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Abstract 

Studies in Evolutionary Fuzzy Systems (EFS) began in the 90s and have experienced a fast 

development since then, with applications in areas such as pattern recognition, curve-fitting and 

regression, forecasting and control. An EFS results from the combination of a Fuzzy Inference System 

(FIS) with an Evolutionary Algorithm (EA). This relationship can be established for multiple purposes: 

fine-tuning of FIS’s parameters, selection of fuzzy rules, learning of a rule base or membership 
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functions from scratch, etc. Each facet of this relationship creates a strand in the literature, as 

membership function fine-tuning, fuzzy rule-based learning, etc. and the purpose here is to outline 

some of what has been done in each aspect. Special focus is given to Genetic Programming-based 

EFSs by providing a taxonomy of the main architectures available, as well as by pointing out the gaps 

that still prevail in the literature. The concluding remarks address some further topics of current 

research and trends, such as interpretability analysis, multi-objective optimisation, and synthesis of a 

FIS through Evolving methods.  

 

Graphical/Visual Abstract and Caption 

 

 

 

Introduction 

Fuzzy Logic emerged in the 60’s with the pioneering work of Lotfi Zadeh (Zadeh, 1965). Despite its 

troublesome beginning, as described by Zadeh (2008), mainly originated by a group rooted in 

probability theory, Fuzzy Logic was able to blossom and yield fruits in the most different areas of 

scientific knowledge. One of the main works in this period, the Fuzzy Inference System (FIS) 

proposed by Mamdani (1974) in the 70’s, was used not only to devise plant controllers but also in 

medical applications and pattern recognition problems (Mamdani & Assilian, 1975; Wechsler, 1976; 

Kickert & Koppelaar, 1976). 

This start propelled not only new applications but the development of new FISs (Tsukamoto, 1979; 

Takagi & Sugeno, 1985). These new modelling methodologies addressed more sophisticated and 

complex demands; at the same time, a lack of experts to elicit a fuzzy system parametrisation grew. 

The improvement of computers and database systems allowed large volumes of data and processing 

to be performed faster than ever before. In this context, in the 90s arose the firsts Hybrid FISs as a 

viable alternative to model phenomena only analysed until then through statistical methods. Hybrid 



FISs were part of a trend moving from expert to data-driven modelling by using information stored in 

a database to learn membership function parameters as well as the rule base.  

In the particular area of Hybrid FISs, two main approaches can be highlighted: Neuro-Fuzzy Systems 

(Jang, Sun, & Mizutani, 1997; Nauck, Klawoon, & Kruse, 1997; Abraham, 2001; De Souza, Vellasco, & 

Pacheco, 2002) and Evolutionary Fuzzy Systems (Ishibuchi, Nozaki, Yamamoto, & Tanaka, 1995; 

Carse, Fogarty, & Munro, 1996). Neuro-Fuzzy Systems are attractive due to the intrinsic 

characteristic of Neural Networks: automatic adjustment of parameters and universal approximation 

(Nauck et al., 1997; Abraham, 2001). These two elements combined underpin the building of an 

accurate, adaptive and robust FIS. However, Evolutionary Fuzzy Systems are more flexible than 

Neuro-Fuzzy Systems because they allow not only the maximisation of accuracy, but also the 

inclusion of other subjective criteria as minimisation of a rule base size and length format, overlap 

degree of membership functions, choice of fuzzy operators, etc. (Pedrycz, 1997; Cordon, Herrera, 

Hoffmann, & Magdalena, 2001). Additionally, the implementation cost is more affordable due to the 

lower degree of hybridisation between the techniques; given a FIS and an Evolutionary Algorithm 

(e.g., Genetic Algorithm) an Evolutionary Fuzzy System can be easily set up.  

Since its inception, Evolutionary Fuzzy Systems have experienced a fast development, spawning to 

different applications, evolutionary schemes and approaches. Hence, this overview aims to provide a 

map for navigating across the terminology, methodologies and main works presented in the 

literature. More specifically, this paper puts more emphasis on Genetic Programming-based EFSs, to 

complement previous reviews on EFSs based on other evolutionary algorithms (Fernandez, Lopez, 

Del Jesus, & Herrera, 2015). In this respect, this work is structured as follows: the next section 

presents in more details the organisation, taxonomy and some of the literature in the area. The third 

section provides an overview of Genetic Programming-based EFSs literature, composed of a 

categorisation and a description of the main architectures available. The last section consists of 

concluding remarks and suggestions of other interesting topics for further reading: interpretability, 

big data problems, multi-objective systems, software and Evolving Fuzzy Systems. 

 

EVOLUTIONARY FUZZY SYSTEMS 

The pioneering works on Evolutionary Fuzzy Systems (EFS) where those of Karr (1991), Valenzuela-

Rendón (1991), and Thrift (1991). Each author opened the way for different approaches still in use 

nowadays: parameter optimisation of membership functions (Karr, 1991) and rule base discovery 

through one individual as one rule approach (Michigan) (Valenzuela-Rendón, 1991) or by treating an 

individual as a rule base (Pittsburgh) (Thrift, 1991). In general, each work tried to synthesise an EFS 

through a Genetic Algorithm (GA), by that time the well-known Evolutionary Algorithm (EA). 

After those works, a complete area has developed, with new applications other than Control (e.g., 

pattern recognition, regression, etc.), by using novel EAs (like Genetic Programming - GP), and 

considering other mechanisms to evaluate, synthesise and build a FIS (Cordón, Gomide, Herrera, 

Hoffmann, & Magdalena, 2001; Fernández, García, Luengo, Bernadó-Mansilla, & Herrera, 2010). A 

complete new literature on EFS was and still is being elaborated, such as books and chapters (Geyer-

Schulz, 1997; Cordón et al., 2001; Ishibuchi, Nakashima, & Nii, 2005; Ishibuchi & Nojima, 2015), 

special editions in journals (Nojima, Alcalá, Ishibuchi, & Herrera, 2011; Alcalá, Nojima, Ishibuchi, & 



Herrera, 2012; Alcalá, Nojima, Ishibuchi, & Herrera, 2013; Tao, Chuang, & Huang, 2016), and many 

reviews (Cordón et al., 2004; Herrera, 2008; Fernández et al., 2010; Fazzolari, Alcalá, Nojima, 

Ishibuchi, & Herrera, 2013; Fernandez, Lopez, Del Jesus, & Herrera, 2015). This demonstrates the 

relevance and the growth of this family of Hybrid Systems. 

There is no intention here to cover all works in the area and its subareas but to outline the main 

definitions and concepts that underlines an EFS. In this sense, the next subsection deals with the 

central terminology and formulation of a generic EFS. The second subsection addresses one of the 

most common applications of an EFS: rule base creation. This topic deserves a particular treatment, 

due to the different approaches that have been developed so far. The third subsection consists of a 

summary of the whole section. 

