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Abstract. We present a model-checking procedure and its implementation for the au-
tomatic verification of embedded systems. The system components are described as Hy-
brid Automata—communicating machines with finite control and real-valued variables
that represent continuous environment parameters such as time, pressure, and tempera-
ture. The system requirements are specified in a temporal logic with stop watches, and
verified by symbolic fixpoint computation. The verification procedure—implemented
in the Cornell Hybrid Technology Tool, HY TECH—applies to hybrid automata whose
continuous dynamics is governed by linear constraints on the variables and their deriva-
tives. We illustrate the method and the tool by checking safety, liveness, time-bounded,
and duration requirements of digital controllers, schedulers, and distributed algorithms.

1 Introduction

Hybrid systems are digital real-time systems that are embedded in analog environments. Due
to the rapid development of digital-processor technology, hybrid systems directly control much
of what we depend on in our daily lives. Many hybrid systems, ranging from automobiles to
aircraft, operate in safety-critical situations and therefore call for rigorous analysis techniques. Yet
traditional program verification methods allow us, at best, to approximate continuously changing
environments by discrete sampling. Only recently have there been some attempts at developing a
verification methodology for hybrid systems [GNRR93].

In this paper, we pursue the approach suggested in [ACHH93, ACH ™" 94] for solving reachability
problems of constant-slope hybrid systems, whose variables follow piecewise-linear trajectories. We
present progress in three directions. First, we generalize the system model to accommodate, in
addition to variables with piecewise-linear trajectories, also variables whose trajectories are char-
acterized by linear constraints on the slopes. This extension allows the approximation of nonlinear
behavior by piecewise-linear envelopes. Second, we generalize the method to verify, in addition to
reachability properties, also temporal formulas with clocks and stop watches. This extension allows
the analysis of liveness, time-bounded, and duration requirements of hybrid systems. Third, we
report on an implementation of the verification procedure.

Hybrid automata. We model the components of a hybrid system as Hybrid Automata [ACHH93].
A hybrid automaton is a generalized finite-state machine that is equipped with continuous vari-
ables. The discrete actions of a program are modeled by a program counter whose value changes
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instantaneously at various points in time by moving through a finite set of control locations. The
continuous activities of the environment are modeled by real-valued variables whose values change
continuously over time according to the laws of physics: for each control location, the continuous
activities of the environment are governed by differential equations. This model for hybrid sys-
tems is inspired by the Phase Transition Systems of [MMP92] and [NSY93], and can be viewed
as a generalization of Timed Automata [AD94]; a similar model has been proposed and studied
independently in [NOSY93|.

For verification purposes, we restrict ourselves to Linear Hybrid Automata, which are introduced
in Section 2. In each location of a linear hybrid automaton, the behavior of all variables are governed
by linear constraints on the first derivatives. Common examples of linear constraints are constant
differential equations, rectangular differential inclusions, and rate comparisons. For instance, the
constant differential equation & = 2 restricts the variable z to a linear trajectory with slope 2. The
rectangular differential inclusion 1 < & < 3 restricts  to any trajectory whose slope stays within
the interval [1,3]. The rate comparison ¢ > ¢ ensures that z always grows faster than y. Using
rectangular differential inclusions we can model distance z assuming bounded speed & € [I,u], or
time y assuming a clock with bounded drift rate § € [I,u]. Rectangular differential inclusions are
also useful to approximate nonlinear trajectories by piecewise-linear envelopes.

Integrator logic. Real-time requirements of systems can be specified in TcTL [ACD93], a
branching-time logic that extends CTL [CES86] with clock variables. In Section 3, we introduce
Integrator Computation Tree Logic, ICTL, which strengthens TCTL in the style of [BES93] by
admitting integrator variables. An integrator (or stop watch) is a clock that can be stopped and
restarted. While clocks suffice for the specification of time-bounded requirements—such as “A
response is obtained if a ringer has been pressed continuously for at least d seconds”—integrators
are necessary to accumulate delays, and are useful for specifying duration requirements—such as “A
response is obtained if a ringer has been pressed, possibly intermittently, for at least d seconds.” We
use ICTL to specify safety, liveness, time-bounded, and duration requirements of hybrid automata.

Model checking. Model checking is a powerful technique for the automatic verification of
systems: a model-checking algorithm determines whether a mathematical model of a system meets
a requirement specification that is given as a temporal-logic formula. For discrete finite-state
systems, model checking has a long history spanning more than a decade, and has been successful
in validating communication protocols and hardware circuits [CES81, QS81, LP85, McM93]. In
recent years, model-checking algorithms have been developed also for real-time systems that are
described by discrete programs with real-valued clocks [AFH91, ACD93].

As the variables of a hybrid system range over the real numbers, the state space is infinite,
and state sets—so-called regions—must be represented symbolically rather than enumeratively. A
symbolic model-checking algorithm for verifying TCTL-requirements of real-time systems is pre-
sented in [HNSY94]. It has been observed in [ACHH93] and in [NOSY93] that the primitives of
that algorithm can be redefined for the reachability analysis of constant-slope hybrid automata,
whose variables are governed by constant differential equations. We extend this result and present
a symbolic model-checking procedure for verifying ICTL-requirements of linear hybrid automata.

Given an IcTL-formula and a hybrid automaton, we compute the target region of states that
satisfy the formula by successive approximation, as the limit of an infinite sequence of regions. The
approximation sequence is generated by iterating boolean operators and weakest-precondition oper-
ators on regions. For linear hybrid automata, all regions of the approximation sequence are linear in
the sense that they can be defined in the theory (R, <,+) of the reals with addition, whose formulas
are boolean combinations of linear inequalities. In Section 4, we compute the weakest precondition



of (R, <,+)-formulas with respect to linear hybrid automata. The precondition computation, then,
is iterated in Section 5 to construct a (R, <,+)-formula that defines the target region.

Symbolic computation. The model-checking procedure has been implemented as part of the
Cornell HYbrid TECHnology Tool, HYTECH, using the symbolic computation system MATHEMAT-
ICA [Wol88] for manipulating and simplifying (R, <, +)-formulas. In particular, the computation
of weakest preconditions of linear regions requires quantifier elimination in the theory (R, <,+).
In Section 6, we present some details of the implementation and, in Section 7, we illustrate the
method and the tool by specifying and verifying four examples. We check (1) a gate controller for
a railroad crossing, (2) a timing-based mutual-exclusion protocol with distributed, asynchronously
drifting local clocks, (3) a preemptive scheduler with prioritized tasks, and (4) the temperature
control of a nuclear reactor, approximating exponential temperature changes using rectangular
differential inclusions.

These examples demonstrate an important advantage of the symbolic approach to verification.
Although, in theory, the computational complexity of the verification problem is proportional to
the magnitudes of the system delays, in practice the performance of the symbolic procedure is quite
insensitive to the size of delays. Indeed, in place of concrete values for system delays, we can use
symbolic parameters and our procedure will output necessary and sufficient constraints on these
parameters for the system to satisfy the desired property [AHV93]. As is illustrated in examples
(2) and (4), such a symbolic delay analysis can help the system designer to choose critical system
parameters.

The convergence of all approximation sequences, and thus the termination of the model-checking
procedure, is guaranteed only for restricted classes of linear hybrid systems, as already the reachabil-
ity problem for constant-slope hybrid systems is undecidable [ACHH93, KPSY93]. Notwithstand-
ing, we have found that the method is of practical interest. First, the successive-approximation
process converges within a few iterations for many examples we have attempted to verify, including
those of Section 7. Second, there is little difference for the practitioner between a diverging (i.e.,
nonterminating) process and a process that runs out of time or space resources. Thus we submit
that it is important not only to identify decidable verification problems, but also to improve the
applicability of semidecision procedures for verification.

2 System Description Language: Hybrid Automata

Informally, a hybrid automaton [ACHH93] consists of a finite vector & of real-valued variables
and a labeled multigraph (V, E). By & we denote the vector of first derivatives of the variables
in Z. The edges E represent discrete system actions and are labeled with nondeterministic guarded
assignments to Z. The vertices V represent continuous environment activities and are labeled with
constraints on Z and &. The state of the automaton changes either through instantaneous system
actions or, while time elapses, through continuous activities. In this paper, we restrict ourselves to
guards, assignments, and vertex constraints that are linear expressions.

2.1 Syntax

Let ¢ be a vector of real-valued variables. A linear term over ¢ is a linear combination of vari-
ables from § with integer coefficients. A linear inequality over ¥ is an inequality between linear
terms over §. A (closed) convez linear formula over ¥ is a finite conjunction of (nonstrict) linear
inequalities over §. A linear formula over ¥ is a finite boolean combination of linear inequalities



over §J. Every linear formula can be transformed into disjunctive normal form, that is, into a finite
disjunction of convex linear formulas.
A linear hybrid automaton A consists of the following components:

Data variables A finite vector & = (x1,...,2,) of real-valued data variables. The size n of Z is
called the dimension of A.

A data state is a point § = (si1,...,8,) in n-dimensional real space R™ or, equivalently, a
function that assigns to each data variable z; a real value s; € R. A convez data region
is a polyhedron in R™. A data region is a finite union of convex data regions. A (convex)
data predicate is a (convex) linear formula over Z. The (convex) data predicate p defines the
(convex) data region [p] C R, where § € [p] iff p[Z := 5] is true. The data region S is
(convez) linear if there is a (convex) data predicate that defines S.

For each data variable z;, we use the dotted variable Z; to denote the first derivative of z;.
A differential inclusion is a polyhedron in R™. A rate predicate is a convex linear formula
over the set 7 = (£1,...,%,) of dotted variables. The rate predicate r defines the differential
inclusion [r] C R™, where 3 € [r] iff 7[# := 3] is true.

For each data variable z;, we use the primed variable ) to denote the new value of z; after a
transition. An action predicate is a convex linear formula over the set ZWZ’ of data variables
Z and primed variables &' = (z),...,z}). The action predicate ¢ maps each data state § € R™

= =

to the convex data region [¢](8) C R", where § € [¢](3) iff ¢[Z := 8,7’ := §] is true.

Control locations A finite set V of vertices called control locations.

A state (v, 3) of the automaton A consists of a control location v € V' and a data state § € R™.
A region R = U ey (v,8,) is a collection of data regions S, C R™, one for each control
location v € V. A state predicate ¢ = U, (v,po) is a collection of data predicates p,, one
for each control location v € V. The state predicate ¢ defines the region [¢] = U,y (v, [p.]).
The region R is linear if there is a state predicate that defines R.

We write (v, S) for the region (v,S) U Uv,?év(v', 0), and (v,p) for the state predicate (v,p) U
Uv,#(v’ , false). When writing state predicates, we use the location counter £, which ranges
over the set V of control locations. The location constraint / = v denotes the state pred-
icate (v, true). The data predicate p, when used as a state predicate, denotes the collec-
tion U,y (v,p). For two state predicates ¢ = U,cy (v,py) and ¢ = U, (v,p)), we define

ﬁ¢ = UveV(U7_'p'u)a ¢ \ ¢I = UveV(U7p'U vp{u)a and Qs A d)l = Uer(vap'v /\p;)

Location invariants A labeling function ¢nv that assigns to each control location v € V' a convex
data predicate inv(v), the invariant of v. The invariants are used to enforce the progress
of a system from one control location to another, because the control of the automaton A
may reside in the location v only as long as the invariant nwv(v) is true. The state (v, 3) is
admissible if § € [inv(v)]. We write X4 for the set of admissible states of A, and ¢4 for the
state predicate J,cy (v, inv(v)) that defines the set of admissible states.

