are plotted in magenta, and inliers that also indicate a

consistent 3D height are plotted in green; (d) final calibration results where each yellow line

indicates predicted pedestrian orientation and height at a particular ground plane location.

limited practical use in more challenging real-world environments (Fig. 1) where field of

view is large, image resolution is relatively low, and accurate detection of pedestrian shapes

is almost impossible prior to calibration. Furthermore, to our best knowledge, all existing

methods that use pedestrians to calibrate the camera require explicit correspondence of the

same people over time. [7, 13, 14] assume that there is only a single person walking across

the scene during the training stage, which rarely happens in crowded scenes. Others like

[9, 15] require either tracking or manual input to specify the same person across different

frames. Given the challenge in detecting people in scenes like Fig. 1, it is even harder to

achieve robust tracking before calibration.

Our work addresses existing limitations in the literature with the following main nov-

elties: (1) our algorithm is robust to noisy foreground detections in moderately crowded

scenes; (2) we do not require correspondence of the same people across frames; (3) we

look for a low-variance distribution of relative pedestrian heights, motivated by strong prior

knowledge that 90% of human heights fall within a very small range of ±7.6% from the

mean [16]1. Our camera calibration method is based on the idea that objects (pedestrians)

in the scene are all roughly the same height. Given a set of 2D observations, different hy-

pothesized camera parameters will recover different explanations of the 3D scene; however,

a correct camera model will recover the most realistic explanation, measured here by a low

variation of relative pedestrian heights about an estimated mean.

1The statistics in [16] were generated from people of European descent; we assume similar results hold for other

populations.
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Using our approach, a rough camera calibration can be obtained quickly given noisy

foreground blobs observed from crowded scenes. Assuming on average 2 inlier foreground

blobs can be detected in each frame, and that blobs are extracted at 3fps, a total of 1800

“good" blobs can be collected within 5 minutes, which is empirically more than sufficient

for accurate prediction of pedestrian orientation and height across the image.

2 Camera Geometry

Camera parameters to be estimated during the calibration stage include both intrinsic and

extrinsic parameters. Assuming zero skew, known aspect ratio a,2 and principal point at

the image center (0,0), focal length f is the only parameter to be estimated in the intrinsic

parameter matrix:

K =





f 0 0

0 f ·a 0

0 0 1



 (1)

To specify the extrinsic parameters, we place the origin of the World Coordinate System

(WCS) on the ground plane. Without loss of generality, assuming zero pan angle and no

translation within the ground plane, the Camera Coordinate System (CCS) is determined by

a translation hc along the Z-axis (height of the camera above the ground) followed by a tilt

angle θ around the X-axis and a roll angle ρ around the Z-axis. Combined with the intrinsic

matrix, the full camera projection matrix is given by

P = K





cos(ρ) −sin(ρ) 0

sin(ρ) cos(ρ) 0

0 0 1









1 0 0

0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)









1 0

1 0

1 −hc



 (2)

For a downward-tilted surveillance camera, θ has a value between π/2 (optic axis parallel

to the ground plane) and π (facing straight down).

Let the vertical vanishing point be v0 = (vx,vy,1)
T .3 Any vanishing point (x,y,1) on the

horizon line associated with the ground plane (and every other horizontal plane in the scene)

is orthogonal with v0, which gives the constraint [11]

vT
0 ω





x

y

1



= 0, (3)

where ω is the Image of Absolute Conic (IAC), defined as ω =K−T K−1 [11], which imposes

a metric on the uncalibrated space. Substituting Eqn. 1 into Eqn. 3, we get

vxx+
vy

a2
y+ f 2 = 0. (4)

Eqn. 4 shows that the horizon line is determined by the vertical vanishing point together with

the focal length f . It is also straightforward to recover the camera rotation parameters from

2For standard video formats, we set aspect ratio a = 0.91 for NTSC (720× 480) and a = 1.09 for PAL (720×
576); for unknown cases we assume a = 1.

3We are assuming a finite vanishing point in the image to simplify the presentation. The equations can be

modified to handle vanishing points at infinity.
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vx, vy and f as follows

ρ = atan(−avx/vy) (5)

θ = atan2(
√

a2v2
x + v2

y ,−a f ) . (6)

3 Vanishing Point Estimation via Foreground Blobs

Although it is often preferable to jointly optimize correlated parameters in order to max-

imally use all the available information, we argue that for this task it is more efficient to

first estimate the vertical vanishing point independently from the other camera parameters.

This is because the vanishing point can be computed using only foreground blob candidates

in the image. We can easily collect many blobs in real-time from a short video sequence,

especially in crowded scenes (Fig. 2). It also can be shown empirically that the estimation

accuracy keeps improving as more blobs are incorporated into the robust random sample

consensus (RANSAC) framework [5].

