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The emergence of Web 2.0 and the consequent success of social network websites such as del.icio.us
and Flickr introduce us to a new concept called social bookmarking, or tagging in short. Tagging
can be seen as the action of connecting a relevant user-defined keyword to a document, image or
video, which helps user to better organize and share their collections of interesting stuff. With the
rapid growth of Web 2.0, tagged data is becoming more and more abundant on the social network
websites. An interesting problem is how to automate the process of making tag recommendations
to users when a new resource becomes available.

In this paper, we address the issue of tag recommendation from a machine learning perspective
of view. From our empirical observation of two large-scale data sets, we first argue that the
user-centered approach for tag recommendation is not very effective in practice. Consequently, we
propose two novel document-centered approaches that are capable of making effective and efficient
tag recommendations in real scenarios. The first graph-based method represents the tagged data
into two bipartite graphs of (document, tag) and (document, word), then finds document topics
by leveraging graph partitioning algorithms. The second prototype-based method aims at finding
the most representative documents within the data collections and advocates a sparse multi-class
Gaussian process classifier for efficient document classification. For both methods, tags are ranked
within each topic cluster/class by a novel ranking method. Recommendations are performed by
first classifying a new document into one or more topic clusters/classes, and then selecting the
most relevant tags from those clusters/classes as machine-recommended tags.

Experiments on real-world data from Del.icio.us, CiteULike and BibSonomy examine the quality
of tag recommendation as well as the efficiency of our recommendation algorithms. The results
suggest that our document-centered models can substantially improve the performance of tag
recommendations when compared to the user-centered methods, as well as topic models LDA and
SVM classifiers.

Categories and Subject Descriptors: I.5.3 [Pattern Recognition]: Clustering—algorithms; H.3.3
[Information Storage and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: tagging system, mixture model, graph partitioning, Gaussian
processes, prototype selection, multi-label classification
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1. INTRODUCTION

Tagging, or social bookmarking, refers to the action of associating a relevant key-
word or phrase with an entity (e.g. document, image, or video). With the recent
proliferation of Web 2.0 applications such as Del.icio.us1 and Flickr2 that support
social bookmarking on web pages and images respectively, tagging services have
become red-hot popular3 among users and have drawn much attention from both
academia and industry. These web sites allow users to specify keywords or tags for
resources, which in turn facilitates the organizing and sharing of these resources
with other users. Since the amount of tagged data potentially available is virtually
free and unlimited, interest has emerged in investigating the use of data mining
and machine learning methods for automated tag recommendation or both text
and digital data on the web [Begelman et al. 2006; Chirita et al. 2007; Golder and
Huberman 2006; Li and Wang 2006].

1.1 The Problem

�✁✂✄ �✁✂☎
Fig. 1. A connectivity graph of users, tags and documents. In the scenario of
tagging, a user annotates a document by creating a personal tag. As it can be
observed, tags are not directly connected to each other, but to the users and doc-
uments instead.

Tag recommendation refers to the automated process of suggesting useful and
informative tags to an emerging object based on historical information. An example
of the recommendation by the Del.icio.us system is shown in Figure 2, where the
user is bookmarking a webpage regarding data mapper and the system recommends
relevant tags as well as popular ones for annotation. While the objects to be tagged
can be images, videos or documents, we will focus on documents in this paper unless
otherwise mentioned. In general, a tagged document is usually associated with one
or more tags, as well as users who annotated the document by different tags. Thus, a
tagging behavior to a document d performed by user u with tag t can be represented
using a triplet (u, d, t). Using a graph representation where each node is one of the
elements in the triplet, and edges between nodes being the degree of connection,
it is obvious that both the users and the documents are highly connected to the

1http://del.icio.us/
2http://www.flickr.com/
3Recent statistics indicated that del.icio.us gets roughly 150,000 posts per day while Flickr gets
1,000,000 photos per day.
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tags, while the relationship between tags themselves cannot be observed directly
(shown in Figure 1). Consequently, recommending relevant tags to new users or new
documents can only be done indirectly from the user perspective or the document
perspective.

Fig. 2. An example of recommended tags by the Del.icio.us recommender system.