Continuous activities A labeling function dif that assigns to each control location v € V a rate
predicate dif (v), the activity of v. The activities constrain the rates at which the values
of data variables change: while the automaton control resides in the location v, the first
derivatives of all data variables stay within the differential inclusion [dif (v)].



Transitions A finite multiset E of edges called transitions. Each transition (v,v') identifies a
source location v € V and a target location v' € V. For each location v € V, there is a stutter
transition e, = (v,v).

Discrete actions A labeling function act that assigns to each transition e € F an action pred-
icate act(e), the action of e. If the automaton control proceeds from the location v to the
location v’ via the transition e = (v,v'), then the values of all data variables change non-
deterministically from § to a point in the data region [act(e)](5). For example, a transition
with the action label

21<3 AN3<zI<5 A ah=a3 A af=m21+1

can be traversed only when the value of z; is at most 3. The transition updates the value
of 1 to a real number in the interval [3, 5], the value of 25 remains unchanged, and the new
value of 3 is 1 greater than the old value of x;. All stutter transitions are labeled with the
action predicate &’ = Z.

Synchronization labels A finite set L of synchronization labels and a labeling function syn that
assigns to each transition e € F a set of synchronization labels from L. The set L is called
the alphabet of A. The synchronization labels are used to define the parallel composition of
two automata: if both automata share a synchronization label a, then each a-transition of
one automaton must be accompanied by an a-transition of the other automaton. All stutter
transitions are labeled with the empty set of synchronization labels.

The restriction to convex invariants, activities, and actions does not limit the expressiveness of
linear hybrid automata, because nonconvex invariants and activities can be modeled by splitting
locations (see Section 4), and nonconvex actions can be modeled by splitting transitions.

A special case of a linear hybrid automaton is a timed automaton [AD94]. The data variable z;
of A is a clock if for all control locations v € V', dif (v) implies #; = 1, and for all transitions e € E,
act(e) implies z; = 0 or z, = =;; that is, each clock always increases with the rate at which
time advances, and all transitions either reset a clock to 0 or leave its value unchanged. A linear
inequality is simple if it has the form z =y, z < ¢, or & > ¢, for some integer constant ¢. The linear
hybrid automaton A is a timed automaton if all data variables in & are clocks, and all invariants
and actions are boolean combinations of simple linear inequalities.

2.2 Semantics

At any time instant, the state of a hybrid automaton specifies a control location and values for all
data variables. The state can change in two ways: (1) by an instantaneous transition that changes
both the control location and the values of data variables, or (2) by a time delay that changes only
the values of data variables in a continuous manner according to the rate predicate of the current
control location.
A data trajectory (6, p) of the linear hybrid automaton A consists of a nonnegative duration
6 € R>¢ and a differentiable function p: [0,6] — R™ with the derivative %ﬂ for all ¢ € (0,6); The
data trajectory (6, p) maps every real ¢t € [0, 6] to the data state p(¢). Consider two reals ¢; and
to with 0 < t; < to < 6. We write p[ty,t2] for the data trajectory (&', p') with § = t2 — t1, and
(t) = p(t+t;) for all t € [0 8']. The data trajectory (8, p) is linear if there is a constant rate vector
§ € R™ such that dp(t) = § for all t € (0,6). The data trajectory (6, p) is piecewise linear if there
are finitely many reals t1,...,tr € [0,6] such that the data trajectories p[0,t1], p[t1,t2],- .., p[tk, 0]
are linear.



A trajectory T of A is an infinite sequence

(vo,60,p0) — (vi,61,p1) — (v2,62,02) — (v3,03,p3) — -+
of control locations v; € V and data trajectories (8;, p;) such that for all 7 > 0:
Invariants for all reals ¢ € [0, 6;], pi(t) € [inv(v;)];
Activities for all reals ¢ € (0,6;), %28 e [dif (v;)];
Actions there is a transition e; = (v;,v;11) € E with p;11(0) € [act(e;)](pi(6;))-

A position of the trajectory 7 is a pair (7, €) that consists of a nonnegative integer ¢ and a nonnegative
real € < §;. The positions of 7 are ordered lexicographically: the position (i,6) precedes the
position (j,¢), denoted (4, 6) < (j,¢), iff either i < j, or ¢ = j and é < e. The state at position (i,€)
of 7is 7(i,€) = (v4, pi(€)) (notice that all states of T are admissible). The time at position (i,€) of
T is the finite sum t,(%,€) = (Xo<j<id;) + €. The duration of the trajectory 7 is the infinite sum
or = ij() 5]'.

The trajectory 7 diverges if 6; = co. The trajectory 7 is linear if all data trajectories (&;, p;)
of 7 are linear. By [A] we denote the set of trajectories of the automaton A. If 7 is a set of
trajectories, 79" is the set of divergent trajectories in 7, and Ty, is the set of linear trajectories
in 7.

Consider two positions m; = (v;,€1) and 72 = (vj, €2) of the trajectory 7. We write 7[my, mo] for
the trajectory fragment

(vi, pler, 6i]) — (Vig1,0iq1,pi41) — -+ — (v5,p[0,€2]),

and 7[m1, 00] for the trajectory

(vi, pler, 6i]) — (Vit1, 0641, pi11) — (Vit2,0i42,piv2) — -

The trajectory set [A] is closed under suffixes (if 7 € [A] and 7 is a position of 7, then 7[m, o00] €
[A]); stuttering (if 7 € [A] and 7 is a position of 7, then (7[(0,0), w]7[mr, 00]) € [A]); fusion (if
7,7 € [A], 7 is a position of 7, 7’ is a position of 7/, and 7(7) = 7/(7'), then (7[(0,0), 7]7[7’, 0]) €
[A]); and limits (if for all positions 7 of T there is a trajectory 7' € [A] and a position 7' of 7/ such
that 7[(0,0),n] = 7'[(0,0), 7], then 7 € [A]). Notice that fusion closure asserts that the future
evolution of a hybrid automaton is completely determined by the present state of the automaton.
Also notice that the suffix, stutter, and fusion closures of a trajectory set 7 are inherited by the
subsets 7% and 7,. If T is closed under limits, then so is 7y,, and 7 4 ig closed under divergent
limits (“divergence-safe”) [HNSY94].

The linear hybrid automaton A is nonzeno if for every admissible state o of A there is a divergent
trajectory 7 of A such that 7(0,0) = o. In other words, A is nonzeno iff every finite prefix of a
trajectory is a prefix of a divergent trajectory. Notice that if A is nonzeno, then the states that occur
on divergent trajectories of A are precisely the admissible states 3 4. We restrict our attention to
nonzeno hybrid automata. In [HNSY94] it is shown how a timed automaton may be turned into a
nonzeno automaton with the same divergent trajectories; this is done by strengthening the location
invariants, and applies to many hybrid automata also.



2.3 Composition

A hybrid system typically consists of several components that operate concurrently and communi-
cate with each other. We describe each component as a linear hybrid automaton. The component
automata coordinate through shared data variables, and to facilitate message-type coordination,
we also use synchronization labels on the automaton transitions. The linear hybrid automaton
that models the entire system is then constructed from the component automata using a product
operation.

Let Ay = (&1, V1, inv1, dif 1, E1, act1, L1, syn,) and As = (&2, Va, inva, dif4, B2, acta, La, synsy)
be two linear hybrid automata of dimensions n; and ne, respectively. The product A; x Ag of Ay
and As is the linear hybrid automaton A = (Z1 U @2, V1 x Va,inv, dif , E, act, L1 U Lo, syn):

e Each location (v,v') in V3 X V3 has the invariant inv(v,v') = inv1(v) A inve(v') and the activity
dif (v,v") = dif{(v) A dif5(v"); that is, an admissible state of A consists of an admissible state
of A; and an admissible state of A2, whose shared parts coincide, and whose rate vector obeys
the differential inclusions that are associated with both components locations.

e FE contains the transition e = ((v1,v}), (ve,v4)) iff

(1) v1 = vy and there is a transition es = (v}, v5) € Eo with Lj N syny(ez) = 0; or

(2) there is a transition e; = (v1,v2) € Fy with synq(e1) N Ly = 0, and v} = vj; or

(3) there is a transition e; = (v1,v2) € Fj and a transition es = (v},v5) € Es such
that synq(e1) N Ly = synq(e2) N Ly # 0.

In case (1), act(e) = (Npez\a, ' = @) A acta(e2) and syn(e) = syny(e2). In case (2), act(e) =
acti(e1) A (Azes\z, *' = ) and syn(e) = synq(e1). In case (3), act(e) = acti(e1) A acta(e2)
and syn(e) = syn;(e1) U synqy(ez).

Since the two component automata A; and A may share data variables, the dimension of A lies
between maz(ni,n2) and ny + n2. According to the definition of F, the transitions of the two
component automata are interleaved, provided they have no labels in L3 N Lo. Labels in L; N Lo
must be synchronized, and cause the simultaneous traversal of component transitions. Notice that,
in cases (1) and (2), the stutter transitions of the component automata result in stutter transitions
of the product automaton.

2.4 Example: Railroad gate controller

We model a control system for a railroad crossing using linear hybrid automata. The system consists
of three processes—a train, a gate, and a gate controller.

The variable = represents the distance of the train from the gate. Initially, the train is far from
the gate and always moves at a speed that varies between 48 and 52 meters per second. When the
train approaches the gate, a sensor that is placed at a distance of 1000 meters from the crossing
detects the train and sends the signal app to the controller. The train then may slow down to a
speed between 40 and 52 meters per second. If the controller is idle upon receipt of the approach
signal app, it requires up to 5 seconds to send the command lower to the gate; the delay of the
controller is modeled by the clock z. If the gate is open, it is lowered from 90 radius degrees
to 0 degrees at the constant rate of 20 degrees per second; the position of the gate in degrees is
represented by the variable y. A second sensor placed at 100 meters past the crossing detects the
leaving train and signals exit to the controller, which, after another delay of up to 5 seconds, sends
the command razse to the gate. We assume that the distance between consecutive trains is at least



Figure 1: Railroad gate controller

1500 meters, so when the sensor detects a leaving train, the next (or returning) train is at least
1500 meters from the crossing.

The controller must accept arriving app and ez:it signals at any time, and the gate must always
accept controller commands. For fault tolerance considerations, we design the controller so that an
ezit signal is ignored if the gate is about to be lowered, while an app signal always causes the gate
to be lowered.

The three hybrid automata that model the train, the gate, and the controller are shown in Fig-
ure 1. In the graphical representation of the automata we use “superlocations” to save on edges.
In particular, the gate automaton has four locations—up (“being raised”), open, down (“being
lowered”), and closed. We suppress invariants of the form t¢rue, conjuncts of the form & = 0 for
activities, conjuncts of the form z' = z for actions, and we suppress stutter transitions. The loca-
tion up of the gate automaton has the invariant 0 < y < 90, the activity y = 20, and two outgoing
transitions; the transition to the location open has the activity y = 90 A 3’ = y, and no synchro-
nization labels; the transition to down has the activity y’ = y and the synchronization label lower.
The synchronization labels model signals (from the train to the controller) and commands (from
the controller to the gate). For instance, when the train automaton changes location using an edge
labeled with app, the controller automaton is required to traverse an edge with the same label.