(a) (b) (c)

Figure 2: Vertical vanishing point estimation. (a) Major axis orientation of blobs extracted

from a short video sequence. (b) Inlier axes found by RANSAC. (c) Lines connecting blob

centroids to the computed vertical vanishing point overlaid on a sample frame.

The vanishing point estimation process is illustrated in Fig. 2. Adaptive background

subtraction and connected component analysis is first performed to detect foreground blobs.

The centroid, major and minor axis of each binary blob is determined from its first and

second moments, which is equivalent to approximating each blob shape by an ellipse. The

major axes of some ellipses represent vertical orientation of individuals who are found as a

single blob; however, many others are outliers representing the orientation of multiperson

blobs, fragmented blobs, or blobs whose second moments are corrupted away from vertical

by arms and legs extending out from the person. To robustly find the set of ellipse axes that

converge to the vertical vanishing point, we use RANSAC to find the intersection point voted

for by the most axes. The line intersection computations are carried out in homogeneous

coordinates so that the procedure works well even vanishing points at infinity.

Following RANSAC selection, we use the method of [2, 3] to fit a least squares vanishing

point estimate to the inlier blobs. The major axes of all K inlier ellipses are organized into a

matrix with normalized homogeneous coordinate representation:

A =







x1 y1 z1

...
...

...

xK yK zK






. (7)
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The vanishing point direction should be a unit vector perpendicular to all of these vectors.

Therefore, we minimize the sum of squared cosine angles from the vanishing point v0 =
[vx vy vz]

T to all inlier lines:

argmin
v0

‖Av0‖
2 = argmin

v0

vT
0 (A

T A)v0. (8)

The Mean Squared Error (MSE) solution of v0 is given by the eigenvector of AT A that cor-

responds to the smallest eigenvalue.

Given the vertical vanishing point, the major axis of each inlier blob i = 1, . . .N is re-

projected onto the line connecting the vanishing point and the blob center. These projected

line segments are represented as a pair of feet and head pixel locations (p f , ph) for subse-

quent height analysis.

The above method for vertical vanishing point extraction is more efficient with large

numbers of observations compared to other robust statistics [12, 13]. However, there may

still exist outliers among the “RANSAC inliers” – although the orientations of inlier axes are

now consistent, some blobs may still have inconsistent heights. This will be dealt with in the

following stage.

4 Relative Height Computation

A key part of our approach is to analyze the distribution of relative pedestrian heights from

inlier foot-head pairs found by the RANSAC procedure. We define the relative height of

a pedestrian hi as their actual 3D height h3D
i divided by the camera height hc. This relative

height can be computed as an invariant using the cross ratio [4, 13] of distances between four

points

hi =
h3D

i

hc

= 1−
d(ph,vl) ·d(p f ,v0)

d(p f ,vl) ·d(ph,v0)
. (9)

where p f and ph are feet and head position of the pedestrian, v0 is the vertical vanishing

point, and vl is the intersection of a line passing through these points and the horizon line, as

illustrated in Fig. 3. It is worth mentioning that the distance measurement d(a,b) in Eqn. 9 is

directional. The feet position p f should always be below the horizon in the image, however

the head position ph could be above the horizon, which would result in a negative distance

ratio d(ph,vl)/d(p f ,vl), and hence hi > 0, indicating that the height of the pedestrian is

greater than the camera height.

Furthermore, Eqn. 9 is robust for vertical vanishing points near infinity. A camera with

tilt angle θ close to π/2 projects vertical lines in 3D into parallel image lines, so that the

vertical vanishing point is far away from the image center with large estimation variance.

However, in such cases the ratio of d(p f ,v0)/d(ph,v0) is approximately 1, so the large esti-

mation variance in v0 does not corrupt the relative height estimate.

Given the estimated vertical vanishing point v0 and pedestrian head and feet positions

that were computed in Sec. 3, all we need is the horizon line for completing the computation

of relative height hi. Eqn. 4 showed that we can compute the horizon line from v0 if we know

the camera focal length f . In the next section, we compute the distribution of relative heights

implied by different candidate values of f , and use prior knowledge about likely pedestrian

height distributions to evaluate each hypothesized focal length.
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Figure 3: Estimating the relative height of a pedestrian using cross ratio invariance among

the four points marked in red.

5 Calibration by Hypothesis Testing

Given the analysis above, the camera calibration problem now becomes looking for an ap-

propriate focal length f that, together with the previously estimated v0, will generate a rel-

ative height distribution that best matches pedestrian heights in the real-world. Therefore,

we need to define a likelihood function to evaluate the similarity of a computed 1D relative

height distribution with respect to the known human height distribution in the real world.

