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Abstract. We present a novel methodology for the synthesis of behav-
ioral control for real robotic hardware. In our approach, neural controllers
decide when different preprogrammed behaviors should be active during
task execution. We evaluate our approach in a double T-maze task car-
ried out by an e-puck robot. We compare results obtained in our setup
with results obtained in a traditional evolutionary robotics setup where
the neural controller has direct control over the robot’s actuators. The
results show that the combination of preprogrammed and evolved control
offers two key benefits over a traditional evolutionary robotics approach:
(i) solutions are synthesized faster and achieve a higher performance,
and (ii) solutions synthesized in simulation maintain their performance
when transferred to real robotic hardware.

1 Introduction

Evolutionary robotics (ER) has been widely researched as a means to synthesize
behavioral control for autonomous robots [6]. Artificial evolution has the poten-
tial to automate the controller design process without the need for manual and
detailed specification of the desired behavior. Artificial neural networks are often
used in ER because of their capacity to generalize and to tolerate noise [11] such
as that introduced by imperfections in sensors and actuators. Two key issues
have prevented evolution from being widely used as an engineering tool for au-
tomatic design of behavioral control: (i) bootstrapping the evolutionary process,
and (ii) crossing the reality gap, that is, transferring behavioral control from
simulation to reality without performance loss. The transition from simulation
to real robotic hardware often results in reduced performance or even complete
failure due to differences between simulation and the real world [5].

In this study, we propose a novel approach to overcome both bootstrapping
issues and to successfully cross the reality gap. We combine artificial evolution
with preprogrammed behaviors in order to ensure successful transfer of evolved
control from simulation to real robots, while at the same time enable the synthe-
sis of behaviors for relatively complex tasks. We experiment with giving evolution
access to sets of simple preprogrammed behaviors, such as follow wall, turn left,



and turn right, which can be switched on and off by a neural network that con-
trols the robot. In this way, we marry the benefits of ER, namely automatic
synthesis of behavioral control, with the benefits of preprogrammed behaviors
that can be hand-optimized for specific sub-tasks and for the real robotic hard-
ware.

We use the double T-maze navigation task [2] and the e-puck robotic plat-
form [16] for our experiments, because both the task and the robotic platform
have been widely studied in the past (see Sect. 2 and Sect. 4 for details). The
double T-maze task is a delayed response task in which a robot receives stimuli
in the form of light flashes and it must respond by making the correct turns in
subsequently encountered T-junctions.

The contributions of this paper are as follows: we propose and study a new
approach to the synthesis of behavioral control for autonomous robots. The ap-
proach is based on a combination of evolutionary computation and (simple)
preprogrammed behaviors. We show that in our approach, solutions are synthe-
sized faster and to a higher quality than solutions evolved using a traditional ER
approach, and that the behaviors synthesized in simulation can be successfully
transferred to real robotic hardware.

2 Background and Related Work

ER emerged as a field in the beginning of the 1990s [18]. Numerous studies
followed which demonstrated robots with evolved control systems solving basic
tasks in surprisingly simple and elegant ways. However, to date, only relatively
simple tasks have been solved using ER such as obstacle avoidance, gait learning,
phototaxis, foraging, and so on [17].

Soon after the research into ER began, two main challenges became clear,
namely, (i) that the number of evaluations required meant that simulation had
to be used extensively, and (ii) that it often is non-trivial to ensure successful
transfer of behavior evolved in simulation to real robots. In [14], three com-
plementary approaches to the evolution of control systems for real robots were
proposed: “(a) an accurate model of a particular robot-environment dynamics
can be built by sampling the real world through the sensors and the actuators of
the robot; (b) the performance gap between the behaviors obtained in simulated
and real environments may be significantly reduced by introducing a ’conserva-
tive’ form of noise; (c) if a decrease in performance is observed when the system
is transferred to a real environment, successful and robust results can be ob-
tained by continuing the evolutionary process in the real environment for a few
generations.”

In 1997, Jakobi [10] advocated the use of minimal simulations to ensure the
transferability of controllers evolved in simulation. A minimal simulator only
implements the specific features of the real world that the experimenter deems
necessary for a robot to complete its task. All other features would either not
be implemented or be hidden by an envelope of noise. A number of other ap-
proaches to overcome the reality gap include performing evolution directly on



the target hardware instead of in simulation [7], online adaptation through neu-
ral plasticity [8], co-evolution of simulators and controllers [3], and promotion
of transferable controllers though multi-objective optimization [12]. Conducting
evolution on real robotic hardware is, however, tedious and is not always feasible,
especially in complex tasks and/or when many trials are needed to reliably esti-
mate the fitness of an individual. In this paper, we propose a novel approach to
the engineering of control systems in which we combine simple preprogrammed
behaviors with artificially evolved neural networks. Successful transfer of the
control synthesized in simulation to real hardware is guaranteed by specifying a
set of behavior primitives that have been tested on real robots.