3 Property Description Language: Integrator Logic

The formulas of the Integrator Computation Tree Logic ICTL for a given linear hybrid automaton
A contain two kinds of variables—data and control variables of A, and integrators. An integrator
(or stop watch) is a clock that can be stopped and restarted. We adopt the notation of [BES93] to
generalize the clock reset (“freeze”) quantifier of TPTL [AH94] to a reset quantifier for integrators.



While the clock reset quantifier z.¢ introduces (binds) the clock z and sets its value at 0, the
integrator reset quantifier (z: U). ¢ introduces (binds) the integrator z, declares its type to be U,
and sets its value to 0. The type U C V of z is a set of locations from A. The value of an integrator
of type U increases with the rate at which time advances whenever the automaton control is in
a location in U, and its value stays unchanged whenever the automaton control is in a location
in V\U. In particular, a clock is an integrator of type V.

3.1 Syntax

The formulas of ICTL are built from state predicates using boolean operators, the two temporal op-
erators 3U (“possibly”) and VU (“inevitably”), and the reset quantifier for integrators. Intuitively,
the formula ;13U 2 holds in the automaton state o if along some automaton trajectory that starts
from o, the second argument @2 holds in some state of the trajectory, and the first argument ¢
holds in all intermediate states. The formula @1Vl @2 asserts that along every trajectory that starts
from o, the first argument ¢; is true until the second argument @2 becomes true.

Let A be linear hybrid automaton with the data variables Z and the control locations V', and let
Z be a vector of real-valued variables called integrators. A Z-extended data predicate of A is a linear
formula over ZW Z. A Z-extended state predicate of A is a collection of Z-extended data predicates,
one for each location in V. The A-formulas of ICTL are defined inductively by the grammar

o = ¢ || o1V | p1TUps | p1VUE2 | (2:U). ¢

where ¢ is a Z-extended state predicate, U C V is a set of locations, and z is an integrator from 2.
The IcTL-formula ¢ is closed if every occurrence of an integrator in ¢ is bound by a reset quantifier.
We restrict ourselves to closed formulas of ICTL. We also assume that different reset quantifiers in
© bind different integrators, which can be achieved by renaming bound variables.

If all integrators in ¢ have the type true, then ¢ is a formula of TcTL [ACD93]. When writing
IctL-formulas, we suppress the integrator type true, and we use boolean combinations of location
constraints for defining integrator types. Typical abbreviations for IcTL-formulas include the stan-
dard temporal operators VO¢, d0¢, and ¢13Wea, for trueVidp, -VO—p, and ¢13Upe V JF0pq,
respectively. We also use time-bounded temporal operators [ACD93] such as VO<5 ¢, which stands
for the IcTL-formula 2.VO(2 < 5 A ), that is, (2 : true). (trueVi (z < 5 A ¢)).

3.2 Semantics

Every closed A-formula v of ICTL defines a region [¢]4 of the automaton A. The region [1]4 is
called the characteristic A-region of ¥, and is defined in three steps. First, we extend A to an
automaton Az whose data variables include the integrators from 2. Second, we interpret i over
the states of the extended automaton Az. Third, we relate the states of Az to the states of A.

Let Z = (21,...,2m) be the vector of integrators that occur in the formula v, and let Uy, ..., U,
be the corresponding types (as specified by 9). From the n-dimensional hybrid automaton A =
(Z,V,inv, dif , E, act, L, syn) we construct the (n + m)-dimensional Z-extension of A as the linear
hybrid automaton A; = (ZW 2, V, inv, dif’, E, act’, L, syn):

e For each integrator z; in Z, and each location v € V, if v € U; then dif' (v) = dif (v) A Z; = 1;
if v € U; then dif'(v) = dif (v) A 2 = 0.

e For each integrator z; in Z, and each transition e € E, act'(e) = act(e) A 2!

;= %



Each data state § € R®™"™ of A3 consists of an Z-projection 5|3 € R™, which is a data state of A, and
a Z-projection §|z € R™, which assigns to each integrator in 2 a real value. Each state o = (v, $)
of Az, then, consists of a state o|z = (v,§|z) of A, and an integrator valuation o|; = §|z. In
particular, ¥4, =34 x R™.

The projection operation |z is extended to regions and trajectories in the natural way: the
Z-projection of the Azregion R is the A-region that contains the Z-projections of all states in R;
the Z-projection of the data trajectory (6, p) of Az is the data trajectory of A that maps every
real t € [0,6] to the data state p(t)|z; the Z-projection of the Az-trajectory 7 is the A-trajectory
that results from 7 by replacing all data trajectories with their Z-projections. Notice that each
trajectory 7 of Az is completely determined by the trajectory 7|z of A, and the initial integrator
valuation 7(0,0)|z € R™.

Given a set 7 of A-trajectories, the Z-extension 77 consists of all Az-trajectories whose Z-
projections are in 7. For a state o of Az, the satisfaction relation o =7 9 is defined inductively
on the subformulas of %:

o1 ¢ iff o€ [¢];
o T ~p iff o T @5
ocbET 1V iff o1 91 0r o =1 o

o =1 p13Upy iff for some trajectory v € 7> with 7(0,0) = o, there is a position 7 of 7 such
that 7(m) =7 2, and for all positions 7' of 7, if 7' < 7 then 7(7') E7 ¢1 V @2;

o =1 01VUps iff for all trajectories 7 € 7z with 7(0,0) = o, there is a position 7 of 7 such
that 7(m) =7 2, and for all positions 7’ of 7, if 7’ < 7 then 7(7') E1 ¢1 V @2;

o =1 (2:p).¢ iff o[z :=0] =7 ¢, where o[z := 0] is the state that differs from o at most in
the value of z, which is 0.

The disjunctions in the definitions of the temporal operators 3/ and VI account for the possibility
that the second argument @2 may hold throughout a left-open interval of a trajectory [HNSY94].

We write [¢]7 for the Az-region of all states o such that o =7 9. Since % is closed, if o =7 9
and oz = 0’|z, then o' =7 v; that is, [¥]7 = ([¢]7)|z X R™. The characteristic A-region [1] 4 is
defined to be the Z-projection of the Azregion [¢] [ajdiv- The state o of the automaton A satisfies
the formula ¢ if o € [¢]a-

3.3 Example: Railroad gate controller

The linear hybrid automaton A meets the requirement specified by the A-formula % of IcTL iff all
admissible states of A satisfy v; that is, [¢¥]a = X 4.

To illustrate the use of ICTL as a specification language, recall the railroad gate controller from
Section 2. The initial condition of the system is given by the state predicate

¢o: L= (far,open,idle),

which asserts that the train is far from the gate, which is open, and the controller is idle. We
require the following properties of the controller. The safety property

$o — VO(z <10 — [[2] = closed)
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asserts that whenever a train is within 10 meters of the gate, the gate must be closed (we write
L[i] for the i-th component of the program counter £, so £[1] ranges over the locations of the train
automaton, etc.). Since the safety requirement is met by a controller that keeps the gate closed
forever, we add the liveness (response) property

¢o — VOVO(L[2] = open)

that the gate will always open again. Indeed, this eventual liveness requirement may not be
satisfactory (imagine you are in a car waiting to cross at a closed gate!), so we may wish to require
instead the stronger time-bounded response property

$o — VOVO<33 (£[2] = open)

that the gate will always open within 33 seconds.

To demonstrate the use of integrators, we consider the additional requirement that within any
time interval longer than an hour, the gate must be open at least 80% of the time. This duration
(utility) property can be expressed in ICTL by the formula

do — VO(z1.(22: £[2] = open).VO(z1 > 3600 — 10z < 821).

Here z; is a clock that measures the length of a time interval, and z, is an integrator that measures
the accumulated time that the gate is open during the interval measured by 2.

4 Hybrid Automata as Infinite-state Transition Systems

We analyze hybrid automata by building on techniques for the analysis of discrete transition sys-
tems, which move in discrete steps through a state space. Suppose we are given a linear hybrid
automaton A. Since the trajectories of A move continuously through the infinite state space X4,
we decompose each trajectory into a countable number of steps. Each step records a time delay (of
arbitrary finite duration), or a transition of A (instantaneous).

4.1 Step relations

Since a time delay, on its way from an initial state to a target state, passes through an infinite
number of intermediate states, we need to record the region that is visited during the delay. This
leads to the following definitions of the time-step and transition-step relations. Let Q = U, (v, Qx)
be a region of A.

Time step For all states o1 = (v1, §1) and o2 = (v2, §2) of A, 01 gag if v1 = vo, and there exists
a data trajectory (6, p) such that

(1) p(0) = 51 and p(6) = 52;
(2) for all reals ¢ € [0, 6], p;(t) € [inv(v)] N Qu;
(3) for all reals ¢ € (0,6), 221 e [dif (v)].

In other words, (v, 1) LA (v, §2) iff in location v, starting from the data state §1, it is possible
to reach the data state 32 by letting time pass, without leaving the region Q. In this case,
we call (6, p) the witness for (v, 51) = (v,52). We define o1 =, o2 if there is a piecewise-
linear witness for g1 — og2; and o1 —1 o9, if there is a linear witness for o1 — g2. Clearly,

. . . . b
=1 € Sin € . For simplicity, we write — for .
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Transition step For all states o1 and o2 of A, o1 IQ>O'2 if 01,00 € ¥4 N Q, and there exists a
transition e € E such that o2 € [act(e)](o1).

The binary relation 2 on the states of A is Q-reflexive if (1) o 2 o9 implies 01,00 € X4 NQ, and
(2) for all o0 € ¥4 NQ, we have 0 = 0. The time-step relation = is Q-reflexive because of witness
trajectories with duration 0, and the transition-step relation — is Q-reflexive because of stutter
transitions.

We now show that for linear regions @ the time-step relation 2 and the piecewise-linear time-
step relation Q,h.n coincide. For this purpose, we need a lemma and a few definitions.

Lemma 1 Let A be a linear hybrid automaton, let v be a location of A, and let S be a conver data
region contained in [inv(v)]. If there is a data trajectory (p,8) of A such that p(0) = 31 € S and
p(6) = 52 € S, then there is a linear data trajectory (p',8) of A such that p'(0) = 51, p'(6) = 3o,
and p'(t) € S for all t € [0,6].

Proof. Suppose that p(0) = §; and p(6) = §2. We define a continuous function p': [0,6] — R"
such that p(t) = 51 +t - (25%). Then p'(0) = 51, p/(6) = 52, and LE — 25 o1 511 ¢ € (0, 6).
Suppose that the rate predicate dif(v) has the form A,y 7. Let r; = (co ~ - i) be a

conjunct of dif (v), where ~€ {<,<} and & is the inner product of a constant vector & and vector
z. Since (6, p) is a data trajectory, for all time instants ¢ € [t;, t;t1],

dp(Z)(t)

co~C-
0 dt

Integrating both sides of the above inequality from 0 to é, we get co(6) ~ - (52 — §1); that is,

$2 — 81

6

.
cg~C-

Since dpl(f;)(t) = 52;‘?1 for all ¢ € (0,6), we know that w € [ri], for all ¢ € (0,6). Moreover,
since r; is an arbitrary conjunct of dif(v), we can conclude that W € [dif(v)] for all ¢ € (0,0).
In addition, p' is linear, and both of its endpoints, §; and 35, are in some convex data region

S, s0 p/(t) € S for all t € [0,6]. This proves our claim that (6, p') is a linear data trajectory such
that p'(0) = p(0), p'(6) = p(é) and p/(t) € S for all £ € [0,6]. m

Let p be a data predicate. A closed convex covering of p is a set {p1,...,pr} of closed convex data
predicates p; such that [p] C U;<;<klpi]- A closed convex covering of p can be easily constructed
from the disjunctive normal form of p. Assume that p = p; V...V pg is in disjunctive normal form,
with each disjunct p; of the form /\j(ej ~ ¢;), where e; is a linear term and ¢; is an integer constant.
We define the data predicate transformer close such that the data predicate close(p) results from
the data predicate p by replacing each strict inequality e; > ¢; or e¢; < ¢; by the corresponding
nonstrict inequality e; > ¢; or e; < ¢j, respectively. Then {close(p;), ..., close(pr)} is a closed
convex covering of p.