As it can be observed, tag recommendation can be addressed in two different
aspects. i.e., user-centered approaches and document-centered approaches. User-
centered approaches aim at modeling user interests based on their historical tagging
behaviors, and recommend tags to a user from similar users or user groups. On the
other hand, document-centered approaches focus on the document-level analysis by
grouping documents into different topics. The documents within the same topic
are assumed to share more common tags than documents across different topics.
Theoretically, both models can be learnt by using classic machine learning ap-
proaches. For example, collaborative filtering (CF) techniques [Breese et al. 1998]
can be applied to learn the user interests for the user-centered approaches. For
document-centered approaches, both unsupervised topic models (e.g., LDA topic
models [Blei et al. 2003]) and supervised classification models (e.g., SVM [Cristian-
ini and Shawe-Taylor 2000]) are good candidates for categorizing document topic
groups.

While both approaches seem to be plausible, it turns out that the user-centered
approaches are not very effective due to several obvious reasons. First, according
to research in [Farooq et al. 2007], the distribution of users vs. the number of tag
applications follows a long tail power law distribution, meaning that only a very
small portion of the users perform tagging extensively (see Figure 3 (a)). Addition-
ally, researchers have also shown that the reusability of tags are quite low, while the
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vocabulary of tags constantly grows [Farooq et al. 2007] (see Figure 3 (b)). With
relatively few user information acquired, it makes the user-centered approaches
difficult to find a suitable model to perform effective tag recommendation. While
clustering users into interests groups can somewhat alleviate the issue of sparseness,
user-centered approaches are not very flexible in monitoring the dynamic change of
user interests over time.

Comparatively, the document-centered approaches are more robust because of
the rich information contained in the documents. Moreover, the underlying seman-
tics within tags and words create a potential link between topics and contents in the
documents, where tags can be treated as class labels for documents in the scenario
of supervised learning, or summarizations of documents as an unsupervised learn-
ing approach. This makes it flexible to apply any sophisticated machine learning
algorithms for the user-centered tag recommendation approach.
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Fig. 3. Challenge of tag applications. (a) Number of users vs. number of tag
applications. Relatively few users generated most of the tag applications. (b)
Frequency matrix of tags and users, where X-axis indicates Tag ID and Y-axis is
User ID, showing that the matrix is very sparse.

Additionally, while both effectiveness and efficiency need to be addressed for
ensuring the performance of the tagging services, most of the existing work has
focused on effectiveness [Begelman et al. 2006; Chirita et al. 2007; Golder and
Huberman 2006]. Efficiency, while not being totally ignored, has only been of
recent interest [Li and Wang 2006].

1.2 Our Contributions

In this paper, we propose two frameworks for addressing automatic tag recommen-
dation for social recommender systems. From a machine learning perspective of
view, we want our models to be reusable for different applications and systems,
scalable to large web-scale applications, and the results are effective for all of them.
The first approach we proposed is a graph-based method, in which the relationship
among documents, tags, and words are represented in two bipartite graphs. A two-
state framework is advocated for learning from previously seen data. During the
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offline learning stage, we use the Lanczos algorithm for symmetric low rank approx-
imation for the weighted adjacency matrix for the bipartite graphs, and Spectral
Recursive Embedding (SRE) [Zha et al. 2001] to symmetrically partition the graphs
into multi-class clusters. We propose a novel node ranking algorithm to rank nodes
(tags) within each cluster, and then apply a Poisson mixture model [Li and Zha
2006] to learn the document distributions for each class.

During the online recommendation stage, given a document vector, its posterior
probabilities of classes are first calculated. Then based on the joint probabilities
of the tags and the document, tags are recommended for this document. The two-
way Poisson mixture model (PMM) applied here is very efficient for classification.
Comparing to other classification methods, the two-way PMM has the advantage of
modeling the multivariate distribution of words in each class, so that it is capable of
clustering words simultaneously while classifying documents, which helps reducing
the dimensionality of the document-word matrix. The two-way PMM is flexible in
choose component distribution for each topic class, i.e., different classes may have
different number of components. i.e., number of sub-topics. Moreover, this model
performs a soft classification for new documents that allows tags to be recommended
from different classes.

The second approach is a prototype-based method. Instead of using the entire
training data, this method aims at finding the most representative subset within
the training data so as to reduce the learning complexity. This supervised learn-
ing approach classifies documents into a set of pre-defined categories, which are
determined by the popularity of existing tags. Similar to the graph-based method,
the tags are ranked within each category and recommended to a new document
based on their joint probabilities. To achieve an online speed of recommendation
while selecting the best prototypes, we propose a novel sparse Gaussian processes
(GP) framework for suggesting multiple tags simultaneously. Specifically, a sparse
multi-class GP framework is introduced by applying Laplace approximation for
the posterior latent function distribution. Laplace approximation [Rasmussen and
Williams 2006] has been successfully proposed to address the intractability caused
by binary GP classification, and we are the first to give a close-form solution for
the sparse and multi-class GP classification. To find the best portion of the train-
ing data efficiently, we suggest a prototype selection algorithm that is capable of
locating the most informative prototypes for each class within a few learning steps.