 

General Guidelines 

The most common architecture of an EFS is shown in Figure 1: a result of the interaction between a 

Fuzzy Inference System (FIS) and an evolutionary algorithm (EA). Many EAs may be considered, such 

as GA, GP, Evolutionary Strategies and Non-Dominated Sorting GA. The usual relationship is the FIS 

taking advantage of EA’s capability to optimise membership functions, uncover rules, etc. 

 

 

Figure 1. Generic Diagram of an EFS. 

 

Usually, a FIS is made of a Reasoning Method or Inference Method and of a Knowledge Base. The 

latter can be broken down into two other components: Parameter and Rule base. Their definitions 

are: 

• Rule Base: Composed of the rules that underpin a FIS. 



• Parameter Base: Made of the remaining parameters that compose a FIS, such as 

membership functions, t-norms, aggregation operators and defuzzification methods. 

The Fuzzy Inference is the mechanism that uses the information contained in a Knowledge Base and 

performs pattern recognition, generates control signals and computes expected values of a 

forecaster. Hence, when the Fuzzy Inference Method is established, the role of an EA is to act over 

some component of the Knowledge Base as, for example, update components of the Parameter 

Base or make the Rule Base more concise. The role of an EA in an EFS is illustrated in Figure 2, 

adapted from Córdon et al. (2004). 

 

 

Figure 2. Components of an EFS structure that an EA can act over.  

 

Another relevant definition regards the aims of an EFS. In general, an EFS has two objectives: 

Evolutionary Parameter Tuning and Knowledge Discovery. Both are briefly described below: 

• Evolutionary Parameter Tuning: given a Knowledge Base – expert-driven, or extracted via 

the Wang & Mendel method (Wang & Mendel, 1992) –, an EA is employed to fine-tune its 

parameters or simplify its structure. 

• Knowledge Discovery: the EA is used for learning a component (or the whole) of the 

Knowledge Base. 

 

 

 



Evolutionary Parameter Tuning 

With the aim to improve a pre-elaborated FIS, many authors have employed an EA to increase 

accuracy or to reduce the number of rules. In general, there are four unfolding directions of the 

Evolutionary Parameter Tuning objective: membership function fine-tuning, fuzzy operators 

adaptation, fuzzy rules selection and defuzzification improvement. Each of these is described below: 

• Membership function fine-tuning:  from a pre-elaborated Knowledge Base, fine-tuning is 

developed by encoding in an EA’s individual the parameters that represent the support of the 

membership functions (Figure 3). The adjustment can take place by shifting the membership 

function (Figure 3a), narrowing its support (Figure 3b), or by making them asymmetrical (Figure 

3c). Córdon et al. (2001, p.111) present different forms to codify these structures in an EA (in 

this case a GA). Arslan and Kaya (2001) determine not only the parameters but also the function 

type; Esmin, Aoki, & Lambert-Torres (2002) adjust the membership functions through Particle 

Swarm Optimisation, obtaining better results than by using a GA. Casillas, Cordón, Del Jesus, & 

Herrera (2005) apply linguistic modifiers to optimise the membership functions. Fine-tuning 

after the FIS construction is also a possibility (Alcalá, Gacto, & Herrera, 2011; Alcalá, Nojima, 

Herrera, & Ishibuchi, 2011; Brito, Vellasco, & Tanscheit (2012); Sanz, Fernández, Bustince, & 

Herrera, 2013; Fernández, Del Río, & Herrera, 2016). However, very few works follow the criteria 

outlined by De Oliveira (1999) to constrain the adjustment of membership functions so that the 

semantic is kept intact (distinguishability, the universe of discourse coverage, normalisation, 

etc.). 

 

Figure 3. Different ways to manipulate the shape and location of a membership function.  

 

• Fuzzy operators adaptation: the central principle of this approach is to improve the FIS by 

swapping or tuning t-norms, t-conorms and aggregation operators. Hence, most of the 

applications reside on the use of parameterizable fuzzy operators as Schweizer-Sklar, 

Hamacher, Frank, Yager, etc. A compilation and theoretical analysis of that can be found in 

(Klement, Mesiar, & Rap, 2000). The work of Alcalá-Fdez, Herrera, Márquez, & Peregrín 

(2007) is the archetypical example of this movement, as well as those of Crockett, Bandar, 

Fowdar, & O’Shea (2006), and Crockett, Bandar, & McLean (2007), which also consider the 

modification of membership functions. 

• Fuzzy rules selection: from an already established Knowledge Base, it is possible to make 

use of an EA to simplify and reduce fuzzy rules. In this sense, it is possible to improve the 

rule base interpretability (making it more compact and less conflicting) and the system's 

overall accuracy. The use of an EA is reasonably adequate, since the search space grows 



exponentially as the number of rules increases. A brute-force approach is infeasible even for 

small problems. Figure 4 presents a possible representation of a GA for this sort of task. 

Among several approaches, the most common ones freeze the Parameter Base and generate 

the Rule Base via the Wang & Mendel approach. Casillas, Cordón, Del Jesus, & Herrera 

(2005) applied this scheme to regression problems, with the addition of fine-tuning the 

membership functions by applying drifts and linguistic modifiers. Fernández, Del Jesus, & 

Herrera (2010) used this approach to deal with imbalanced classification tasks. Pulkinnen 

and Koivisto (2010) employed the Wang and Mendel method with a Decision Tree to 

compose an EFS for regression tasks. Sánz et al. (2013) used a similar approach but devoted 

to a Type-2 FIS to evaluate and classify heart diseases. Cintra, Camargo, & Monard (2016) 

exhibit a proposal for the automatic generation of fuzzy rule bases, which extracts a set of 

rules using the formal concept analysis theory directly from data. After extracting the rules 

forming the genetic search space, their methodology involves the use of a GA to select the 

final rule base. Rey, Galende, Fuente, & Sainz-Palmero (2017) introduce a Multi-Objective 

EFS where Relevance is added to Accuracy and Interpretability for a better trade-off in the 

rule selection process. 

 

Figure 4. Example of rule base screening through a binary GA individual –only the rules for which the 

values are 1 are kept in the screened rule base. 

 

• Defuzzification improvement: a practical approach to refine a FIS is to revamp the 

defuzzification process. Given a set of inputs and targets, a simple procedure would be:  (i) 

define a set of defuzzification methods (centre of area, height, etc.); (ii) propagate the inputs 

through the reasoning method and apply the different defuzzification methods; (iii) combine 

the alternatives to minimise the total difference between the predictions and the target. A 

work in this direction is that of Kim, Choi, & Lee (2002). Márquez, Márquez, & Peregrín 

(2012) point out that an adaptive defuzzification mechanism improves the system accuracy, 

but the weights introduced tend to decrease the system overall interpretability. In this 

sense, their work aims to use a Multi-Objective EA to increase accuracy, but preserves the 

interpretability with three goals in mind: 1) reduce the number of total rules by considering 

that a rule with weight close to zero can be removed; 2) disregard weights that are close to 



1, and 3) reduce the average number of rules triggered at the same time. A more recent 

version of this work is devoted to Big Data problems (Márquez, Márquez, & Peregrín, 2017).  