If {p1,...,pr} is a closed convex covering of the data predicate p, then the set C = {p1 A
p,...,pr/Ap} of convex data predicates is an ezact convex covering of p; that is, [p] = Uj<;<r[piAp]-
We call each convex data region [p; A p] a patch of C. o

Theorem 1 Let A be a linear hybrid automaton, let Q@ = |U,(v,Q.) be a region of A, let v be
a location of A, and let §1 and 2 be two data states of A. If Q, is linear, then (v,81)— (v, §2)
iff (v, 81) qu (v, 82). If Q. is convex linear, then (v,31) LA (v, 82) iff (v, 81) =1 (v, 52).
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Proof. It is clear that (v,é’l)ghn (v, 83) implies (v, 51) g(v,é'g). We show that (v, 31) g(v,é'g)
implies (v, §1) —un (v, 82). We say a data trajectory is trivial if its duration is 0. If §; = 3§,
then a witness of (v, 81)— (v, 82) is trivial, and thus (v, §1) Q)h-n (v,82). So assume that §; # 35,
and therefore, every witness for (v, §1)— (v, §2) is not trivial. Since @, is linear, there is a data
predicate p, such that [p,] = Q.. Let C = {p1,...,px} be an exact convex covering of p, A inv(v).
A finite crossing sequence of a nontrivial data trajectory (6,p) on C is a time sequence (0 =
to,t1,t2, .. tm = 0) with tg < t1 < t2 < --+ < t, such that (1) for each 1 < i < m —1, p(¢;) is
in two distinct patches of C, and (2) for each 0 < i < m — 1, both p(¢;) and p(t;+1) are in the
same patch of C. Notice that although the two endpoints p(¢;) and p(¢;+1) of the data trajectory
plti,tiy1] are in the same patch, say [p;], of C, the interior points of p[t;,?;+1] may not all be in
[p;]. Since C is finite, every nontrivial data trajectory (6, p) must have a finite crossing sequence.

Consider a finite crossing sequence (to = 0, t1,...,t, = 6) of a witness (8, p) for (v, §1) = (v, §2)
on C. For each ¢ € {0,...,m — 1}, p[t;,t;+1] is a data trajectory such that both data state p(t;)
and p(t;+1) are in the convex data region [p; A inv(v)], where [p;] is a patch of C. By Lemma 1,
there is a linear data trajectory (ti+1 — ti, pi) such that p;(0) = p(ti), pi(tix1 — ti) = p(tiy1) and
pi(t) € [p; A inv(v)] for all t € [0,%;41 — t;]. So the concatenation of these linear data trajectories
(t1,00),(t2—t1,01)s- -5 (6 —tm—1, pm—1) is @ piecewise-linear witness for (v, 1) A (v, 82), and thus
(v, 81) =iin (v, §2).

On the other hand, if @, is convex, then C = {p, A inv(v)} is an exact convex covering
of py A inv(v). Then it follows immediately from Lemma 1 that (v,3;) = (v, §2) if and only if
(v,81) =1 (v,52). |

4.2 Precondition operators

Let @ and R be two regions of the hybrid automaton A, and let £ bea Q-reflexive binary relation
on the states of A. The 2 -precondition pre2 (R) of R is the region of A from which a state in R
can be reached in a single gb -step; that is, o € preg(R) if there is a state ¢’ € R such that o g o'
Since % is Q-reflexive, the precondition operator pre_, is monotonic on the subregions of ¥4 N Q;
that is, for all regions R C ¥4 N Q, we have R C preg(R) CYANQ.

We consider the time-precondition operator pre_, and the transition-precondition operator
pre_,, and show that if both regions Q and R are linear, then so are the preconditions pre? (R)
and pre® (R). This is done by constructing from the state predicates ¢ and x that define Q and R,
respectively, two state predicates pre?,(x) and pre?,(x) that define pre? (R) and pre® (R), re-
spectively. We then define the A-precondition preg(R) to be the union pre® (R) U pre? (R). If ¢
defines ), and x defines R, then preg(R) is defined by the state predicate

pref(x) = pre?,(x) V pre?,(x).

In the following, suppose that Q@ = U, (v,Q,) and R = U, (v, R,). Let ¢ = U, (v,q,) be a state
predicate such that for each location v of A, [¢»] = Q., and let x =, (v,7,) be a state predicate
such that for each location v of A, [r,] = R,.

Time precondition

We write pre?> (v; R,) for the data region such that from any state in the region (v, pre?» (v; R,))
a state in the region (v, R,) can be reached in a single —5-step. We show that the data region
pre®r (v; R,) is linear by constructing from ¢, and r, a data predicate pre% (v;r,) that defines the
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data region pre?(v; R,). Then

pre?, (x) = |J (v, pre® (v;ry)).
veEV

The construction of pre? (v;r,) proceeds in two steps. First we construct a data predicate pre®™*¢(v;r,)
true

such that [pret™e(v;r,)] = prel™*®)l(v; R,). Then we apply the precondition operator pre™*¢ re-
peatedly to construct the data predicate pre?; (v;r,).

Lemma 2 Let A be a linear hybrid automaton, let v be a location of A, and let r, be a data
predicate of A. If

ret™ (v;7,) = inv(v) A (36 > 0.3d. dif (W)[& :=d] A (ry A inv(v))[E =T + 6 - d)),
e (vsry)] = prel ™ (v; I, ]).

Proof. The quantified formula in pre’™*¢(v;r,) specifies that a data state & satisfies pre'™“¢(v;r,)
iff the following four conditions hold:

then [[pre

1. Zis in [inv(v)] (the conjunct inv(v));

2. there exist a duration é and a slope vector d that define a linear witness (6, p(t) = Z +¢ - d)
for a single — step (the quantified variables § and d);

3. the slope vector d satisfies the rate predicate dif (v) of location v (the conjunct dif (v)[# = d);
and

4. p(6) is [r] N [inv(v)] (the conjuncts (r A inv(v))[Z:=Z+ 6 - J])

Since [inv(v)] is convex, by Theorem 1, we know that the time-step relation [(osimlT _ [[(v’iﬂ(v))ﬂl .

So it suffices to consider only linear witnesses in Condition 2. In addition, since the witness is linear,
and since both p(0) and p(6) are in [inv(v)], Condition 1 together with Condition 4 implies that
p(t) € [inv(v)] for all ¢t € [0, 4].

According to the definition of the time-step relation
pre_,(v; R,). &

The formula pre'™¢(v;r,) of Lemma 2 contains the vector § - d of variable products, which gives
rise to nonlinear terms. We therefore replace the vector ¢ - d of variable products by a vector & of
variables. Let §- dif (v) be the rate predicate that results from multiplying each constant of the rate
predicate dif (v) by the variable §. For example, if r is the rate predicate &1 < 3i2 +6 A &3 =1,
then 6 - r is the rate predicate &1 < 3@ + 66 A &3 = . Then the formula

nv(v) A (36 > 0.3d. dif W)[F = d] A (1o A inv(v))[F:=F + 6 -d))

[[(v’ig(v))]]l , it is clear that [pret™*¢(v;r,)] =

is equivalent to the formula
inv(v) A (36> 0.3 (6 - dif W))[2 :=&] A (ry A inv(v))[Z = + ).
The next proposition follows.

Proposition 1 Let A be a linear hybrid automaton, let v be a location of A, and let v, be a data
predicate of A. If

pretrue(v ry) = tnv(v) A (36 >0.3.(6 - dlf(v))[a? =] A (ro A inv(v))[Z =7 + ),

then [pretr e (v;ry)] = prel™ @l (v; [r,]).
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Figure 2: The time-precondition operator pre"*¢

—

Since this theory admits quantifier elimination, the formula pre"*¢(v;r,) is equivalent to a data

—

predicate. The quantifier-elimination procedure used by HYTECH is discussed in Section 6.

The formula pre”*¢(v;r,) is a formula of the first-order theory (R, <,+) of the reals with addition.

Example. Let us consider two examples of computing the data predicate pre‘™¢(v;r,) using
Proposition 1. First, suppose that the linear hybrid automaton A has two data variables, z and y,
the invariant inv(v) = (y > 0), and the activity dif(v) = (¢ = 1 A g = 2) for the location v.
Consider the data predicate r, = (1 < 2z < 2 A 2 < y < 3) (see the left of Figure 2). Then,
according to Proposition 1,

pre™(v;r,) = (Yy>0A (36>0.3cr,c0.c0 =6 ANea=20 AN1<z+c1<2A2<y+c <3)).
Eliminating the two existential quantifiers inside out, we obtain
pre™(v;ry) = (Y>0A(36>0.1<2+6<2A2<y+26<3))
and, finally, the data predicate
pre’(viry) = (2<2A0<y<3A-2<y—2z<1)

(see the center of Figure 2). Second, suppose that the activity dif (v) of the location v is 1 < & <
2 N1 <y < 2. Then, according to Proposition 1,

pret™e(v;r,) = (y > 0A (36> 0.3e1,c2.8 <1 K26A8 <ea <26N1 < 241 <2A2 < y+ep < 3)).
Eliminating the two existential quantifiers, we obtain
pret™e(v;ry) = (Y>0A(I6>01-2<26AN2—-y<26A6<2—2AEL<3—y))
and the equivalent data predicate
pre™(v;r,) = (2<2A0<y<3A22—y<2A2y—2<5)

(see the right of Figure 2). m

We now reduce the construction of the data predicate pre? (v,r,) to a sequence of applications of
the precondition operator pre”*¢ defined in Proposition 1. We proceed in three steps. First, let
v' be a new, fictitious location with the invariant inv(v') = (inv(v) A ¢») and the activity dif (v).
Then

pre@ (v Ry) = prel™ (/s R,).
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Figure 3: The time-precondition operator pre®;

The invariant inv(v'), however, may not be convex, in which case we cannot compute a data
7 7 y b
predicate pre’™¢(v';r,) using Proposition 1.
So, second, we split the location v’ into several locations with convex invariants. Let C =

{p1,-..,pr} be an exact convex covering of the data predicate inv(v'). We split v’ into the set
V' = {v},...,v;} of new, fictitious locations v; such that for all 1 < ¢ < k, the invariant inv(v})
is ps, and the activity dif (v}) is dif (v). Let
pre_, (V' U pr e[[mv(v 2 (v Ry).
vieV’

Then the data predicate pre_, (V';r,) that defines the data region pre_, (V'; R,) can be constructed
using Proposition 1 and disjunction.