While a lot of classifiers are good candidates for the classification of tagged doc-
uments, we advocate the use of GP for tag recommendation for a couple of rea-
sons. First, GP have become an important non-parametric tool for classification
(and regression). Unlike generative classifiers such like Naive Bayes, GP make no
assumption on the form of class-conditional density of the data, which makes it
immune to any poor performance caused by a false model assumption. Another
advantage of GP is that the predicted result of the model yields a probabilistic
interpretation, while traditional discriminative classifiers such like Support Vector
Machines (SVMs) [Cristianini and Shawe-Taylor 2000] usually do not consider the
predictive variance of test cases4. For tag recommendation where the tagged data

4Although Platt suggested an ad-hoc probabilistic SVM in [Platt 2000], it does not consider the
predictive variance of the function.
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(e.g., web pages) usually does not contain any class labels, the user-assigned tags
can be used as labels. In this case, GP classifiers that inherit some level of uncer-
tainty can provide a probabilistic classification which tolerates the limitations and
possible errors caused by the tags. The predictive variance also offers flexibility of
making predictions to new instances.

As mentioned above, another characteristic of tagged data is the unbounded vo-
cabulary of the tagging systems [Farooq et al. 2007]. Therefore, the tagged data sets
used for empirical analysis are usually of high-dimensionality and sparseness [Song
et al. 2008]. In this case, the efficiency of the model training should also be con-
sidered in addition to the performance issue. Nevertheless, massive training data
often requires large memory and high computational cost for most discriminative
approaches including SVMs. Ad-hoc methods have been developed to select subset
for training but those approaches are somewhat heuristic and often performed out-
side of the model itself. Instead, the sparse GP framework we developed directly
selects a subset of most informative documents from all tagged data during train-
ing. The prototype selection algorithm we developed requires no extra cost because
it reuses the covariance function developed by the GP framework. Consequently,
the GP model shows a very promising performance when limited training resources
are available by comparing to SVMs [Rasmussen and Williams 2006].

The remaining of the paper is organized as follows: Section 2 reviews the litera-
ture of tag recommendation methods; Section 3 proposes a graph-based approach;
Section 4 proceeds with a prototype-based approach; Section 5 presents the results
of empirical analysis on three real-world data sets; Section 6 concludes our work.

2. RELATED WORK

For the user-centered approaches, it has been observed that by mining usage pat-
terns from current users, collaborative filtering (CF) can be applied to suggest tags
from users who share similar tagging behaviors [Golder and Huberman 2006; Begel-
man et al. 2006]. Specifically, during the collaborative step, users who share similar
tagging behaviors with the user we want recommend tags to are chosen based on the
between-user similarities, which are calculated based on the users’ tagging history.
This step usually requires a pre-computed look-up table for the between-user sim-
ilarities, which is usually in the form of weighted symmetric matrices. After that,
the filtering step selects the best tags from those similar users for recommendation.
As discussed above, the drawback of this approach is obvious: a new user that
does not have recorded history are unable to benefit from this approach at all since
the similarities with existing users cannot be calculated. Moreover, calculating the
between-user similarity matrix poses a quadratic computational cost to the num-
ber of users. Unfortunately, the whole matrix needs to be re-calculated whenever
a new user pattern is injected into the system, making this approach infeasible for
web-scale applications.

Among various unsupervised learning methods, clustering technique is of partic-
ular popularity for the document-centered approaches. In [Chirita et al. 2007], the
authors suggested a method named P-TAG for automatically generating person-
alized tags in a semantic fashion. They paid particular attention to personalized
annotations of web pages. In their document-oriented approach, a web page is
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compared with a desktop document using either cosine similarity or latent semantic
analysis. Keywords are then extracted from similar documents for recommenda-
tion. The second keyword-oriented approach alternatively finds the co-occurrence
of terms in different documents and recommends the remaining tags from simi-
lar desktop documents to the web page. The third hybrid approach combines the
previous two methods. From a collaborative filtering point of view, the first two
methods can be interpreted as item-based CF with the item being documents and
keywords respectively. Their methods, however, do not investigate the behaviors
between different users for similar web pages.