In general, it is hard to classify a certain work as belonging exclusively to one of the four 

subcategories above. The most common approach consists of a hybrid scheme that usually blends 

two of the four procedures. Also, all those approaches aim at improving an already existing 

Knowledge Base. The next topic considers the occasions in which Knowledge Base elaboration is a 

pending issue. 

 

Knowledge Discovery 

Regarding Knowledge Discovery, there are two main lines that can be followed to set up an EFS: 

Granularity Learning (number and format of membership functions), and Rule Base Learning.  The 

prevailing forms of these approaches are described below. 

 

• Granularity Learning: a typical approach codifies in the structure of an EA’s individual the 
number of membership functions that each variable can assume. Given an encoding 

structure (chromosome, tree, etc.) defined as C, the number of membership functions is 

defined by the user, usually within the set {1,2,...,7} (Cordón, Herrera, Magdalena, & Villar, 

2001; Alcalá et al., 2011). In this case, the value 1 represents the removal of a feature from 

the rule learning process (also known as don’t care operator) and 2, 3, ...,7 indicates the 

number of membership functions. These tend to be triangular shaped, uniformly divided and 

doubly overlapped (sometimes called strong partition). Figure 5 shows an example of this 

codification. Given the number and position of membership functions, the Wang & Mendel 

method is generally used for rule generation. Besides, it is common to displace the functions 

during the evolutionary process. Using the previous encoding C, it is possible to break it 

down in C = [C1, C2], with C1 indicating the granularity and C2 establishing the shifting degree 

(including restrictions) of all membership functions in the corresponding universe of 

discourse. Hence, it is possible to adapt not only the granularity but also the disposition of 

the functions. This sort of approach is a typical example of a 2-tuple approach (Herrera & 

Martinez, 2002), which has often been used in recent literature (Gacto, Alcalá, & Herrera, 

2009; Alcalá et al., 2011; Palacios, Palacios, Sánchez, & Alcalá-Fdez, 2015; Rodríguez-Fdez, 

Mucientes, & Bugarín, 2016a; Rodríguez-Fdez, Mucientes, & Bugarín, 2016b).  

 



 

Figure 5. Example of granularity learning. 

 

• Rule Base Learning: after the definition of the Parameter Base, an EA is responsible for 

extracting rules from a dataset. There are many approaches to codify a set of rules; in 

general, they tend to concentrate exclusively on the learning process of a rule base (Herrera, 

2008). This particular subject will be dealt with in the next subsection. 

 

Figure 6 displays an overall view of the areas covered by an EFS: the two primary objectives – 

Evolutionary Parameter Tuning and Knowledge Discovery –  and possible actions over different parts 

of a typical FIS. 

 

Figure 6. Global perspective of the areas in which an EA can operate over a FIS. 



 

Evolutionary Fuzzy Systems for Rule Base Learning 

The works on EFS for Rule Base generation explore ways to codify a rule base in an individual or a 

population of an EA, in such a way that the rule learning process can address the user-set criteria. In 

the literature, it is possible to find book chapters on this topic (Cordón et al., 2001), as well as 

publications that extrapolate the range of the EFSs (Fernández et al., 2010). The four primary forms 

of rule base encoding are presented below: Pittsburgh, Michigan, Iterative Rule Learning and 

Genetic Cooperative-Competitive Learning. Each of them not only distinguishes itself by the 

encoding process but also by the way the quality of a fuzzy rule base is evaluated.  

 

Pittsburgh Approach 

From all the potential approaches, the Pittsburgh-type might be the most intuitive and 

straightforward to conceive. This approach considers that each EA’s individual is a rule base (Figure 

7). The user initially sets the Parameter Base, that is, t-conorms and t-norms operators, granularity, 

membership functions shapes and the defuzzification method. This component usually remains fixed 

and each individual proposes a potential rule base; the best individual is the one that satisfies some 

user-defined criteria such as accuracy, interpretability, response time, etc. 

 

 

Figure 7. Macro level description of the synthesising process of a Pittsburgh-type EFS.  

 

Regarding applications, a Pittsburgh-type EFS appears in practically all areas. One of the pioneers in 

the EFS area, Thrift (1991), and also Alba, Cotta, & Troya (1996) encoded in an individual a rule base 

to build a fuzzy controller. Córdon et al. (2001, p.146-147) presents a series of applications of 

Pittsburgh-type EFSs. The works of Sánchez, Couso, & Corrales (2001) and Tsakonas (2006) used GP 



to elaborate a FIS for pattern recognition. Gorzalczany and Rudzinski (2012) describe an application 

for time series forecasting; Casillas, Martínez, & Benítez (2009) apply the Pittsburgh-type EFS to build 

compact and consistent fuzzy rule bases for regression tasks. 

The critics of this approach turn their batteries mainly to the computational time that a Pittsburgh-

type EFS takes to synthesise a rule base and some even highlight the reduced effectiveness of the 

recombination operators in generating diverse populations (Cordón et al., 2004). An alternative 

explored by many authors is the computational parallelisation of the EFS (Rojas et al., 2001) or the 

hybridisation with other less demanding rule-based learning strategies (Ishibuchi, Yamamoto, & 

Nakashima, 2005), or even exploring at the same time hybridisation and parallelisation (Ishibuchi, 

Yamane, Nojima, 2013). Rudziński (2016) proposes a multi-objective genetic approach to design 

interpretability-oriented fuzzy rule-based classifiers from data. The proposed approach allows to 

obtain systems with various levels of compromise between their accuracy and interpretability. 

Original crossover and mutation operators, as well as chromosome-repairing technique to directly 

transform the rules are also proposed. The interpretability measure is based on the arithmetic mean 

of three components: the average length of rules, the number of active fuzzy sets, and the number 

of active inputs of the system. This same methodology is applied to rule-based credit classification 

(Gorzałczany & Rudziński, 2016). 

Although gains have been reported with the use of these mixed approaches, many authors prefer to 

follow other forms of rule base encoding. In this sense, mapping only one rule per individual can 

drastically reduce machine time and increase the impact of an EA’s recombination operators. This 

type of codification, denoted as Michigan, is discussed in the next topic. 

 

Michigan Approach: General Outlook 

The Michigan approach aims to generate a concise rule base with low computation cost. In this 

representation, an EA’s individual codifies only one rule, such that the final rule base is the 
concatenation of the individuals nurtured by the EA. The consequence is a dramatic reduction in 

computation overhead (memory and time), evaluation and recombination time. On the other hand, 

the evaluation process is more complicated and indirect, since one rule can represent well the 

process when isolated, but, when inserted in a rule base, may cause conflicts in the fuzzy reasoning 

process with a direct effect in the prediction phase. 