The topic of behavior modularity in the field of robotics has been studied
before. Rodney Brooks proposed the subsumption architecture in the 1980’s [4].
Brook’s approach is characterized by the decomposition of complicated intelli-
gent behavior into many simple behavior modules, which are in turn organized
into layers. The layers and ordered in terms of behavioral complexity: the behav-
iors on the bottom layers are simpler and have a higher priority than the ones on
the higher layers. The more complex behaviors can only execute if none of the lay-
ers beneath take control of the robot. The concept of behavioral decomposition
has also been studied in the field of ER. Moioli et al. [15] used a homeostatic-
inspired GasNet with two different behavior controllers (obstacle avoidance and
phototaxis) that were inhibited or activated by the production and secretion of
virtual hormones. In [13], logic decision trees and task decomposition have been
combined with ER techniques. By evolving different sub-behaviors such as “cir-
cle box”, “push box” and “explore”, the authors synthesized a robotic controller
that was able to push a box toward a light source.

We use a double T-maze task [2] for our experiments. An example of a double
T-maze can be seen in Fig. 1. The T-maze contains three T-junctions. At the
start of each experiment, the robot is placed in the “Start zone” and must
navigate towards the first junction. On its way, it passes two rows of lights. In
each row, one of the lights is activated. The activated light flashes as the robot
passes by. The activated light in the first row informs the robot on to which side
it must turn in the first T-junction it encounters, while the activated light in the
second row informs the robot to which side it must turn in the second T-junction
that it encounters. If L1 and R2 are activated, for instance, the robot must make
a left turn in the first T-junction and a right turn in the second T-junction so
that it reaches exit LR (see Fig. 1), and so on.

Variations of the T-maze task have been used extensively in studies of learn-
ing and motivation in animals, neuroscience, and robotics (see [19, 20, 10] for
examples). In robotics, T-mazes have been used to study different neural net-
work models such as diffusing gas networks [9], the online learning capability of
continuous time recurrent neural networks [2], and the evolution of transferable
controllers [10, 12]. However, in the studies where controllers were tested on real
hardware, only a single T-maze was used and the mazes were relatively small
with respect to the robot. In this study, we synthesize controllers in simulation
that enable a real e-puck to solve a relatively large, double T-maze (see Sect. 4).
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Fig. 1. A double T-maze. A robot is placed in the start zone and must navigate to one
of the four exits depending on which lights flash as the robot passes by.

3 Methodology

The main purpose of the proposed methodology is to allow for the synthesis
of behavioral control for real robotic hardware. Whereas Jakobi [10] advocated
the use of minimal simulations to limit the set of environmental features that a
controller can rely on, we suggest limiting the set of actions that a robot can per-
form. We define a set of behavior primitives based on the robot, its task, and the
environment. The behavior primitives are specified in such a way that they have
comparable results and performance when executed in simulation and on the
real robotic hardware. Conservative noise is added in simulation to promote ro-
bustness to the difference that unavoidably exists between the two environments.
In this study, the behavior primitives are simple preprogrammed behaviors (fol-
low wall, turn left, and turn right), but they could be more elaborate and even
previously synthesized behaviors.

As in a traditional ER setup, the robot’s sensory inputs are fed to an artificial
neural network. However, instead of controlling the robot’s actuators directly,
the outputs of the neural network are connected to a “behavior selector” (see
Fig. 2). In this study, each output neuron of the neural network corresponds to
a single behavior primitive and the primitive which has the highest activation
value is executed in a winner-takes-all approach. Some primitives can take more
than one control cycle to complete, such as turning 90◦ left or right. The behav-
ior selector does not execute any other primitive before the previously selected
primitive has completed. Alternative behavior selectors could be implemented
including selectors that allow for multiple primitives to be executed in parallel.
Parallel execution of behavioral primitives could, for instance, allow a robot to
communicate at the same time as it executes motor behaviors.
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Fig. 2. Example of the controller structure: A continuous-time recurrent neural net-
work [1] receives readings from the robot’s sensors. The activation of the neurons in
the output layer are fed to the behavior selector, which executes one of the behavior
primitives based on the activations.