A single - -step, however, may proceed from the data region pre®r(v; R,) to the data region
R, through more than one of the patches of C. Since there are k different patches of C, it will
suffice to iterate the precondition pre_, (V'; R,) k times. So, third, we define a sequence of k data
regions, Sy to Sk, such that Sp = S, and for all 1 < j < k, S; = pre_,(V';S;_1). Let sg,...,s
be the sequence of corresponding data predicates; that is, for all 0 < j < k, [s;] = S;. The next
proposition shows that Sy = prel*(®*)l(y/; R,). Thus the data predicate pre? (v;r,) = sj defines
the data region pre®r (v; R,).

Proposition 2 Let A be a hybrid automaton, let v be a location of A, and let ¢, and r, be two data
predicates of A. Let {p1,...,pr} be an exact convex covering of the data predicate inv(v) A ¢,. Let
V' = {v],...,v,} be a set of locations such that for all1 < i < k, inv(v}) = p; and dif (v)) = dif (v').
If So = [r,] and for all1 < j < k, S; = pre_,(V';S;_1), then S = prelel(v; [r,]).

Proof. Since dif (v}) = dif (v') and V/, :mv(v) = inv(v'), by definition, Sy defines the set of data
states that can reach a data state in R, by k —1 steps. According to the definition of pre_, (v'; R,),
Sk C pre_,(v'; Ry,). Since inv(v') has an exact convex covering {p1,...,pr}, the proof of Theorem 1
implies that the time-step relation (v/, §) — (v', s') must have a piecewise-linear witness that consists
of k linear data trajectories. In other words, (v, ) — (v', §') implies that (v', §) —17 (', ') for some
0 < j < k. Consequently, pre_, (v'; R,) C Sg. Thus pre_, (v'; R,) = Si. 1

Example. Let us consider an example of computing the data predicate pre?: (v;r,) using Proposi-
tion 2. Suppose that the linear hybrid automaton A has two data variables, z and y, the invariant
mv(v) = (0< 2z <4 A0<y<3) and the activity dif (v) = ( =1 A g = 1) for the location v.
Consider the data predicates

@ = (0<2<2A0<y<1)V(2<z<4A0<y<3))
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and r, = (3 <z <4 A 2 <y <3). The new location v' has the invariant
inv(v') = 0<z<2A0<y<1)V(2<z<4A0<y<3).
Since inv(v') is not convex, and
{p1,p2} = {0<2<2A0<y<1,2<z<4AN0<y<3}

is an exact convex covering of inv(v'), we split the location v’ into two locations V' = {v1,v2} such
that inv(v1) = p1 and inv(ve) = p2. Then

Sg = Ty = 3<z<4N2<y<3),
s1 = pre,(V5s0) = 2<2<4AN0<y<3A1<z-—y<3),
so = pre_(Vis1) = (2<2<4A0<y<3A1<z—y<3)V

(1<z<2A0<y<1A1<z—Y)

(see Figure 3). By Proposition 2, pre (v;r,) = s2. R

Transition precondition

We write pre? (v; R,) for the region of states from which a state in (v, R,) can be reached in a
single +%-step. We show that the region pre® (v; R,) is linear by constructing from ¢ and r, a
state predicate pre?, (v;r,) that defines the region pre® (v; R,). Then

pref. () = U pret.(sra).
veEV

The next proposition constructs pref,(v;r,) as a formula of the theory (R, <,+), from which a
data predicate can be obtained by quantifier elimination.

Proposition 3 Let A be a linear hybrid automaton with the transition set E, let v be a location
of A, let  =U,(v,qy) be a state predicate of A, and let r,, be a data predicate of A. If

pref (viry) = |J (', g A inv(v') A (32", act(v',v) A (ry A g A inv(v))[Z := 2])),
(v'w)EE

then [preg, (v;ry)] = preldl (v; [r])-

Proof. For each location v/, the quantified formula in pre?, (v;r,) specifies that a state (v',)
satisfies pre?, (v;r,) iff the following three conditions hold:

1. the data state Z is in [g,y A inv(v')] (the conjuncts ¢, A inv(v'));

2. there is a state (v,2') that is reachable from state (v',) by taking a single — step through
transition (v',v) (the conjunct act(v',v)); and

3. 2 isin [ry A gu A inv(v)] (the conjuncts (ry A go A inv(v))[Z := 2]).
According to the definition of the transition-step relation A , the proposition holds. m

Example. Let us consider an example of computing the state predicate pre?, (v;r,) using Propo-
sition 3. Suppose that the linear hybrid automaton A has two data variables, z and y, and only
one non-stutter transition, e = (v',v), with the target location v. Suppose that act(e) = (z <
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3Nz >5 Ay ==), and that ¢, = ¢ = nv(v) = inv(v') = true. Consider the data predicate
ry = (2 > 6 A y <2). Then, according to Proposition 3,

pre? (viry) = (', G2’ I 2 <3 A2 >5ANyY =z Az >6Ay <2)) A
(v, (2" .2’ =z ANy =yAna'>6A1Yy <2)

(the first conjunct corresponds to the transition e, and the second conjunct corresponds to the
stutter transition of v). Eliminating the two existential quantifiers inside out, we obtain

pred (viry) = (0, G2’ 2 <3AZ 25N 26 Az<2)A (v, @2’ =zha'>6Ay<2)
and, finally, the state predicate

pred (viry) = (V, 2<2) A (v, 226 Ay<2). =

The concluding theorem follows from Propositions 1, 2, and 3.

Theorem 2 Let A be a linear hybrid automaton, and let ¢ and x be two state predicates of A.
Th ¢ — rel®l
en [prex (x)] = preg (IxD)-

5 Symbolic Model Checking

Given a nonzeno linear hybrid automaton A, and a closed A-formula v of ICTL, the model-checking
problem asks to compute the characteristic A-region [¢]4, by providing a state predicate ¢ that
defines the answer [¢]4; that is, [¢] = [¢]a. The state predicate ¢ is called a characteristic
predicate of (A,%). In general, a characteristic predicate may not exist, and it is undecidable if a
given state predicate is a characteristic predicate of (A,1) [ACHH93, KPSY93]. In [HNSY94], a
symbolic model-checking algorithm, SMmc, is presented for computing a characteristic predicate of
(A, %) in the case of a timed automaton A and a TcTL-formula ¢. We extend the Smc-algorithm
and obtain a semi-decision procedure that, provided it terminates, returns a characteristic predicate
of (A,%) in the general case.

5.1 The SMmc-procedure

The SMc-procedure approximates a characteristic predicate of (A4, ) by a sequence of state predi-
cates. If the successive-approximation sequence converges in a finite number of steps, then the SmMc-
procedure terminates and returns a characteristic predicate of (A4, ). The successive-approximation
sequence, however, may diverge, in which case the SMC-procedure does not terminate.

Let Z be the vector of integrators that occur in the formula 9, together with a new clock
Zp1Ugp, for each subformula ¢1VUgs of 4 (i.e., 2z is different from the data variables of A and the
integrators of ¥). The Smc-procedure uses the hybrid automaton Az, which extends A with the
integrators from Z (see Section 3), and the precondition operator pre,_ on state predicates, which
was introduced and computed in Section 4.

Procedure Smc:
Input: a nonzeno linear hybrid automaton A;
a closed A-formula ¥ of ICTL.
Output: a characteristic predicate |¢| of (A4,v).

Recall that ¢4 = U,cy (v, inv(v)). The characteristic predicate |¢| is computed inductively on the
subformulas of ¥:
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|¢] = @ A Pa;
|=p| = —lopl;
lp1 V2| = |p1| V |p2l;

lp13Upa| = Vi>oxi, where
0 = |p2| and
Xi+1 = Xi V pre Xi)
(i.e., compute the sequence xo, X1, X2, - - - of state predicates until the state predicate x; = xi+1
is valid! );

\¢1V902\(

|901vu302| = Vizoxi,where

Xo = |p2| and
Xi+l = |Xi \ TR Vs - (_'Xiau(ﬁ(gol \% Xi) \ 21Uy > 12))|;
|(z: U).¢| = |o|[z:=0] (i-e., replace all occurrences of z in || by 0). m

The SMmc-procedure operates on the Z-extended automaton Az, and all intermediate results are
Z-extended state predicates. First, observe that if the given automaton A is nonzeno, then so is
the Z-extension Az, and that ¢a. = ¢a. Second, observe that a characteristic predicate of (Az,v)
can always be simplified to a characteristic predicate of (A,1)), because |¢)| does not constrain the
integrators from 2.

5.2 Possibility

Let ¢1 and ¢2 be two Z-extended state predicates, and consider the region R = ¥4, N [¢1V ¢2]
of Az. The Smc-procedure computes the characteristic region [¢13U¢2] 4, as the least solution X
of the equation f(X) = X, where

F(X) = [g2dUprelf2 1 (x)
is a monotonic function on the subregions of R. This is justified by the following proposition.

Proposition 4 Let B be a linear hybrid automaton, and let ¢1 and ¢2 be two state predicates of B.
Then [¢p13UP2] B is the least solution of the equation X = [po] U pre"¢1v¢2]](X).

Proof. We define the function f: X — Xp such that f(X) = [¢2] Upreﬂ¢lv¢2]](X) We first show
that [[¢1EIZ/{¢2JB is a fixpoint of f; that is, [¢p1UP2]B = f([$1TUP2]B). Since the precondition
operator pre[}[_q:la %2l is monotonic on the subregions of X g, [¢13Ud:]p C pre[[¢lv¢2]]([[¢13u¢2]]3).
Thus [¢13U¢2]B C f([¢1TUS2]B)-

On the other hand, let o be a state in pre[[ 1Vé] ﬁ(!lqb EIL{qbg]]B) By definition, there is a state o’ in
[¢1TUP2] B such that either (1) o [#1vl 1 r(2) 15! In either case, by the definition of tra-
jectories of a linear hybrid automaton and the deﬁmtlon of p1TU 2, state o is in [p13UG2] . Thus
pT‘e[[g)lvqsz ([[¢1§|U¢2]]3) C |[¢)1E|U¢2]]B Moreover, by the definition of ¢1E|Z/[¢2, |[¢2]] Cc |[¢13U¢2]]B.
Therefore, f([[¢13u¢2]]3) g |[¢13U¢2]]B.

Now we show that [¢13FUp2]p is the least fixpoint of f. Let @ be a fixpoint of f; we claim
that [¢p13U¢p2]s C Q. Let o be a state in [¢13U¢2]p. Then there is a trajectory 7 € [B]*” and

! As the state predicates are quantifier-free formulas of the theory (R, <, +), validity can be decided.
2QOr any positive integer. This choice may effect the number of iterations.
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a p051t10n (i1,6) of 7 such that 7(0,0) = o, 7(41,6) € [#2], and for all positions (j,¢e) < (i1,6),

e) € ]}[q‘)l V ¢2]. Since [¢2] C Q, 7(i1,0) € Q. By the definition of the precondition operator

, we know that 7(i1—1,0) € f(7(41,6)). Since @ is a fixpoint of f and 7(i; —1,0) € f(Q),

we conclude that 7(i1 — 1,0) € Q. Similarly, 7(i;1 — k,0) € @ for all 1 < k < 4;. In particular,
o =1(0,0) € Q, which implies that [¢13U¢2]p C Q. W

The Smc-procedure computes the least solution of the equation f(X) = X as the limit of the
successive-approximation sequence 0, £(0), £2(0), £3(0), ... of regions, which, unlike in the case of
timed automata, may not converge in any finite number of steps. The SMcC-procedure, therefore,
may not terminate.