Therefore, any Michigan approach includes, beyond the rule base evaluation, a method to assign 

credit to each rule; this is usually linked with the rule contribution to the final FIS performance. From 

the credit attributed to each rule it is possible to rank, select, and apply the recombination operators 

intrinsically to the EA. Here is where the Michigan approaches -- Michigan, Iterative Rule Learning, 

and Genetic Cooperative-Competitive Learning – differ from each other: in a lesser degree, due to 

the way each rule/individual is given credit to; in a higher degree, due to different mechanisms used 

to adapt and synthesise the rule base. 

Final note: the most common metrics to evaluate a rule quality are the Confidence Degree (or Fuzzy 

Accuracy), and the Support (Cordón et al., 2001). The Confidence Degree, which applies exclusively 

to classification tasks, measures the intensity of the relation between an individual rule and the 



class, while the Support reflects the matching degree between the rule and the database for any sort 

of application. Finally, these approaches require the inclusion of mechanisms to avoid generating 

rules too similar in the same or the future generations in an EA run. In this sense, it is possible to 

penalise rules with the same activation profile or that classify the same patterns, or even to remove 

from the dataset already classified patterns (an example is provided in Berlanga, Rivera, Del Jesús, & 

Herrera (2010)).  

 

Michigan Approach: Specific Aspects 

In general, a Michigan-type EFS employs a reinforcement learning scheme, such that the EA is used 

for adapting the rules along the evolutionary process (Herrera, 2008; Kovacs, 2012). When the 

application requires a supervised learning process (e.g., classification, regression, and forecasting) it 

is necessary to replace the original form of the dataset that is supplied to the EFS: from the 

traditional batch-style to incremental feeding. Then, the rule base is randomly initiated and a 

pattern (or a small subset) is presented to the rule base, with the aim to identify which rule has 

promoted the correct classification or closest prediction. Since most applications reside in 

classification (Herrera, 2008; Fernández et al., 2010), the Support and Confidence Degree are also 

computed. With these metrics, it is possible to rank the individuals, select and apply the 

recombination operators. The synthesis of a FIS by using the Michigan-type approach is depicted in 

Figure 8. 

 

Figure 8. Global level description of the synthesising process of a Michigan-type EFS. 

 



As new patterns are offered, rules compete between each other in such a manner that the most 

qualified – high confidence, support, and accuracy – remains during the evolutionary process. In the 

last generation, when all patterns have been shown, the final population forms the FIS’s rule base. 

One of the pioneers in the EFS area, Valenzuela-Rendón (1991), presents a Michigan-type EFS 

devoted to classification tasks. One of the first books in EFS (Geyer-Schulz, 1997) uses the Michigan 

approach extensively to build fuzzy rule bases through the interplay with GP as the EA. One of the 

most prominent is from Casillas, Carse, & Bull (2007) that present the Fuzzy-XCS model, a fuzzy 

classifier that makes use of the Michigan approach to sets its structure. In this work the authors have 

revamped the Michigan-type methodology, showing new applications and directions, but keeping 

the reinforcement learning style. Marín-Blázquez and Pérez (2009) exhibits an application of the 

Fuzzy-XCS model for intrusion detection. Nojima, Watanabe, & Ishibuchi (2015) introduce two 

simple modifications, one related to rule generation, where each rule is generated from some 

multiple misclassified patterns to generate each fuzzy if-then rule. The other is related to the fitness 

calculation; they incorporate a penalty term into the fitness function based on the number of 

misclassified patterns. A similar principle is applied in Nojima, Takemura, Watanable, & Ishibuchi 

(2017), but using an (1+1)-Evolutionary Strategy for performing rule set optimization without losing 

their high computational efficiency. 

In the literature review realised by Herrera (2008), the author verifies the necessity of the 

conception of new works in this area. However, in parallel, two new approaches derived from 

Michigan appeared: Iterative Rule Learning and Genetic Cooperative-Competitive Learning. Both do 

not follow the reinforcement learning approach, as well as some other minor elements. Next topics 

delve into the Iterative Rule Learning EFSs and Genetic Cooperative-Competitive Learning 

approaches. 

 

Iterative Rule Learning Approach 

In comparison with the Michigan-type, Iterative Rule Learning (IRL) is a more recent procedure 

(Cordón, & Herrera, 1997); the main idea is to execute the EA many times, aiming to obtain and 

store the best rule at each execution. A diagram of the whole process to obtain a full FIS rule base is 

shown in Figure 9. 

 



 

Figure 9. Synthesis of an IRL-type EFS. 

 

The definition of the best rule maybe based on the Confidence Degree, Support, Coverage or other 

methods extensively presented in Cordón et al. (2001, p.226-231). There are many schemes 

available to set the stopping criteria, such as: generate as many rules such that they cover all 

available patterns or generate a minimum set of rules that covers a specific class (Cordón, 2001, 

p.232).  

One of the first architectures found in the literature is the MOGUL  (Methodology to Obtain Genetic 

fuzzy rule-based systems Under the iterative rule Learning approach), proposed by Cordón, Del 

Jesús, Herrera, & Lozano (1999). This work provided the basis for subsequent research following the 

IRL principles. The SLAVE (Structural learning algorithm on vague environment) model, developed by 

González and Pérez (1999) is capable of dealing with high-dimensional datasets. It employs a GA 

with a structure broken down in two parts: the first sets the relevance of a specific feature, while the 

second associates some characteristics (rule, granularity, etc.) with the first. Recently, Gárcia, 

González, & Pérez (2014a) have presented an improvement of González and Pérez (1999, 2009) 

work. This new model includes the possibility of generating fuzzy relational rules (joint modelling of 

antecedent terms), and creating new features through a linear combination of the original ones. As 



an assessment of this new model, the authors perform a study with 27 benchmark datasets for 

classification. An overview and review of the SLAVE methodologies can be found in García, González, 

& Pérez (2014b). 

 

Genetic Cooperative-Competitive Learning 

EFSs that abide by the Genetic Cooperative-Competitive Learning (GCCL) principles are more recent 

than the two others individual/rule type (Ishibuchi, Nakashima, & Murata, 1999). The core of this 

approach consists of a mechanism by which the rules compete and cooperate with each other; in 

consequence, this demands new ways to assess the rules quality, both individually and collectively 

(Fernández et al., 2010). Therefore, the GCCL style requires two fitness functions: a local one, that is 

used for selection and recombination purposes (competition), and a global function, which is used 

for evaluating the whole population across generations. The best population is always stored 

(cooperation). The synthesising process undergone by an EFS using the GCCL principles is outlined in 

Figure 10. 