If we knew the absolute camera height hc, we could solve for the 3D heights h3D
i of people

and compare the distribution of those to a normal distribution of 3D pedestrian heights,

measured for European populations as having a mean of roughly 172 cm and a standard

deviation of 7cm [16]. Even if we knew the absolute height of just one reference point in

the scene, we could estimate the camera height, and from there infer 3D pedestrian heights.

However, in this work we base an analysis on relative heights, bypassing the need for scene

measurements, and allowing generalization to non-European populations.

A striking feature of the human height distribution is how closely it clusters about the

mean, with 90% of human heights having a relative difference of less than 7.6% from the

population average [16], or

|h3D
i −E[h3D

i ]|/E[h3D
i ] ≤ .076 . (10)

Note that Eqn. 10 also holds true for the relative heights hi = h3D
i /hc, since the unknown but

constant camera height hc cancels from the equation.

We therefore define a distance metric

r(hi,µ) = max{τ −
|hi −µ|

µ
,0} (11)

as a thresholded relative distance from a given hi to the boundary (1 ± τ)µ , where τ is

the relative distance threshold (we set τ = 0.1 for all experiments) and µ is an unknown

population mean of relative heights. We then form a joint log-likelihood function over µ and

f as

L(O| f ,µ,v0)∼ ∑
i

1

µ
r(hi,µ)

2 (12)

to evaluate the quality of a hypothesized focal length with respect to how well the relative

heights it calculates cluster about population mean µ . For a given focal length, the rela-

tive pedestrian heights {hi} = func(O, f ,v0) are calculated based on image observation O

(extracted foreground blobs) and the camera calibration parameters, using Eqn. 4 and 9 as

described in previous sections.
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To find the optimal parameters f ∗ and µ∗ that yield the highest model likelihood, we

enumerate values of f with a field of view (FoV) resolution of 0.5◦, and for each of those, we

search for the optimal population average µ within a range of median(hi)± std(hi).
The max{·,0} operation in Eqn. 11 indicates that only height candidates falling within a

region of interest will contribute to the likelihood evaluation. This is analogous to the robust

statistics of a truncated quadratic [1] in that it gives constant punishment to samples outside

the region of interest, and therefore is robust to noisy sample data with a large proportion of

outliers. More importantly, our prior knowledge about human height distribution indicates a

meaningful threshold (τ = 10%), which makes this metric more favorable in our framework

in comparison with other popular robust statistics such as least trimmed squares [8] that

only consider a fixed number of nearest samples. The term 1/µ in equation 12 gives further

punishment to larger µ that result in larger regions of interest.

In addition to being robust to obvious outliers, we also want to deal with noise on the

inliers due to inaccurate blob fitting or blob distortion. We assume zero-mean Gaussian

noise on the feet-head locations with fixed variance σ2, and by bootstrap sampling with

these Gaussian distributions we can obtain multiple relative heights for each blob. The log-

likelihood function corresponding to Eqn. 12 then can be rewritten in a more generalized

form incorporating height uncertainty:

L(O| f ,µ,v0) = ∑
i

∫

1

µ
r(hi,µ)

2 p(hi)dhi (13)

∼
1

µM
∑

i
∑
m

r(h
(m)
i ,µ)2, (14)

where Monte Carlo integration is applied to obtain Eqn. 14 and M is the number of samples

for each hi.

6 Experimental Results

We first performed a test on two synthesized datasets with different viewing angles for val-

idation, as shown in Fig. 4 (a1) and (b1), where white line segments are synthesized noisy

data and the yellow lines are the estimated average height predicted for different ground

plane locations. The performance is quantitatively evaluated by the mean squared relative

error of feet-head projection

err =
∫

p f

(

d(ph, p∗h)

d(p f , p∗h)

)2

(15)

where ph and p∗h are estimated and groundtruth head positions, respectively, given a selected

foot position p f in the image. All distances are measured in image coordinates, and the

squared error is accumulated on p f through the entire region of interest. This evaluation

design reflects the main interest of many surveillance applications, which require correct

estimation of pedestrian size and orientation in 2D for any specified pixel location.

We compared four different algorithms. Alg.1 is our proposed approach using only one

pedestrian height hi calculated from Eqn. 9. Alg.2 is the bootstrapped version that incorpo-

rates the height uncertainty of each hi according to Eqn. 14 using M = 30 samples. Alg.3 is

our implementation of the approach in [13], which estimates the horizon using pairs of pedes-

trians incorporated into a robust estimation framework. Alg.4 implements the method in [9],
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(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 4: Synthesized test data: (a1) a highly elevated camera with narrow viewing angle;

(b1) a low viewpoint camera with wide viewing angle; (a2),(b2) performance evaluation on

both datasets with 20 inlier blobs; (a3),(b3) performance evaluation on both datasets with

640 inlier blobs.

which computes the MAP estimate of a feet-head homology in a Bayesian framework, where

we use the independently estimated vertical vanishing point to reduce the sample space for

the feet-head homology, and sum the uncertainty on the locations of pedestrians over the 3D

ground plane.