5.3 Inevitability

The computation of the characteristic region for Vi/-formulas is more involved, because the time-
step and transition-step relations are reflexive [HNSY94]. We proceed in two steps. First we reduce
inevitability VU (for nonzeno automata) to an iteration of time-bounded inevitability. Second, we
reduce time-bounded inevitability (over divergent trajectories) to possibility 3, which we know
how to compute.

Reduction to time-bounded inevitability

Let B be a linear hybrid automaton, and let ¢ be a nonnegative integer. We define the time-bounded
inevitability operator VU<, on regions such that for all state predicates ¢1 and ¢, [¢1]VU<c [¢p2] =
[p1VU<. 2] . Given two regions @ and R of B, the region QVlU<. R contains all states o such that
on all divergent trajectories of B that start in o, the region @ is not left until, within ¢ time units,
a state in R is reached; that is, o € QVlU<. R if for all divergent trajectories 7 of B with 7(0,0) = o,
there is a position 7 of 7 such that 7(7) € R and t.(7) < ¢, and for all positions 7’ of 7, if 7' < 7
then 7(7') € QU R. Notice that for nonzeno B, the VU<, -operator is monotonic in its second
argument on the subregions of ¥ 4; that is, for all regions Q, R C ¥4, we have R C QVU<. R C Y 4.

Proposition 5 Let B be a nonzeno linear hybrid automaton, let ¢1 and ¢ be two state predicates
of B, and and let ¢ € Ny be a positive integer constant. Then [¢p1YUd2] B is the least solution of
the equation X = [¢2] U ([¢1V ¢2] VU<, X).

Proof. We define the function f: ¥p — Xp such that f(X) = [¢2]U ([¢1V ¢2] VU< X ). We first
show that [[¢1VLI¢2]]‘]B is a fixpoint of f; that is, [¢p1VUP2] B = f([¢1VUP2]B). Since the precondition
operator pre[gl ?! is monotonic on the subregions of ¥p, [¢1VU2]B C [¢1V P2 VU<, [$1VUP2] B
Thus [¢1VU¢2]s C f([91VUP2]B)-

On the other hand, let o be a state in [¢1 V ¢2] VU<, [¢1VUP2] . By the definitions of f and
the Vl<.-operator, for all divergent trajectories 7 of B with 7(0,0) = o, there is a position =
of 7 such that 7(7) € [¢1VU@2]p and t.(7) < ¢, and for all positions 7’ of 7, if 7’ < 7 then
7(7') € [¢1 V 9] U [91VUP2] 5. By the definition of ¢1VU s, we know that o € [¢1VUp2] 5, which
implies that [¢1 V ¢2]VlU<.[¢p1VUP2]B C [¢p1VUP2] . Furthermore, by the definition of ¢;Vid¢o,
[¢2] € [¢1VU@2]B. Therefore, f([¢p1VUP2]B) C [¢1YUP2] 5.

Now we show that [¢1VUU¢2] p is the least fixpoint of f. Let @ be a fixpoint of f; we claim that
[¢1VUP2] B C Q. Assume that there is a state oo € [¢p1VUG2] p\Q; we will show a contradiction.

We construct inductively an infinite sequence of states o; € [p1VU@2]B\@, for i € N. Suppose
that we have already constructed o;. Since o; € @ and @ is a fixpoint of f, we know that
0; & [¢1V $2]VU<. Q. Since B is nonzeno, there is a trajectory 7; € [B]%® with 7(0,0) = 0;, and
a position m; of 7; with ¢, (m;) = ¢, such that either
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1. for some position © < m; of 7;, 7(7) € [¢1V ¢2] and for all positions 7’ < 7 of 7, 7(7') € Q;
or

2. for all positions 7 < 7; of 73, 7(7) € [¢1 V ] \Q.

But since o; € [¢p1VU@2] s and [¢2] C @, Condition 1 cannot happen. Condition 2 together with
the assumption o; € [¢p1VUP2] p\@ implies that

3. for all positions 7 < m; of 74, 7(7) € [P1VUP]\Q.

So we can pick o;41 to be 7(m;).
Now consider the trajectory 7 that results from concatenating the trajectories 7;[(0,0), m;] for
all 2 > 0:
T = 79[(0,0),m] — 71[(0,0),71] — 72[(0,0),72] — ---.

The trajectory 7 diverges, because ¢ > 0. Since [B]%" is fusion-closed and divergence-safe,
7 € [B]**. Furthermore, 7(0,0) = og and, by Condition 3, 7(w) € Q for all positions 7 of 7.
Because [¢2] C @, we conclude that og € [¢1VUd2] B, which is a contradiction. B

Reduction to possibility

For linear arguments, the formula ¢1Vl{<. @2 is definable by the J/-operator. Roughly speaking,
the condition ¢2 must inevitably become true within ¢ time units iff it is not possible that ¢
remains false for ¢ time units.

Proposition 6 Let B be a linear hybrid automaton, let ¢1 and @2 be two state predicates of B, let
¢ € N be a nonnegative integer constant, and let z be a new clock (i.e., z is different from the data
variables of B). Then

[PalVU<clpa]l = [z ((m¢2)U(=(¢1V d2) V 2> )] 5.

Proof. By the definition of the Vl{<.-operator and the semantics of the temporal operator Vi/,
and the reset quantifier z, it is clear that

[p1]VU<c [@2] = [2- ((¢1 A 2 < )VU(d2 A 2z < ¢))]B,

which over all trajectories of [B]%" is equivalent to

[2. ((¢1 A 2 < e)VW(d2 A 2 < €))]B,

where the temporal operator VWV is defined as follows: ¢ |=ﬂ BJdiv 01V Weq iff for all trajectories 7
of [B]** with 7(0,0) = o, either

1. there exists a position 7 of 7 such that 7(m) F=[pjaw @2 and for all positions r <,
(') Eppaw $1V p2; or

2. for all positions 7 of 7, 7(7) | (gaiw $1.

Second, we claim that for every hybrid automaton B, and all state predicates ¢ and ¢2,

[$1YWo2lp = [~((mg2)TU(=¢1 N =$2))]B-
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The above equality implies that

[2. (91 A 2 < )VW(p2 A 2 < ¢))]p =[-2.((=p2 V 2 > c)TU(=($1 V ¢2) V 2z > ¢))]B,

which would prove the proposition, since the right-hand side of the equality is equal to

[=2. ((m¢2)3U(=(P1 V ¢2) V 2 > ¢))]B.

Consider a state ¢ € [(—¢2)IU(—~p1 A —¢2)]p. Then there exists a trajectory 7 € [B]*"
with 7(0,0) = ¢ and there is a position g of 7 such that 7(mg) & ([¢1V ¢2]) and for all positions 7 <
mo, T(m) & [¢2]. By the definition of the operator VWV, it is clear that o € [¢1YW 2] . It remains to
be shown that if ¢ € [p1YW¢h2] B, then o € [(—¢2)IU(—d1 A ~¢2)] 5. Assume that o & [p1Y W] B.
Then we know that o & [¢2], and there is a trajectory 7 € [B]*" with 7(0,0) = ¢ such that either

1. for all positions 7w of 7, 7(7) € [¢2], and there is a position 7 of 7 such that 7(7) & [¢1]; or

2. there are some positions 7 of 7 with 7(7) € [¢2], and for each such position =, there is a
position 7' < 7 such that 7(7') & [¢1 V ¢2].

Condition 1 implies that o € [(—¢2)3U(—d1 A —¢p2)]B. Now we assume that Condition 2 holds. Let
7o be the infimum of all positions = with 7(7) € [¢2]. Then we know that for all positions 7 < g
of 7, 7(mw) € [¢#2], and either one of the following two cases must hold: (a) 7(m) € [¢2] or,
(b) 7(m0) ¢ [¢2] and there is a position 7’ that is arbitrarily close to position 7y such that 7’ > 7
and 7(7') € [¢2].

In case (a), Condition 2 implies that there is a position 7’ < my such that 7(7') € [¢1 V ¢2].
Moreover, we know that for all positions 7 < 7 of 7, 7(7) & [p2], so o € [(—d2)TU(—d1 A =¢2)] .

In case (b), assume that position mg = (i,00) is the last position of trajectory 7 in location v.
Then no matter whether state 7(¢ + 1,0) is in [¢2] or not, position (i + 1,0) should have been
the infimum of all positions = with 7(7) € [¢2], which is a contradiction. So there must be some
position my = (4,62) in the same location v such that d > 69 and 7(m2) € [@2]. If there is such
a position 72 such that for all position 71 with 7y < m1 < 72, 71 € [¢1 V ¢2], then according to
Condition 2, there must be a position 7' < my such that 7(7') € [¢1 V ¢2]. Thus we can conclude
o € [(m¢2)3U(=¢p1 A ~¢2)]B.

Now it remains to consider the cases that satisfy the following condition (Condition 3): for each
position 7w such that mo > mg and 7(m2) € [¢2], there exists a position 71 such that w9 > 71 > 7o,
and 7(m1) € [-¢1 A —¢2]. Suppose that ¢o = U, (v,p.), and =¢1 A =¢2 = U, (v,¢,)- Let (v,86, p)
be the trajectory fragment of the trajectory 7 containing the position 7y in location v.

Since mp = (v, ép) is the infimum of all positions = with 7(7) € [¢2], for each € > 0, there is a
positive real number ¢ such that 0 < ¢ < € and p(6p + €') € [p.]. Moreover, by Condition 3, we
know that there is a positive real number €”, such that 0 < €’ < €’ and p(6y + €”) € [gy]- In other
words, for any € > 0, the open ball B(p(6p), €) intersects [¢,]. Therefore p(8p) is an accumulation
point of [g,]. By point-set topology, p(éo) is in [close(g,)].

In addition, since p(6p) is an accumulation point of [g¢,], again, by point-set topology, for any
e > 0, the open ball B(p(ég),€) contains infinitely many points (data states) in [g,]. Note that
[close(q,)] is defined by the data predicate close(q,), which cannot define infinitely many isolated
data states (this would require infinitely many disjuncts). Therefore, there must be a convex data
region S C [close(gy)] such that for some é > 0, p(bg) and p(dp + €) € [gu] are both in S. By the
proof of Lemma, 1, we know that there is also a linear data trajectory (o', €) such that p’'(0) = p(ép),
0'(€) = p(bo + €), and p'(t) € [close(q,)] for all t € [0, €].
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Since B is nonzeno and [B] is fusion-closed, the trajectory fragment 7[(0,0),m] — (v,é,p")
can be extended to a divergent B-trajectory that is a witness trajectory for o € [(—¢2)TU (=1 A

—¢2)] 5. M

The partial correctness of the SMc-procedure follows from Propositions 4, 5, and 6 (let B = A3).

Theorem 3 If the procedure SMC halts on the input (A,1)), then || is a characteristic predicate
of (A,9); that is, [[¢[] = [¥]a-

6 The Cornell Hybrid Technology Tool

The SMmc-procedure has been implemented in HYTECH, which runs on Sun Sparc stations under
MATHEMATICA. Throughout the verification process, state predicates are represented as quantifier-
free formulas of the theory (R, <,+) of the reals with addition, over data variables, integrators,
and the program counter £. HYTECH performs the following operations on state predicates:

Boolean operations Trivial.

Quantifier elimination This is necessary to compute the time-precondition operation pre_, and
the transition-precondition operation pre_, on state predicates. See below.

Validity checking This is necessary (1) throughout the SMc-procedure, to see if a successive-
approximation sequence of state predicates has converged, and (2) after termination of the
SMmc-procedure, to see if the input automaton A meets the requirement specified by the input
formula v. Let |¢| be a characteristic predicate of (A,7). Then A meets ¢ iff the state
predicate || = ¢4 is valid.