4 Experimental Setup

We used the e-puck [16] for our experiments. The e-puck is a small circular (di-
ameter of 75 mm) mobile robotic platform designed for educational use. For
offline synthesis of behavioral control, we use JBotEvolver, an open source,
multirobot simulator and neuroevolution framework. The simulator is written
in Java and implements 2D differential drive kinematics. Evaluations of con-
trollers can be distributed across multiple computers and different evolution-
ary runs can be conducted in parallel. The simulator can be downloaded from:
http://sourceforge.net/projects/jbotevolver.

We built a double T-maze [2] with a size of 2 m × 2 m (see Fig. 3). In the
real maze, the states of the flashing lights are controlled by a Lego Mindstorms
NXT brick using 4 ultrasonic sensors and 2 motors (see Fig. 3).

We used four of the e-puck’s eight infrared proximity sensors: the two front
sensors and the two lateral sensors. We collected sensor samples from two dif-
ferent robots. Each sensor was sampled for 10 samples collected are available at
http://home/iscte-iul.pt/~alcen/sab2012). At the beginning of every sim-
ulation trial, we randomly mapped one of the eight collected sets of samples to
each of the robot’s proximity sensors. Distance-dependent noise was added to
the sensor readings in simulation corresponding to the amount of noise measured
during the sampling of the sensors. The light sensor was binary: when a light
sensor reading deviated sufficiently from an initial set of readings obtained in
ambient light conditions, the robot perceived a flash. In simulation, we added
Gaussian noise (5%) to the wheel speed.
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Fig. 3. T-maze with a total size of 2 m × 2 m. The two rows with the lights are located
in the central corridor. The first row is at 45 cm and the second row at 83 cm from the
start of the maze.

4.1 Controller

The neural controller used in this study is a continuous-time recurrent neural
network [1] (see Fig. 2). The input layer of the ANN is composed of 6 neurons:
one for each of the four infrared proximity sensors, and one for each of the two
light sensors. The readings from the proximity sensors are mapped to distances
and then converted to input neuron activations (interval [0, 1]). The mapping
of readings to distances is done based on the average values for the eight sets
of real robot samples. When a light flash is detected, the corresponding input
neuron is assigned an activation value of 1.0 for a duration of 15 control cycles.

The hidden layer of the ANN is composed of 10 fully connected neurons.
The output layer of the neural network is composed of 3 neurons, one for each
of the 3 preprogrammed behaviors available to the network: turn left, turn right,
and follow wall. The behavior selector compares the activations of the three
output neurons and executes the behavior that corresponds to the neuron with
the highest activation. The two turn behaviors turn the robot 90◦, which takes
on average 40 control cycles. During that time, the behavior selector ignores
the values of the output neurons in order to allow the turn to complete before
executing a new behavior. The follow wall behavior moves the robot forward
along the closest perceived wall. We limited the speed of the robot to 10 cm/s.

4.2 Evolutionary Algorithm

We train controllers with a simple generational evolutionary algorithm. Each
generation is composed of 100 genomes, and each genome corresponds to an
ANN with the topology described above. The fitness of a genome is sampled 40
times and the average fitness is computed. Each sample lasts a maximum of 500



control cycles (equivalent to 50 seconds of simulated time). The starting position
of the robot is varied up to 5 cm to the left or to the right, and up to 10 cm
forward or backward.

The top 5 genomes are selected to populate the next generation using an
elitist approach. An offspring is created by applying a Gaussian noise to each
gene with a probability of 10%. The 95 mutated offspring and the original 5
genomes constitute the next generation.

The robots are evaluated based on three different outcomes: (i) if they suc-
cessfully navigate to the correct exit, the assigned fitness is f1, (ii) if they choose
an incorrect exit or colide into a wall, the assigned fitness is f2, and (iii) if time
expires, the assigned fitness is 0. Fitness f1 and f2 are defined by:

f1 = 1 +
maxCycles − spentCycles

maxCycles
f2 =

totalDistToExit − distToExit

3 · totalDistToExit

We ran an additional set of experiments in a traditional ER setup in which
the outputs of the neural network controlled the robot’s wheels directly. Aside
from the difference in the interpretation of the networks output, the experi-
mental setup (network topology, inputs, simulation conditions, and evolutionary
parameters) were the same as those described above.

5 Results

We synthesized robotic controllers for a double T-maze task in two different
experimental setups: in experimental setup A (Synthesis with Preprogrammed
Behaviors), the output of the neural networks activates one of the three possible
preprogrammed behaviors, while in experimental setup B (Traditional ER) the
output neurons control the wheels of the robot directly.