As in other approaches, some penalisation method concerning rule similarity is required to keep a 

diverse population. Another common trace is the variation of the population size in the evolutionary 

process. Berlanga et al. (2010) present a mechanism to expand/shrink the population size, based on 

the similarity level of rules, low Support and with the elaboration of auxiliary rules for patterns that 

were not covered by the current rules of the population. 

From a historical perspective, the first work using a GCCL approach was that of Ishibuchi et al. 

(1999). It made use of a GA with fixed length representation for pattern recognition. A GCCL-type 

EFS for control tasks was developed by Juang, Lin, & Lin (2000), where rules are learned and 

membership functions are tuned; the consequent term can be of Mamdani or Takagi-Sugeno-Kahn 

types. Mucientes, Vidal, Bugarín, & Lama (2009) present an application of a GCCL-type EFS, with the 

EA being a context-free GP, to a dataset of machines from a furniture company. The GP-COACH 

model (Genetic Programming-based learning of COmpact and ACcurate fuzzy rule-based 

classification systems for High-dimensional problems) was proposed by Berlanga et al. (2010) to deal 

with high-dimensional classification problems. It employs GP as the EA that underpins the EFS.  

This same model was extended by López, Fernández, Del Jesus, & Herrera (2013) for environments 

in which the pattern recognition process is undermined due to the imbalance between classes. 

Palacios, Sánchez, & Couso (2011) proposed an EFS to extract rules from datasets in which the 

samples are imprecise or defined linguistically. Tsakiridis, Theocharis, & Zalidis proposed de DECO3R 

method, which uses Differential Evolution as its learning algorithm. In this frame, every chromosome 

encodes a single fuzzy rule. The proposed AdaBoost-based Fuzzy Token Competition method is 

employed to deal with the cooperation - competition problem, an integral part to all GCCL 

algorithms. 



 

Figure 10. Synthesising process of a GCCL-type EFS. 

 

Summary 

Table 1 presents a general summary of the characteristics of each of the four previous Rule Base 

Learning approaches. The Michigan approach is the only one that taps into reinforcement learning. 

In a scenario where an EA and a FIS are the only architectures in hand, a Pittsburgh-type EFS tends to 

have low implementation cost, since the only remaining requirement is to set the evaluation 

function, while the remaining architectures would require more parameters (mechanism to 

remove/reduce similar rules, number of executions, etc.). 

Table 1. Summary of the pros, cons and characteristics of the rule-based learning methodologies. 

Type Learning COD IC RT RAcc RBC Main App 

Pittsburgh Supervised Ind=RB Low High High Low Generic 

Michigan Reinforce Ind=R High Low Medium High Classification 

IRL Supervised Ind=R Medium Medium Medium High Classification 

GCCL Supervised Ind=R Medium Low Medium High Classification 

Caption: COD – Rule base codification, Ind – Individual, RB – Rule Base, R – single rule, IC – Implementation 

cost, RT – Running time, RAcc – Relative accuracy when compared to other approaches, RBC – Rule base 

complexity, Main App –Main application. 



 

It should be noted that the Pittsburgh approach requires more processing time than the other ones, 

while the Michigan approaches demands less, since in average these would only have the same cost 

per generation of one Pittsburgh-type individual. Ishibuchi et al. (2005) verify, from benchmark 

datasets, that the Michigan approach tends to generate a more compact rule base, albeit with lower 

accuracy when compared to Pittsburgh – a more up to date version of this model and results can be 

found in Lahsana and Seng (2017). The authors argue that this may be caused by the higher diversity 

of rules, which could be harmful to the joint behaviour of the final rule base. This evidence made the 

authors to propose a hybrid Pittsburgh-Michigan approach, obtaining good results from this 

enterprise. 

Finally, based on references presented in the previous section as well as on literature reviews 

(Cordón et al., 2004; Herrera, 2008; Cordón, 2011; Fernández et al., 2010), it is possible to conclude 

that Michigan approaches are more prevalent in classification problems, with some few exceptions 

for control tasks. However, Pittsburgh-type EFSs are more generic, with applications in areas as 

regression, forecasting, control and classification problems.  

Next section is devoted to a less explored area of the literature: Genetic Programming-based 

Evolutionary Fuzzy Systems. In summary, most of these systems are built to learn fuzzy rules; their 

main difference is centred on the design of the Genetic Programming algorithm, as detailed in the 

next section. 

 

GENETIC PROGRAMMING-BASED EVOLUTIONARY FUZZY SYSTEMS 

This section is devoted to present and discuss systems that use GP as the mean to learn fuzzy rule-

based systems. After some initial background information on the historical and motivational 

elements of this subtopic, we exhibit and discuss the two main strands that we devised in this 

subarea: Context-free Grammar and Symbolic-centred approaches. Then, we close this section by 

contrasting both approaches and presenting some available gaps in this specific part of the 

literature. 

 

Background 

Overall, most EFSs are based on GAs (Cordón et al., 2004; Herrera, 2008), due to historical (started in 

the 70s) and practical reasons (availability of many implementations and abundant literature, a 

reasonable comprehension of its constituents, broad adoption by many practicioners, etc.). After the 

seminal work of Koza (1992), slowly, GP started to be adopted by the EFSs’ community, due to its 
capacity to accommodate in a compact structure a dynamical representation such as a fuzzy rule 

base (Geyer-Schulz, 1997; Cordón et al., 2004). Figure 11 displays a comparative example of a fuzzy 

rule codified by a GA with integer representation and a Grammar-based GP, for a problem with 10 

input variables.      

 



 

 

Figure 11. Example of a fuzzy rule created using a GA with its counterpart GP, respectively. 

 

Each representation expresses a fuzzy rule that can be read as “If X1 is A1 and X3 is A3, then Y is B1”. 
However, it is clear that the GP yield a simplified representation, with the zeros/don’t care symbol 
being redundant yet important in the GA codification. This difference is magnified in high-

dimensional scenarios with its implication in higher processing time for evaluation, selection and 

recombination. Beyond this advantage in expressing and evolving a fuzzy rule, many empirical 

studies suggests that GP-based EFSs outperforms other EFSs in terms of accuracy and interpretability 

metrics (Berlanga et al., 2010; Tsakonas, 2013; Koshiyama, Vellasco, & Tanscheit, 2016}. 

Scanning the literature of GP-based EFSs it is possible to group the approaches in two categories: 

Context-Free Grammar and Symbolic-centred. Both are grounded on which type of GP is being used, 

or more specifically, how the fuzzy rules are being codified and post-processed to elaborate a fuzzy 

rule-based system. Our previously example (Figure 11) is rooted with the preferred route in the 

literature, that is, the Context-free Grammar based approach; the seminal work of Koza (1992) and 

many other Symbolic Regression works represent the solution based on the second category 

(Symbolic-centred). The next two subsections describe in detail both categories. 