The state predicate ¢ is valid iff —¢ is unsatisfiable. HYTECH determines the satisfiability
of state predicates using linear programming. First each linear formula is converted into dis-
junctive normal form. Then for each disjunct, which is a conjunction, the linear-programming
algorithm of MATHEMATICA decides if that conjunction of linear inequalities has a solution.
This is an exponential decision procedure for deciding the satisfiability of linear formulas,
whose satisfiability problem is NP-complete [HNSY94].

Simplification For quantifier elimination and validity checking, HYTECH converts state predicates
into disjunctive normal form, which may cause an exponential blow-up of the size of the
formulas. To alleviate this problem, we simplify all formulas after each step of the verification
process by applying rewrite rules. We use a polynomial-time set of rewrite rules, whose
iterated application to a linear formula in disjunctive normal form brings each disjunct into
normal form, but may not eliminate redundant or overlapping disjuncts. It is worth noting
that the repeated simplification of state predicates is, overall, by far the most time-consuming
activity of HYTECH.

6.1 Quantifier elimination

The theory (R, <,+) admits quantifier elimination, and we first implemented the theoretically
optimal decision procedure of Ferrante and Rackoff [FR75]. We found, however, that the following
“naive” quantifier-elimination procedure performs better for our purposes, perhaps because we need
to deal only with quantified formulas in a particular form.
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We eliminate quantifiers one by one, starting with innermost quantifiers. Consider the formula
36.p, for a linear (quantifier-free) formula p over the set & of data variables and the quantified
variable §. We first convert 36.p into an equivalent formula of the form \/ 3é. p;, where each p; is
a convex data predicate over £ {6}. This is always possible, because the existential quantifier
distributes over disjunction. We then convert each linear inequality in p; into the form 0 ~ e, where
e is a linear term, and ~€ {<, <}. So suppose that p; is of the form

O~1e1+c1- 0N ... ANO~pep+ck-6 N0 ~prgeprr+Cer1 0N oo AO e~y e+ C - 6,

where ¢1,...,cr > 0 and ¢gy1,...,6m < 0. We now “solve” each conjunct for 6; that is, we convert
each conjunct into the form Z—’ ~j 6, for 1 < j < k; and § ~;i f for k+1 < j' < m. Then we
eliminate § by combining conjuncts For example, the conjuncts Z£+3 < 6 and § < 4y are combined
to the new conjunct z + 3 < 4y. We so obtain the following formula p}:

€5 €.
A (= ~jj ),

C Cj1
1<j<k 7 ’
k+1<j <m
where ~ ;i is < if ~; or ~j is <; and ~;; is <, otherwise. It is not difficult to check that the

resulting quantifier-free formula \/ p} equivalent to the original formula 36. p.

6.2 The input language

The HYTECH syntax for describing hybrid automata in a textual language is chosen so that the
input file can be read directly by MATHEMATICA. As a self-explanatory example, consider the
following input file, which specifies the railroad gate controller from Section 2.

AutomataNo = 3
Variables = {x,y,z}

LocatiolNo = {3,4,3}

inv[1[1]==1] = 1000<=x (x far *)
inv[1[1]==2] = 0<=x && x<=1000 (* near *)
inv[1[1]==3] = 0<=x && x<=100 (* past *)
inv[1[2]==1] = 0<=y && y<=90 (* up *)
inv[1[2]==2] = 90==y (* open *)
inv[1[2]==3] = 0<=y && y<=90 (* down *)
inv[1[2]==4] = O==y (* closed *)
inv[1[3]==1] = 0<=z && z<=5 (* about to lower *)
inv[1[3]==2] = True (x idle *)
inv[1[3]==3] = 0<=z && =z<=5 (* about to raise *)
dif[1,1,x] = {-52,-48} (* far *)
dif[1,2,x] = {-52,-40} (* near *)
dif[1,3,x] = {40,52} (* past *)
dif[2,1,y] = {20,20} (* up *)
dif[2,2,y] = {0,0} (* open *)
dif[2,3,y] = {-20,-20} (* down *)
dif[2,4,y] = {0,0} (* closed *)
dif[3,1,z] = {1,1} (* about to lower *)
dif[3,2,z] = {0,0} (* idle *)
dif[3,3,z] = {1,1} (* about to raise *)

Labels = {app,exit,lower,raise}
syn[app] = {1,3}

synl[exit] = {1,3}

syn[lower] = {2,3}

syn[raise] = {2,3}

24



TransitioNo = {3,6,8}

act[1,1] = { 1[1]==1 && 1000==x, app, {1[1] -> 2}}
act[1,2] = { 1[1]==2 && 0==x, {1[1] -> 3}}
act[1,3] = { 1[1]==3 && 100==x, exit, {1[1] -> 1, x -> 1500}}
act[2,1] = { 1[2]==1 && 90==y, {1[2] -> 2}}
act[2,2] = { 1[2]==1, lower, {1[2] -> 3}}

act[2,3] = { 1[2]==2, lower, {1[2] -> 3}}

act[2,4] = { 1[2]==3 && O0==y, {1[2] -> 4}}
act[2,5] = { 1[2]==3, raise, {1[2] -> 1}}

act[2,6] = { 1[2]==4, raise, {1[2] -> 1}}

act[3,1] = { 1[3]==1, app, {1[3] -> 1}}

act[3,2] = { 1[3]==1, exit, {1[3] -> 1}}

act[3,3] = { 1[3]==1, lower, {1[3] -> 2}}

act[3,4] = { 1[3]==2, app, {1[3] -> 1, =z -> 0}}
act[3,5] = { 1[3]==2, exit, {1[3] -> 3, z -> 0}}
act[3,6] = { 1[3]==3, exit, {1[3] -> 3}}

act[3,7] = { 1[3]==3, raise, {1[3] -> 2}}

act[3,8] = { 1[3]==3, app, {1[3]1 -> 1, z -> 0}}

As a complete user’s manual for HYTECH can be requested from the authors, only a few points are
elaborated here:

e inv[1[1]==3] = 0<=x && x<=100 specifies that the invariant of the third (past) location of
the first (train) component automaton is 0 < z < 100.

e dif[1,3,x]1={40,52} specifies that the activity of the third location of the first component
automaton contains the conjunct 40 < & < 52. (More general activities are being imple-
mented.)

e syn[appl={1,3} specifies that the synchronization label app belongs to the alphabets of the
first and third component automata (but not to the alphabet of the second).

e t[1,3] = {1[1]==3 && 100==x, exit, {1[1] -> 1, x -> 1500}} specifies that the third
transition of the first automaton proceeds from the third location to the first (far) location,
its action is z = 100 A 2’ = 1500, and it is labeled with the synchronization label ezit. (More
general actions are being implemented.)

When computing the product of the input automata, we first enumerate all possible composite
locations and transitions, and then remove composite locations with unsatisfiable invariants or ac-
tivities, and composite transitions with unsatisfiable actions or inconsistent synchronization labels.
The transitions are indexed by target location, as to facilitate a quick access when computing
preconditions.

Now suppose we wish to check if the railroad gate controller meets the time-bounded response
requirement

(£ = (far, open,idle) — VOVO<33 (£[2] = open)

from Section 3. We then write:

InitialRegion = 1[1]==1 && 1[2]==2 && 1[3]==2

Integrators = {u}

aif[_,_,ul = {1,1}

Compute [Impl [InitialRegion,AA[AET[u,33,1[3]==2]]1]]
Here AA stands for the invariance operator VO, and AET denotes time-bounded inevitability. The
first argument of the operator AET is an integrator, u, for measuring the time bound. The type
declaration dif [_, _,u] of u, which augments the description of the input system, asserts that u is a
clock; that is, @ = 1 in all locations. (The automatic extension of the input system with integrators
is being implemented.)
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7 Examples

We now illustrate the application of HYTECH with four examples. First, we use HYTECH to verify
the safety and time-bounded response properties of the railroad gate controller from Section 2.
Second, we use HYTECH to automatically derive sufficient and necessary timing conditions for a
distributed mutual-exclusion protocol with drifting clocks. Third, we use HYTECH to check a safety
property of a preemptive scheduler with prioritized tasks. Fourth, we use HYTECH to automatically
derive sufficient timing conditions for the temperature control of a nuclear reactor.

7.1 Railroad gate control

Recall the railroad gate controller from Section 2, and the initial condition ¢ from Section 3. The
safety requirement of Section 3 can be rewritten as

¢o — 3O(x <10 A £[2] # closed).
To avoid negation, we ask HYTECH to first compute the characteristic predicate
¢ |3O(x <10 A L[2] # closed)|

and then check that the state predicate ¢g A ¢ is unsatisfiable. It follows that the railroad gate
controller meets the safety requirement. HYTECH takes 74.3 seconds of CPU time to verify this
task.? The characteristic predicate ¢ computed by HYTECH is the state predicate

U] =2AL2 =1 A3 =1A0<zA-1220< —5z—13y A =90 < -y A0 < z A =5 <
—2 A =270< —2—522) V(1] =2 A L2 =1AL3]=2A0=yA0<z2A0<zA-5<
—2A=270< —2—522) V ({1 = 2AL2] = 1A LB =3A0<2A0<zA0<yA—5<—2A—50<
—Be4+ 13y A =270 < —z —522) V (1] =2 A 2] =2 A €3] =1 A0< 2 A —90 < —y A —1220 <
—5e—13y) V ({[1] =2 A €2] =2 A €3] =2 A 90 =y AO0<z)V (L =2AL2=2AL3]=3A0<
YAO<2A—50< —52+13y)V ({1l =2A €2 =3A 3] =1A0< 2 A —1220 < —5z— 13y A —90 <
—yAO<TA-B5<—2A-210<—2—522) V(L1 =2A L2 =3AL3]=2A90=yA0<2A0<
TA-5<—2zA-210<—-z—522)V ({[1]=2AL2=3AL3]=3A0<2zA0<zA0<yA-5<
—2 A =50< =5z + 13y A =270 < —z —52z) V ({1l =3 A L2l =1 A £[3] =1 A =10 < —z A —90 <
—y AN =5<—2AN0<2) VUL =3AL2]=1AL8]=2A0=yA-10<—-2A-5<—-2AN0ZK
VUL =3A2=1ALB8=3A-10<-2A0<yA-5<—-2A0<2)V ({1=3A¢L2=
QAL =1A—-90< —yA—10< —z)V ({1 =3AL2] =2AL3]=2A90=yA—10< —z)V ({[1] =
SALA=2AL3=3A0<yA-10<—2)V (L =3AL2=3AL3]=1A-10<—2 A —90<
—yA-5<—2A0<2)V ({1 =3AL2Q=3AL3]=2A0=yA-10<-2A-5<-2A0<
2) VUL =3AL2=3ALB3=3A-10<-z2zA0<yA-5<—2A0<2)V ({1]=2A/12]=
LA =1A0<2A-90< —yA—270< —z—52z A —10 < y—20z A 180 < =+ 2y) V ({[1] =
QA2 =1ALB]=1A0<2A0<2A0<a+2yA —2650 < —5z+13y—5202 A —90 < —y A —100 <
Y—202 A —5< —2 A —2390< —5z—13y) V (1] =2 AL2] =1 A L3 =2A90=yA0<2A0<
TA—5< —2A—504< —2—522)V (L[] =2AL2] =2AL3] =1A180 < z+2y A —90 < —y) V (£[1] =
2AL2 =3AL3] =1A0<2A—90< —yA—270 < —z—522 A —10 < y—20z A 180 < z+2y) V ({[1] =
QAL =3AL3=3A0<2A0<yAO<zA—-180<z—2yA —190< —y— 20z A —1220 <
—Be+13yA —3820 < —5z—13y—5202 A —5 < —2)V (1] = 2A£[2] = 3AL[3] =4A0=yA0<2A0<
A5 —2AN-504< —2-522) V(1] =3AL2] =3ALB]|=4A0=yA-10< —2A -5 —2A0<
2V (L] =2A02)=1AL3]=1A0<2A-90< —y A —504 < —z—52z A —10 < y— 20z A 180 <

8 All performance data are measured on a Sun SPARC-670MP server running MATHEMATICA.
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T+2) V(U1 =2AL2 =3AL3]=3A0<2A0<yA180<az+2yA—-5<—2A—190 <
—y—20z A —180<z—2y) V ({[1]=2AL2] =3 ALB]=3A0<2A0<z—2y A0<y A —100<
—y—20z A =504 < —z—522)V ({[1] =2AL2] =3 A3 =4A0=yA180<zA—-5<—2A0<z).