A clustering-based approach was proposed in [Begelman et al. 2006] to aggregate
semantically related user tags in to similar clusters. Tags are represented as graphs
where each node is a tag and the edge between two nodes corresponds to their
co-occurrence in the same documents. Tags in the same cluster were recommended
to the users based on their similarities. Similarly, an automatic annotation method
for images was proposed in [Li and Wang 2006]. A generative model is trained by
exploiting the statistical relationships between words and images. A discrete dis-
tribution (D2-) clustering algorithm was introduced for prototype-based clustering
of images and words, resulting in a very efficient model for image tagging.

3. APPROACH 1: A GRAPH-BASED METHOD

The graph-based method we proposed consists of four steps: (1) represents the
relationship among words, documents and tags into two bipartite graphs, then cut
the graph into sub-graphs as topic clusters, (2) ranks the tags within each topic
based on their frequency, (3) trains a two-way Poisson mixture model for documents
and words, (4) performs a soft classification for a new document and recommend
tags with the highest probabilities.

3.1 Bipartite Graph Representation

We define a graph G = (V, E, W ) as a set of vertices V and their corresponding
edges E, with W denoting the weight of edges. e.g., wij denotes the weight of the
edge between vertices i and j.

A graph G is bipartite if it contains two vertex classes X and Y such that V =
X ∪ Y and X ∩ Y = ∅, each edge eij ∈ E has one endpoint (i) in X and the
other endpoint (j) in Y . In practice, X and Y usually refer to different types of
objects and E represents the relationship between them. In the context of document
representation, X represents a set of documents while Y represents a set of terms,
and wij denotes the number of times term j appears in document i. Note that
the weighted adjacency matrix W for a bipartite graph is always symmetric.For
example, Figure 4 depicts an undirected bipartite graph with 4 documents and 5
terms.

3.2 Normalization and Approximation

Normalization is usually performed first for the weight matrix W to eliminate the
bias. The most straightforward way to normalize W is row normalization, which
does not take into account the symmetry of W . However, to consider the symmetry
of W , we propose to use normalized graph Laplacian to approximate W . The
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Fig. 4. A bipartite graph of X (documents) and Y (terms). Dot line represents a
potential (best) cut of the graph.

normalized Laplacian L(W ) is defined as:

L(W )ij =







1 − wij

di
if i = j,

− wij√
didj

if i and j are adjacent,

0 otherwise,

where di is the out degree of vertex i, i.e., di =
∑

wij , ∀j ∈ V . We can then define
a diagonal matrix D where Dii = di. Therefore, the normalized Laplacian can be
represented as

L(W ) = D(−1/2)WD(−1/2). (1)

For large-scale datasets such as the Web corpora and image collections, their
feature space usually consists of millions of vectors of very high dimensions (e.g.,
x = 106, y = 107). Therefore, it is often desirable to find a low rank matrix W̃ to
approximate L(W ) in order to lower the computation cost, to extract correlations,
and remove noise. Traditional matrix decomposition methods, e.g., Singular Value
Decomposition (SVD) and eigenvalue decomposition (when the matrix is symmet-
ric), require superlinear time for matrix-vector multiplication so they usually do
not scale to real-world applications.

For symmetric low rank approximation, we use the Lanczos algorithm [Golub
and Loan 1996] which iteratively finds the eigenvalues and eigenvector of square
matrices. Given an n × n sparse symmetric matrix A with eigenvalues:

λ1 ≥ ... ≥ λn > 0, (2)

the Lanczos algorithm computes a k × k symmetric tridiagonal matrix T , whose
eigenvalues approximate the eigenvalues of A, and the eigenvectors of T can be used
as the approximations of A’s eigenvectors, with k much smaller than n. In other
words, T satisfies:

‖A − T ‖F ≤ ǫ‖A‖F , (3)

where ‖ · ‖F denotes the Frobenius norm, with ǫ as a controlled variable. For
example, to capture 95% variances of A, ǫ is set to 0.05.