 

Context-free Grammar approaches 

The Context-free Grammar scheme uses the GP as a means to manufacture fuzzy rules that follow a 

certain structure and comply to a set of constraints. In general, the rules generated by this approach 

are the most straightforward to analyse and to incorporate into a fuzzy inference system – since very 

little, or even nothing, is changed in its reasoning method when models following this procedure are 

used. The main component that uniquely identify the members of this family is the Context-free 

Grammar that is passed to the GP, and its capacity to use it in order to create rules following a 

certain pattern. Table 2 presents an example of Context-free Grammar that can be used by the GP to 

manufacture fuzzy rules. 



Table 2. Example of Context-free Grammar, similar to that of Berlanga et al. (2010).  

➢ Start -> [If], antec, [then], conseq, [.] 

➢ antec -> descriptor 1, [and], descriptor 2 

➢ descriptor 1 -> [any] 

➢ descriptor 1 -> [Xl is] label 

➢ descriptor 2 -> [any] 

➢ descriptor 2 -> [Xj is] label 

➢ label -> {member(?a, [L, M, H, L or M, L or H, M or H, L or M or H])}, [?a] 

➢ conseq -> [Class is] descriptorClass 

➢ descriptorClass -> {member(?a, [C1, C2, …, Ck])}, [?a] 

 

Though we could cite some previous works (Sánchez et al., 2001; Tsakonas, 2006), the most 

illustrative model in this subarea is the so-called GP-COACH (Genetic Programming Based Learning of 

Compact and Accurate Fuzzy Rule-Based Classification System for High Dimensional Problems). This 

GP-based EFS was proposed by Berlanga et al. (2010) in an extension of a previous research 

(Berlanga, Del Jesus, & Herrera, 2005). This EFS is oriented towards rule base generation following a 

GCCL-scheme. More specifically, this model implements the following elements in addition to the 

ordinary components of an EFS: 

• GP-COACH allows the creation of rules in a DNF (Disjunctive Normal Form) format – an 

example is: “If X1 is A1 or A2 and X2 is A3 or A4 and ...”, with t-conorms joining multiple 

linguistic terms represented by triangular-shaped membership functions. It implements the 

Context-free Grammar displayed in Table 2, generating rules akin to Figure12. 

 

 Figure 12. Example of GP-COACH DNF fuzzy rule type. 



• Since a GCCL-scheme is being used, two evaluation functions are setup: 

o Local: evaluate the quality of rule (individual) through the Support and Confidence 

metrics. 

o Global: evaluate the rule base (population) performance, taking into account the 

accuracy and complexity of the fuzzy rules. 

• It employs new mechanisms for: (i) evaluation ⎯  adding diversity criteria during the 

assessment process; (ii) recombination ⎯ generating secondary rules to cover unclassified 

patterns; and (iii) selection ⎯ adding intergenerational competition to amplify/reduce 

certain genotype in a population. In total, 24 benchmark classification datasets were used; 

the results suggest that this model outperforms other four EFSs in accuracy and complexity 

terms. This model was also used by López et al. (2013), with the inclusion of an oversampling 

procedure and a 2-tuple representation and fine-tuning in a post-processing stage, to solve 

highly imbalanced classification tasks.  

Beyond GP-COACH, some other proposals have been developed in this subarea, like: 

• Tsakonas (2006): the author investigates the effectiveness of GP-generated intelligent 

structures in classification tasks. More importantly, the author implemented a Grammar 

Guided GP-based EFS, following a Pittsburgh-style structure. Nothing in special was added in 

terms of diversity increasing operators, or different manners to evaluate an individual. The 

models were evaluated thoroughly in six well-known real world data sets. 

• Muni and Pal (2012): the authors propose a Pittsburgh-style Multigene/Multi-tree GP-based 

EFS. Each individual is composed of K trees, where K represents the number of classes. Each 

tree expresses a set of fuzzy rules linked with a specific class, merging this spontaneous rule 

generating scheme with some created via a C-Means algorithm. They have used Gaussian-

type membership functions, and have included new recombination operators to synthesise 

solutions. To evaluate their method, they have used five datasets and compared the results 

found with Lim, Loh, & Shih (2000). In a way, this work is a Context-free Grammar version of 

a later work done by Koshiyama et al. (2013), but without the addition of the C-Means 

algorithm, the exclusion of some operators and the inclusion of more benchmark datasets. 

• Tsakonas (2013): presents a method named MEMFIS (MEMetic genetic programming Fuzzy 

Inference System) to incorporate standard Neuro-Fuzzy learning for Takagi–Sugeno fuzzy 

systems that evolve under a Grammar-driven GP framework. MEMFIS incorporates local-

search training methods for fuzzy systems, namely backpropagation gradient descent for the 

linguistic variables and recursive least squares for the coefficients of the linear functions. In 

addition to local search, complete fuzzy rule bases evolve under a GP framework with a 

context-free grammar guidance. MEMFIS effectively generates and trains first-order Takagi–
Sugeno fuzzy systems for regression and control. This new approach is used in regression 

and control benchmarks, such as the inverted pendullum, comparing favourably to its peers. 

• Carmona et al. (2015): presents a new approach named Fuzzy Genetic Programming-based 

for Subgroup Discovery: FuGePSD. This algorithm represents an EFS based on GP, employing 



the GCCL approach where rules of the population cooperate and compete between them to 

obtain optimal solution. FuGePSD employs several genetic (mutation, crossover, insertion 

and drop) and selection (token competition and screening) operators in order to obtain rules 

that are as general and precise as possible in describing new information of the search 

space. In this way, FuGePSD includes an operator to promote the diversity at genotype level, 

where rules describing the same examples are penalised. FuGePSD displays its potential with 

high-quality results in a wide experimental study performed with respect to others 

evolutionary algorithms for subgroup discovery. Moreover, the quality of this proposal is 

applied to a case study related to acute sore throat problems. 

 

Symbolic-centred approaches 

The Symbolic-centred approaches are marked by the use of the Koza-style GP, very similar to the 

way other researchers in the area perform Symbolic Regression. Instead of defining a Context-free 

grammar that will be manipulated and enhanced along the evolutionary process, the user have to 

set the Terminals and Functions before starting the evolution (McPhee, Poli, & Langdon, 2008). The 

Terminals are the set of features that have been already mapped into fuzzy sets – differring from the 

traditional form where the features are included in their raw version. The Functions are, in some 

implementations, constrained to certain mathematical operations that guarantee interpretability 

and act as t-norms, t-conorms and linguistic modifiers – like product, minimum, square-root, etc.  

By establishing both sets, it is possible to execute the GP similarly to another Symbolic Regression 

run, with some additional components depending on the type of the fuzzy system being optimised. 