We conducted 30 evolutionary runs in each of the two experimental setups.
Each run lasted 1000 generations. We conducted a post-evaluation of the evolved
controllers in which the fitness of every controller was sampled 100 times for each
of the 4 possible light configurations. The results are summarized in Figure 4. In
experimental setup A, the evolved controllers had an average solve rate of 87%.
A solve rate of over 95% was observed in 12 of the 30 controllers. Some of the
trials evolved controllers with good solutions as early as the 150th generation.

The solutions produced in different evolutionary runs were similar. The robots
learned how to navigate the T-maze correctly, but some of the controllers were
not able to use the information from the light flashes to make the correct de-
cisions at the T-junctions, which caused them to navigate to the wrong maze
exit.

In experimental setup B, the evolved controllers had an average solve rate
of only 42%. The best controller had a solve rate of 88%, and only 12 other
controllers were able to correctly solve the T-maze in more than 50% of the
samples.
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Fig. 4. Summarized results from simulation for setup A and setup B.

5.1 Transfer to Real Robotic Hardware

After the evolutionary process had finished, the 5 highest performing controllers
synthesized in setup A, and the 5 highest performing controllers synthesized in
setup B were tested on a real e-puck. Each controller was tested 16 times, 4 for
each light configuration. The results are listed in Table 1.

All of the 5 controllers synthesized based on preprogrammed behaviors were
able to successfully cross the reality gap and solve the real maze consistently.
The controllers synthesized in run A22 and A25 managed to solve all 16 samples.
The remaining 3 controllers sometimes navigated to an incorrect maze exit: A4
and A13 failed 1 out of 16 samples, and A9 failed 2 out of 16 samples.

The controllers from setup B did not display as high a performance as those
synthesized in setup A. Partly, this was because their in simulation performance
was not as high as the one in experimental setup A. 4 of the 5 controllers
transferred correctly, achieving even comparable performance in reality, but the
controller from trial B19 only solved 11 out of 16 samples in the real robot
experiments. Videos of the experiments can be seen at http://home/iscte-

iul.pt/~alcen/sab2012.

Table 1. Summary of the real robot results for the five highest performing evolutionary
runs of experimental setup A and experimental setup B.

Evolutionary run A22 A9 A25 A13 A4 Average

Solve rate (Simulation) 99% 98% 98% 97% 97% 98%

Solve rate (Real robot) 100% 88% 100% 94% 94% 95%

Evolutionary run B11 B13 B19 B16 B9 Average

Solve rate (Simulation) 88% 86% 79% 70% 70% 79%

Solve rate (Real robot) 100% 100% 56% 75% 75% 81%



6 Conclusions

In this study, we demonstrated how controllers can be synthesized by combining
artificial evolution with simple preprogrammed behaviors. Our results show that
the proposed approach found good solutions in fewer generations and achieved
higher final fitness scores than in a traditional ER setup in which the neural
controller has direct control over the robot’s actuators. On real robotic hardware,
the performance of the controllers synthesized with our approach was similar to
their performance in simulation.

We gave neural controllers three simple preprogrammed behaviors: follow
wall, turn left, and turn right. If we had used a different set of preprogrammed
behaviors, we would potentially have seen different solutions. The solution space
is defined by the set of behaviors to which a neural controller has access. This
solution space is smaller than the solution space in a traditional ER setup in
which the neural controller has direct control over the robot’s actuators. The
restricted solution space may exclude the optimal solution(s) for a given robot
and task. In our study, the controllers that had direct access to the actuators were
able to cut corners and continued to move forward while turning in a T-junction.
The controllers synthesized in our approach were limited to the turn left and
turn right behaviors that cause the robot to turn 90◦ on the spot. Consequently,
controllers that had direct access to the robot’s actuators were sometimes able to
complete the task faster than the controllers that were restricted to a predefined
set of preprogrammed behaviors.

While the use of a finite set of predefined behaviors may forestall the syn-
thesis of the theoretically optimal controllers, it opens a number of interesting
possibilities. Behaviors can be hand-optimized for a particular robot and for
particular sub-tasks. For some sub-tasks, it may be relatively easy to rely on
artificial evolution to find a good solution, while for others, such as those that
are difficult to simulate with sufficient accuracy, may be more easily solved by
manually programming a behavior. Moreover, the predefined behaviors need not
be limited to simple behavior primitives, but could be controllers that have pre-
viously been synthesized by combining other behaviors and so on. In this way,
our approach potentially allows for an incremental and a hierarchical synthesis
of behavioral control for real robots.
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