3.3 Bipartite Graph Partitioning

For multi-clustering on bipartite graphs, we apply the Spectral Recursive Embed-
ding (SRE) algorithm [Zha et al. 2001]. Traditional graph cutting algorithms aimed
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at minimizing the cut loss that minimized the weighted mismatch of edges be-
tween partitions. Unfortunately, those approaches often lead to unbalanced clusters
which are not desirable. Thus, SRE essentially constructs partitions by minimiz-
ing a normalized sum of edge weights between unmatched pairs of vertices, i.e.,
minΠ(A,B) Ncut(A, B), where A and B are matched pairs in one partition with Ac

and Bc being the other. The normalized variant of edge cut Ncut(A, B) is defined
as:

Ncut(A, B) =
cut(A, B)

W (A, Y ) + W (X, B)
+

cut(Ac, Bc)

W (Ac, Y ) + W (X, Bc)
, (4)

where

cut(A, B) = W (A, Bc) + W (Ac, B)

=
∑

i∈A,j∈Bc

wij +
∑

i∈Ac,j∈B

wij . (5)

The rationale of Ncut is not only to find a partition with a small edge cut, but
also partitions that are as dense as possible. This is useful for our application of
tagging documents, where the documents in each partition are ideally focused on
one specific topic. As a result, the denser a partition is, the better that relevant
documents and tags are grouped together.

3.4 Within Cluster Node Ranking

We define two new metrics N-Precision and N-Recall for node ranking. N-Precision
of a node i is the weighted sum of its edges that connect to the nodes within the
same cluster, divided by the total sum of edge weights in that cluster. Denote the
cluster label of i as C(i),

npi =

∑n
j=1 wijI[C(j) = C(i)]

∑n
j,k=1 wjkI[C(j) = C(k) = C(i)]

, j, k 6= i. (6)

where the indicator function I[·] equals to one if the condition satisfies and 0 other-
wise. For the unweighted graph, the above equation equals to the number of edges
associated with node i in cluster C(i), divided by the total number of edges in clus-
ter C(i). Generally, N-precision measures the importance of a node to the cluster,
in comparison with other nodes. In the context of text documents, the cluster is a
topic set of documents and the weight of the word nodes shows the frequency of the
words appearing in that topic. With the cluster determined, the denominator of
equation (6) is constant, so that the more weight the node has, the more important
it is.

In contrast, N-recall is used to quantify the posterior probability of a node i to
a given cluster and is the inverse fraction of i’s edge associated with its cluster

nri =
|Ei|

|Ei| −
∑n

j=1 I[C(j) = C(i)]
, (7)

where |Ei| represents the total number of edges from node i. It is evident that
N-Recall is always no less than 1. The larger N-Recall is, the more probable that
a word is associated with a specific topic.
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Given npi and nri, we can estimate the ranking of i:

Ranki =







exp

(

− 1

r(i)2

)

r(i) 6= 0,

0 r(i) = 0,

where r(i) = (npi) ∗ log(nri). (8)

Depicted in Figure 5, our ranking function is a smoothed surrogate that is pro-
portional to both node precision and recall, guaranteed to be in the range of
(0, 1). An example cluster is also shown in Figure 5 where the precision of tags
np1 = 0.75, np2 = 0.25, and the recall nr1 = 7, nr2 = 3. Thus the rank of tag t1 is
higher than t2, i.e., t1 = 0.8, t2 = 0.1, indicating that tag t1 ranks higher in that
topic cluster than tag t2.
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Fig. 5. Smoothed Ranking Function (left) and an example of two-tag three-
document cluster (right), with the numbers on the edges showing the frequencies
of tags being annotated to specific documents.

Potential applications of the aforementioned bipartite graph node ranking method-
ology include interpreting the document-author relationship. i.e., determine the
social relations (e.g., “hub” and “authority”) of authors in the same research topic,
and finding the most representative documents in the topic. In what follows, we
apply this framework to tag recommendation by ranking nodes that represent tags
in each cluster.

3.5 Online Tag Recommendation

A typical document of concern here consists of a set of words and several tags
annotated by users. The relationship among documents, words, and tags can then
be represented by two bipartite graphs as shown in Figure 6.
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Fig. 6. Two bipartite graphs of documents, words and tags.

The weighted graph can be written as

W =






0 A 0

AT 0 B

0 BT 0




 , (9)

where A and B denote the inter-relationship matrices between tags and docs, docs
and words, respectively.

Given the matrix representation, a straightforward approach to recommend tags
is to consider the similarity (e.g., cosine similarity) between the query document
and training documents by their word features, then suggest the top-ranked tags
from most similar documents. This approach is usually referred to as collaborative
filtering [Breese et al. 1998]. Nevertheless, this approach is not efficient for real-
world scenarios. To take the advantage of the proposed node ranking algorithm,
we propose a Poisson mixture model that can efficiently determine the membership
of a sample as well as clustering words with similar meanings. We summarize our
framework in Algorithm 1.