Before outlining the major representant of the Symbolic-centred family -- the Genetic Programing 

Fuzzy Inference System (GPFIS) model --, we first highlight some previous works in the literature: 

• Chien et al. (2002): The authors propose a new learning approach based on genetic 

programming to generate discriminant functions for classifying data. An adaptable 

incremental learning strategy and a distance-based fitness function are developed to 

improve the efficiency of genetic programming-based learning process. They first transform 

attributes into membership degrees of fuzzy sets and then a set of discriminant functions is 

generated based on the proposed learning procedure. The set of derived functions with 

fuzzy attributes gives high accuracy of classification and presents a linear form (such as the 

one exemplified below for the Iris dataset).  

 



The first expression can be read as: “If Sepal Length is Small or Large enough in relation to 
the size of the Petal Length, then the plant is from the Setosa species“. These rules are more 

challenging to read in comparison to the one from GPFIS model, as will be described below, 

nonetheless they can be transformed into inference rules in an expert system. 

• Koshiyama et al. (2013): the authors present the so-called Genetic Programming Fuzzy 

Classification System (GPF-CLASS). This model differs from the traditional approach of GP-

based EFSs, which uses the metaheuristic to learn “if-then” fuzzy rules (Context-free 

Grammar). This “if-then” classical approach needs several changes and constraints on the 

use of genetic operators, evaluation and selection, which depends primarily on the 

metaheuristic used. Genetic Programming makes this implementation costly and explores 

few of its characteristics and potentialities. The GPF-CLASS model seeks for a greater 

integration with the metaheuristic: Multi-Gene Genetic Programming, exploring its potential 

of terminals selection (input features) and functional form and, at the same time, aims to 

provide the user with a more straightforward comprehension of the classification solution. 

Below it is possible to identify an example of a fuzzy rule induced by the GPF-Class for the 

Iris dataset: 

 

                        

 

For the first equation, the more Medium the sepal length is for a given pattern, the higher is 

its membership degree to the Setosa species. The second equation expresses that: If a plant 

has a Very Little Petal Length, then its compatibility with Versicolor species is higher. Then, 

for these two equations, the discriminant function generate by GPF-CLASS is very simple and 

informative. The third equation offsets the observed simplicity, providing a discrimination 

function harder to interpret and build an explanation for. 

A model that can may be regarded as an archetype of the Symbolic-centred approach is the 

Pittsburgh-type EFS called Genetic Programing Fuzzy Inference System (GPFIS). Due to the addition 

of new components to post-process a set of fuzzy antecedents in a fuzzy rule base, its 

implementation is more complex than that of a typical Pittsburgh-style EFS (contrasting with the 

characteristics enunciated in Table 1). Another characteristic that contributes to a higher complexity 

is its generality, since it can be used for different tasks: GPFIS-CLASS for pattern recognition 

(Koshiyama, Vellasco, & Tanscheit, 2015a), GPFIS-Regress for regression tasks (Koshiyama, Vellasco, 

& Tanscheit, 2016), GPFIS-Forecast for time-series modelling (Koshiyama, Vellasco, & Tanscheit, 

2015b) and GPFIS-Control for the automatic design of fuzzy controllers (Koshiyama, Vellasco, & 

Tanscheit, 2014). The main modules of the general GPFIS model are shown in Figure 13. 



 

Figure 13. Main stages of the GPFIS model. 

 

Modelling begins by mapping crisp values into membership degrees of fuzzy sets (Fuzzification). 

Then, a fuzzy inference procedure is performed in three subparts: (i) generation of fuzzy rules 

premises (Formulation); (ii) assignment of the best suited consequent term to each premise 

(Association) and (iii) aggregation of activated fuzzy rules (Aggregation). Finally, Decision, Evaluation 

and Selection & Recombination are performed. The following steps briefly summarises these 

components: 

• Fuzzification: The specification of fuzzy sets involves the definition of three factors: (i) 

functional description (triangular, trapezoidal, etc.); (ii) support and granularity of 

membership functions; and (iii) linguistic terms, to qualify the subspace defined by the 

membership function with an appropriate label. In theory, this should be specified by an 

expert. In practice, however, due to the difficulty of having an expert available, membership 

functions are usually defined as strongly partitioned.  

• Fuzzy Inference: The inference process in the GPFIS model is subdivided into 3 steps: (i) 

Formulation ⎯ responsible for combining the linguistic terms of each feature to build a 

fuzzy rule premise (antecedent creation, using Multi-Gene Genetic Programming); (ii) 

Association ⎯ given a set of premises, this step verifies the consequent term that is most 

suited to each premise (fuzzy rule creation and screening); and (iii) Aggregation ⎯ receives 

as input the activated fuzzy rules and computes a consensual value for each consequent 



output. Figure 14 illustrates this whole process described in detail in the following sub-

sections.  

 

Figure 14. Diagram describing the main stages of GPFIS model Inference process. 

i. Formulation: The GPFIS model makes use of Multi-Gene Genetic Programming 

(Hinchliffe et al., 1996; Gandomi & Alavi, 2012) to obtain a set of fuzzy rules premises. A 

fuzzy rule premise is commonly defined as: “If X1 is Al1, and ..., and Xj is Alj, and ..., and XJ 

is AlJ”. Alternatively, in mathematical terms:  µAd (xi) = µAl1 (xi1) * ... * µAlj (xij) * ... * µAlJ 

(xiJ), where µAd (xi) is the joint membership degree of pattern xi concerning the d-th 

premise (d=1,...,D), computed through a t-norm “*” that combines each membership 
degree µAlj (xij). Table 3 present the Terminals and Functions that characterises this 

Symbolic-centred approach. 

Table 3. Terminals and Functions for a generic GPFIS model. 

Terminals (Fuzzy Sets) Functions (Fuzzy Operators) 

µA11 (xi1), µA21 (xi1), …, µAL1 (xi1), …, µALJ (xiJ) Product, minimum, maximum, square-root, etc. 

 

In general terms, a fuzzy rule premise can be described as a combination of each µAlj (xij) 

(Terminals) by using t-norms, t-conorms, negation and linguistic hedge operators 

(Functions). However, the search space grows exponentially as the number of features 

and available operators increases. Multi-Gene Genetic Programming (MGGP) is 

employed to deal with this large search space. Figure 15 presents an example of a 

solution provided by an individual of an MGGP population; premise 1 is analytically 

represented by: µA1 (xi) = µA21 (xi1) * µA32 (xi2), which denotes, in linguistic terms: “If X1 is 

A21, and X2 is A32”.  



 

Figure 15. Set of premises encoded by a Multi-Gene Genetic Programming individual. 

 

ii. Association: In the association step, the most compatible consequent term with a given 

premise is determined. A simple and intuitive association technique is the so-called 

Uniform Division. This method involves splitting the premises in K slots of equal size and 

associating them to a specific k-th consequent term; this approach is widely used in 

GPFIS-Control. The use of this simple method, however, may imply in the association of 

a premise to an incorrect consequent term. To avoid this and promote the reduction of 

the search space, each premise should be assigned to the k-th consequent term that 

maximises a particular compatibility measure between the specific premise and a 

consequent term. In classification, a straightforward and widely used compatibility 

measure is the Confidence (Certainty) Degree (Berlanga et al., 2010), while for 

regression and forecasting the Fuzzy Confidence Degree (Koshiyama, Vellasco, & 

Tanscheit, 2016) may be used. 

iii. Aggregation: In a fuzzy inference system, an input pattern may activate several rules 

related to different consequents. The Aggregation step aims to merge the activation 

degrees over fuzzy rules related to a same consequent to generate a consensual output. 