The time-bounded response requirement of Section 3 is verified by HYTECH using 215.1 seconds of
CPU time.

7.2 Timing-based mutual exclusion

One of the advantages of a symbolic model-checking procedure is that we can attempt to verify
system descriptions with unknown constants (parameters) [AHV93]. A parameter of the hybrid
automaton A is a data variable z whose value is modified neither by continuous activities nor by
discrete actions; that is, for all control locations v of A, dif (v) implies & = 1, and for all transitions
e of A, act(e) implies 2’ = ;.

For example, HYTECH may be used to design the delay parameters of a system. Consider the
mutual-exclusion problem for an asynchronous distributed system with local clocks. The system
consists of two processes, P; and Ps, with atomic read and write operations on a shared memory.
Each process has a critical section, and at every time instant at most one of the two processes
is allowed to be in its critical section. Mutual exclusion can be ensured by a version of Fischer’s
protocol [Lam87], which we first describe in pseudocode. Each process P;, for i = 1,2, executes the
following algorithm:

repeat
repeat
await £ =0
k:=1i
delay b
until £ =1
Critical section
k=0
forever

The two processes P; and P» share the variable k, and process P; is allowed into its critical section
iff & = 4. Each process has a private clock. The instruction delay b delays a process for at
least b time units as measured by its local clock. Furthermore, each process takes at most a time
units, as measured by its local clock, for a single write access to the shared memory (i.e., for the
assignment k := ).

To make matters more interesting, we assume that the two local clocks of the processes P; and
P» are inaccurate and proceed at different rates. Indeed, the clock rates may vary within certain
bounds: the local clock of Pj is slow—its rate varies between 4/5 and 1—and the local clock of P,
is fast—its rate varies between 1 and 11/10. The resulting system can be modeled by the product
of the two hybrid automata shown in Figure 4. Each of the two automata models one process, with
the two critical sections being represented by the locations 4 and D, respectively. The parameters
a and b are shared data variables with unknown, constant values (i.e., their rate of change is 0 in
all locations, and they are not altered by any transitions).

The initial condition ¢q of the system is given by the state predicate

do: L= (1,A) A k=0.
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z>bAEk#1

Figure 4: Timing-based mutual-exclusion protocol

The mutual-exclusion requirement is specified in ICcTL-formula
¢og — —3IO(L = (4,D)).

The characteristic predicate
¢:  |po A IO = (4,D))],

as computed by HYTECH in 50.1 seconds of CPU time, is the state predicate
L=(1,A)ANE=0A (a>bV 1la > 8b).

It follows that the system meets the mutual-exclusion requirement precisely in those states in which
¢ is false. Therefore, the protocol guarantees mutual exclusion iff the delay parameters a and b are
chosen such that 8b > 1la.

A further advantage of the symbolic approach to system analysis is its insensitivity to the
magnitude of constants in the system description. To demonstrate this, we performed the following
experiment. We verified the mutual-exclusion property for hybrid automata that are identical to
those shown in Figure 4, except that the parameters ¢ and b are instantiated, first with a = 2
and b = 4, then with ¢ = 2-10% and b = 4 - 103, and finally with ¢ = 2 -10° and b = 4 - 10°.
We found that, for this example, the verification time taken by HYTECH is independent of the
magnitude of the parameter values. The results are shown in Figure 7.2.

Magnitude of the coefficients | CPU time (in seconds)
10° 6.11
10° 6.55
10° 6.36

Figure 5: Coeflicient size versus performance
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z1 > 10A
2y =0A k) =k +1

anty

ka2 >1A ya=8A

k1 >1ANy1 =4A ? f
ky =ka—1A y,=0

El=k—1A y| =
Task-1 generator

z2 > 20A
@y =0A ki =k +1

inty

ko =1ANki >0Ay2=8A
inty ké:O .
wnty

Scheduler

Task-2 generator
Figure 6: Preemptive two-task scheduler

7.3 Preemptive scheduling

The execution of multiple tasks on a shared processor can be modeled with integrators. Suppose
that the integrator yr runs at slope 1 while the task T is being executed, and yr runs at slope 0 while
the task T is waiting for processor time. Then, the integrator yr always indicates the cumulative
amount of processor time that has been dedicated to task 7. This information is needed to model
the completion of task T'.

In our particular setup, all tasks fall into two priority classes. The two small hybrid automata
on the left of Figure 6 model an environment that generates two types of interrupts: an interrupt
of type int; arrives at most once every 10 seconds; an interrupt of type ints, at most once every
20 seconds. For every int; interrupt, a task of type ¢ needs to be executed: each type-1 task requires
4 seconds; each type-2 task, 8 seconds. Only one processor is available for the execution of all tasks,
and type-2 tasks have priority over type-1 tasks; that is, if a type-2 interrupt is generated while
a type-1 task is being executed, then the type-2 task is interrupted and resumed only after the
completion of the newly arrived type-1 task. The resulting priority scheduler is modeled by the
hybrid automaton on the right of Figure 6. In location Taski, a type-1 task is being executed;
in location Tasks, a type-2 task is being executed. The variable k; represents the number of
incomplete (i.e., running and pending) tasks of type i; the variable y; represents the execution time
of the current task of type ¢. The three automata synchronize using the labels int; and ints; that
is, whenever an int; interrupt arrives, the scheduler takes a transition that is labeled with «nt;. The
entire scheduling system, then, is the product of the three component automata.

The initial condition ¢g of the system is given by the state predicate

¢0: ZI(',-,Idle)/\]ﬂ:O/\kQ:O.

We wish to check that the number of incomplete type-1 tasks never exceeds 2 and the number of
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Control rod 1 Control rod 2

y1>c¢ Y > ¢

no_rod wdd,
T =
z < 550

0 ¢ =510

remove; TEMOVEY

Reactor core
Figure 7: Nonlinear reactor model

incomplete type-2 tasks never exceeds 1; that is,
gf)o — —|E|<>(k1 >2V ky > 1).

HyTecH successfully verifies this safety property using 174.3 seconds of CPU time. Notice that
both k; and kg are data variables that range over the finite domain {0,1,2,> 3} and, therefore,
their values can be encoded by splitting control locations. Using such an encoding, the number of
tasks types that can be dealt with in less than one hour of CPU time increases from 2 to 4.

7.4 Temperature control

In practical control applications nonlinear variables, such as temperature, abound. The behavior of
a nonlinear variable z in location v can be approximated conservatively by a differential inclusion
dif (v) of the form a < & < b, where the integer constants a and b specify the minimal and
maximal rate of change of the variable z in location v. Thus, every trajectory of the approximated
nonlinear system is a trajectory of the approximating linear hybrid automaton. It follows that if
the approximating linear hybrid automaton meets a safety requirement, then so does the original
nonlinear system. Approximations can be refined arbitrarily by splitting control locations and
strengthening the corresponding differential inclusions [HH95].

Consider, for example, a toy nuclear reactor with two control rods [NOSY93]. The temperature
of the reactor core is represented by the nonlinear variable z. Initially the core temperature is
510 degrees and both control rods are outside the reactor core. In this case, the core temperature
rises according to the differential equation # = {5 — 50. The reactor is shut down once the core
temperature increases beyond 550 degrees. In order to prevent a shutdown, one of two control
rods can be put into the reactor core. Control rod 1 dampens the core temperature according to
the differential equation & = {5 — 56; control rod 2 has a stronger effect and dampens the core
temperature according to the differential equation # = {5 — 60. Either control rod is removed
once the core temperature falls back to 510 degrees. The reactor core is modeled by the hybrid
automaton at the bottom of Figure 7.

An additional design requirement asserts that when a control rod is removed from the reactor
core, it cannot be put back into the core for ¢ seconds, for a parameter ¢. This requirement is
enforced by the clock y;, which measures the elapsed time since control rod 1 has been removed
from the reactor core, and the clock yo, which measures the elapsed time since control rod 2 has been
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z = 550 z = 550

rod add; no_rod add,
—5§:i§—lj <1§¢§5>
2> 510 z =510 » < 550 z = 510
removel TeEMOvVE

Figure 8: The approximating linear core automaton

removed. The control rods are modeled by the two hybrid automata at the top of Figure 7. The rod
automata synchronize with the core automaton through shared edge labels such as remowve;, which
indicates the removal of control rod 1. The entire reactor system, then, is obtained by constructing
product of the core automaton and the two rod automata.

In order to approximate the behavior of the nonlinear variable z by differential inclusions, we
compute, for each location of the core automaton, the minimum and the maximum of the derivative
2 from the differential equations and the location invariants. For example, in location no_rod, the
derivative ¢ is bounded below by 1 and is bounded above by 5. The resulting linear core automaton
is shown in Figure 8.

The initial condition ¢q of the system is given by the state predicate

¢o: L= (no_rod, outy,outs) N x =510 Ay =c A y2 =c.
The safety requirement that the reactor never needs to be shut down is specified by the IcTL-formula
po — IO(x =550 A y1 <c A y2 <c).

This formula asserts that whenever the core temperature reaches 550 degrees, then one of the
two clocks shows at least ¢ seconds, thus allowing the corresponding control rod to be put into
the reactor core. The condition on the parameter ¢ thats prevents a shutdown of the reactor is
computed by HYTECH as 9¢ < 184, using 20.5 seconds of CPU time. Notice that while the condition
9¢ < 184 is both necessary and sufficient for the approximating linear system, it is only sufficient
for the original nonlinear system (more refined approximations will give sharper conditions).

8 Future Work

Our current implementation of HY TECH represents state sets as logical formulas (state predicates).
We need to search for more efficient representations of state sets to verify complex systems. In the
absence of continuous variables, considerable success has been reported in verifying complex systems
using state-set representations that are based on binary-decision diagrams [McM93]. In the case of
timed automata, sets of clock values can be represented efficiently using integer matrices [Dil89].
For linear hybrid automata, a geometric representation of linear state sets as polyhedra—perhaps
combined with abstract-interpretation techniques for convergence acceleration [Hal93]—may be the
most promising direction [HH94]. Another line of recent research pursues the approximate analysis
of nonlinear hybrid systems within the linear framework of this paper [HH95].

Acknowledgments. We thank Costas Courcoubetis and Joesph Sifakis for helpful discussions.
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