We synthesize a uniform height distribution within (90 ∼ 110%)µ and also generate the

same number of outliers as inliers, with random positions, orientations and heights. As we

increase the variance of Gaussian noise on inlier feet-head positions, it can be seen from

Fig.4 that our proposed approaches (Alg.1 and Alg.2) consistently outperform the others.

The performance gain is more prominent for higher noise levels. The estimated vertical

vanishing point (shared by all testing algorithms) at different noise levels is listed in Table 1.

The parameter estimation errors for FoV and relative camera height (hc = 1/µ) are averaged

over all noise levels and shown in Table 2 together with the groundtruth values.

Table 1: Vanishing point estimation of synthesized datasets.

noise level 0 2 8 32

set 1: 20 inliers (−167,826) (−169,831) (−182,850) (−329,1278)
(−168,828) 640 inliers (−168,828) (−168,828) (−163,804) (−198,1020)

set 2: 20 inliers (357,7135) (349,7292) (236,4277) (193,1250)
(356,7106) 640 inliers (357,7122) (354,6979) (387,9771) (298,3039)

Table 2: Quantitative comparison of 4 algorithms on synthesized datasets.

GT Alg.1 Alg.2 Alg.3 Alg.4

set 1: FoV(◦) 51 50.6±4.5 50.5±3.7 65.2±14.5 46.6±3.2
h−1

c .06 .061± .010 .061± .008 .071± .020 .050± .006

set 2: FoV(◦) 120 118.2±5.6 117.7±5.6 124.8±11.4 114.0±5.0
h−1

c 1.1 1.08±0.11 1.07±0.10 1.16±0.37 1.23±0.33
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(a) Seq. 1 (b) Seq. 2 (c) Seq. 3

(d) (e) (f)

Figure 5: Calibration results on real sequences with inlier blobs on sample frames (a,b,c);

Estimated feet-head projection (magenta) versus groundtruth labels (green) (d,e,f)

We also test our approach (Alg.2) on three real sequences. Two sequences were captured

outside a stadium during a sporting event using a Sony DCR VX2000 digital video cam-

corder. The third sequence is from a publicly available dataset showing people walking on

a terrace 4. As shown in Fig. 5, our method correctly estimates pedestrian orientation and

height over the ground plane for different camera settings. The image projection error for

the foot to head mapping after calibration is evaluated from hand labeled data, as shown in

Fig. 5 and Table 3.

Table 3: Root Mean Square Error of Feet-Head Projection on real Sequences

Seq.1 Seq.2 Seq.3

absolute RMSE (pixel) 3.8 4.2 8.9

relative RMSE (Eqn. 15) 0.15 0.18 0.05

We also conduct 3D/2D distance estimation based on available groundtruth as illustrated

in Fig.6. In (a), we estimate a total of 9 real-world distances (marked as black arrows)

among 3 parallel lines, and compare these to on-site measurements. Our estimation of the

3D distance is a proportion of average human height, and the minimum mean squared rela-

tive error: MSE = average{(d(3D)/d(GT )−1)2}= (3.5%)2 is reached when we set average

pedestrian height to be 6.58 feet. The standard deviation of the estimated 3D orientation of

the 3 parallel lines is 0.22◦. Given the uncertainty of actual human heights, height changes

during walking and lens distortion, these errors are within a reasonable range. In Fig.6(b),

the groundtruth horizon is located at 6% of the image height (17.3 pixels) from the top of

the frame, while the average vertical distance on our estimated horizon (plotted in cyan) is

5.59%(16.10 pixels) from the top. The skew is 0.24◦. Also, as a sanity check, the estimated

horizon intersects the other camera of the same height (circled in red) mounted at the far end

of the terrace.

4http://cvlab.epfl.ch/data/pom/
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(a) (b) (c)

Figure 6: Qualitative and quantitative evaluation on real sequence. (a) Groundtruth distances

in scene 1; (b) Estimated horizon in scene 3; (c) Likelihood curves of FoV angle

The likelihood curve for different FoV angles (normalized to [0,1]) is also plotted in

Fig. 6(c) for each sequence, indicating the confidence interval for FoV estimation.

7 Conclusion

We propose a novel approach for unsupervised camera calibration based on noisy foreground

detections in moderately crowded scenes. No measurements in the scene are required, nor is

there a need to track or label correspondences of the same person between frames. Instead,

we optimize the camera parameters so that the predicted relative human height distribu-

tion resembles our prior knowledge about how pedestrian heights are distributed in the real

world. Our approach is robust against noise in foreground subtraction, and can generate

reliable pedestrian orientation and height predictions after only a short observation period.

Preliminary experiments show promising results under a variety of different camera views.
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