The most commonly used aggregation operator is the maximum t-conorm (Pedrycz & 

Gomide, 1998) – extensively employed in GPFIS-Control. An alternative would be the 

weighted mean (Beliakov & Warren, 2001), where the weights are computed by solving 

a Restricted Least Squares problem – used more for classification, regression and 

forecasting tasks. Once the merged membership degree for each consequent term has 

been computed, it is necessary to verify which class a pattern belongs to or apply a 

defuzzification method to generate an output of a controller or a forecasting system.  

• Decision/Defuzzification: This step converts a set of fuzzy activations in the consequent 

terms into a single and crisp output. In classification problems, this may be called decision; 

in the remaining problems, defuzzification is a better term. For classification problems, the 

decision is made by the class to which the input pattern has maximum expected 

membership; when a tie occurs, either a heuristic can be applied (the class that has more 



patterns in the dataset), or no class is assigned at all. For the remaining tasks, defuzzification 

is performed through the Height Method (Roychowdhury & Pedrycz, 2001), due to the 

widespread use of strongly partitioned fuzzy sets in the experiments with GPFIS models. For 

control tasks, sometimes the Mean of Maximum or the Center of Gravity defuzzification 

methods may provide a better performance (Roychowdhury & Pedrycz, 2001).  

• Evaluation: Evaluation in GPFIS model involves two objectives: 1) maximising performance 

(accuracy in classification, the difference to the setpoint in control, etc.); and 2) reducing the 

rule base complexity. The first one is responsible for ranking the individuals in the 

population, while the second objective is used as a tiebreaker. Reduction of rule base 

complexity is performed through a simple heuristic called Lexicographic Parsimony Pressure 

(Luke & Panait, 2002). This is employed only when two individuals have the same fitness. 

Therefore, given two individuals with the same fitness, the best one is the individual with 

fewer nodes. Fewer nodes indicate rules with fewer antecedent elements, linguistic hedges 

and negation operators, as well as few premises, resulting in a more compact fuzzy rule set.  

• Selection & Recombination: After the evaluation process, a set of individuals is selected 

(through a tournament procedure) and recombined. Mutation (Figure 16a), low-level 

crossover (Figure 16b) or high-level crossover (Figure 16c) are applied to some subset of 

individuals. Finally, the new population is generated. This process continues until a stopping 

criterion – the number of evaluations, in the context of GPFIS -- is met; then, the last 

population is returned.  

 

 



 

 

Figure 16. Example of recombination operators applied in GPFIS model solutions. 

 

Summary 

This section presented an overview of GP-based EFS, focusing on the historical evolution and the two 

main strands of research: Context-free Grammar and Symbolic-centred approaches. Context-free 

Grammar systems make better use of some inherent flexibility of the way GP codifies a solution, 

being more common in the literature. However, as pointed out in the example of GP-COACH, the 

proposed model might generate some invalid solutions according to the grammar established, 

requiring some specific post-operation to fix them.  



The main characteristics of the Symbolic-centred approach when compared to the Context-free are: 

(i) the way the elements used to build the fuzzy rules are declared, based on terminals and functions 

instead of specifying a grammar; (ii) the constraints added to enforce the breeding of rules following 

a specific structure; (iii) the GP implementation is simplified because the Symbolic-centred approach 

uses the Koza-style GP; and (iv) the post-processing that is required to build up the inference system 

and analyse the rules. The GPFIS model is the most interpretable one among all Symbolic-centred 

approaches, though its rules may not be as straightforward to read as in the Context-free Grammar 

methods.  On the other hand, the performance of Symbolic-centred approaches tends to be superior 

to that of Context-free approaches. The results obtained with GPFIS corroborate this. 

Overall, GP-based EFSs have focused primarily on learning fuzzy rules and classification tasks. Future 

research could concentrate on other areas of an EFS modelling other than Rule Base Learning (Figure 

6), such as Granularity Learning, Membership Functions Fine-Tuning, etc. GP-based EFSs’ research 
could devote more time to solve forecasting and regression problems.  

 

Conclusion 

This overview has presented the main concepts of Evolutionary Fuzzy Systems, such as 

terminologies, application realms, different facets of an EFS (Parameter Tuning, Knowledge 

Discovery) and usual rule base learning schemes. We give a special focus on Genetic Programming-

based EFSs, by providing a categorisation that can cluster the main architectures available, as well as 

by pointing out the gaps that still exist in the literature. It is hoped that this will help readers to 

navigate through the area and find the works most linked to this particular research topic.   

Though not specifically covered in this overview, the reader may be interested in some other topics 

around automatic synthesis of Fuzzy Inference System, such as: 

• Interpretability: this is an important aspect of any FIS, since the fuzzy rules can help 

understand the relation between the inputs and the final inference result (e.g. the output 

class). Some special journal editions and book chapters are dedicated to debating this 

theme, aiming to clarify the notion of interpretable rule, touching concepts like complexity, 

semantics, constraints, etc., as well as proposing new metrics to assess the interpretability 

degree of a Fuzzy Inference System (Alonso & Magdalena, 2011; Casillas, Cordón, Triguero, 

& Magdalena, 2013; Cpalka, 2017). 

• Multi-Objective Evolutionary Fuzzy Systems: although this topic is not new (Ishibuchi et al., 

1995), this area has been experiencing a steady revival, perhaps due to the many available 

implementations of Multi-Objective Evolutionary Algorithms (e.g., NSGA-II, SPEA2, MOEA-D, 

etc.), as well as the growth of improved ways to assess interpretability (Fazzolari et al., 2013; 

Ishibuchi & Nojima, 2015).  

• Evolving Fuzzy Inference Systems: this is another whole strand for automatic synthesis of 

Fuzzy Inference Systems (Lughofer, 2011). In general, these systems are designed to learn 

fuzzy rules, as well as the right granularity, based on recursive rules and non-evolutionary 

optimisation procedures. This area can be roughly broken down into two threads: those 

clustering-based procedures to elaborate these systems (Angelov & Zhou, 2008; Lima, Hell, 



Balini, & Gomide, 2010) and partitioning-combination techniques to elaborate fuzzy rule 

bases (Coutinho, Vellasco, Tanscheit, & Koshiyama, 2016; Paredes, Vellasco, Tanscheit, & 

Koshiyama, 2016), some of them dedicated to Big Data Problems (Samudio, Vellasco, 

Tanscheit, & Koshiyama, 2016). 
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