Intuitively, this two-stage framework can be interpreted as an unsupervised-
supervised learning procedure. During the offline learning stage, nodes are par-
titioned into clusters using an unsupervised learning method, cluster labels are
assigned to document nodes as their “class labels”, and tag nodes are given ranks
in each cluster. A mixture model is then built based on the distribution of docu-
ment and word nodes. In the online recommendation stage, a document is classified
into predefined clusters acquired in the first stage by naive Bayes so that tags can
be recommended in the descending orders of their ranks. To avoid confusion, we
will refer to the clusters determined by the partitioning algorithm in the first stage
as classes in the next section.

3.6 Two-way Poisson Mixture Model

We propose to use Poisson mixture models to estimate the distribution of document
vectors, because they fit the data better than standard Poissons by producing better
estimates of the data variance, and are relatively easy for parameter estimation.
Although it takes time to fit the training data, it is efficient to predict the class
label of new documents once the model is built. Because of the numerical stability
of this statistical approach, the results are usually reliable. Since only probabilistic
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Algorithm 1 Poisson Mixture Model (PMM) Online Tag Recommenda-
tion
1: Input (D, S, T ), K, M, L

Document collection: D = {D1, ...,Dm}
Word vocabulary: S = {S1, ..., Sk}
Tag vocabulary: T = {T1, ..., Tn}
Number of clusters: K ∈ R

Number of components: M ∈ R

Number of word clusters: L ∈ R

Offline Computation

2: Represent the weighted adjacency matrix W as in eq. (9)
3: Normalize W using the normalized Laplacian

L(W ) = D(−1/2)WD(−1/2) (eq. (1))
4: Compute a low rank approximation matrix using the Lanczos:

W̃ ≃ L(W ) = QkTkQT
k

5: Partition W̃ into K clusters using SRE [Zha et al. 2001],
W̃ = {W̃1, ..., W̃K}

6: Assign labels to each document Dj , j ∈ {1, ...m}
C(Dj) ∈ {1, ..., K}

7: Compute the node rank Rank(T ) for each tag Ti,k in cluster k, i ∈
{1, ..., n}, k{1, ..., K} (eq. (8))

8: Build a Poisson mixture model for (B̃, C(D)) with M components and L word clusters,
where B̃ denotes the inter-relationship matrix of documents and words in W̃ (eq. (9))
Online Recommendation

9: For each test document Y, calculate its posterior probabilities P (C = k|D = Y) in
each cluster k, and denote the membership of Y as C(Y) = {c(Y, 1), ..., c(Y, K)} ((eq.
(16)))

10: Recommend tags based on the rank of tags, i.e., the joint probability of tags T and
document Y, R(T,Y) (eq. (17))

estimation is involved, it is capable for real-time process.
Nevertheless, traditional unsupervised learning approaches of mixture models

[Figueiredo and Jain 2002; Schlattmann 2003] are not always capable of dealing
with document classification. Considering the sparseness and high-dimensionality
of the document-word matrix where most entries are zeros and ones, the model
may fail to predict the true feature distribution (i.e. the probability mass function)
of different components. As a result, word clustering is a necessary step before
estimating the components in the model. In what follows, we utilize the two-way
Poisson mixture model [Li and Zha 2006] in order to simultaneously cluster word
features and classify documents.

Given a document D = {D1, ..., Dp}, where p is the dimension, the distribution of
the document vector in each class can be estimated by using a parametric mixture
model. Let the class label be C = {1, 2, ..., K}, then

P (D = d|C = k) =

M∑

m=1

πmI(F (m) = k)

p
∏

j=1

φ(dj |λj,m), (10)

where πm is the prior probability of component m, with
∑M

m=1 πm = 1. I(F (m) =
k) is an indicator function, i.e., whether component m belongs to class k, and φ
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Fig. 7. An example of two mixtures of the Poisson distribution in two clusters.(Top)
The histograms of mixture components. (Bottom) Mixture model classification
results. (a) Three-component mixtures. (b) Two-component mixtures.

denotes the probability mass function (pmf) of a Poisson distribution, φ(dj |λj,m) =

e−λj,mλj,m
dj/dj !.

In this way, each class is a mixture model with a multivariate distribution having
variables that follow a Poisson distribution. Figure 7 shows the histogram of two
mixtures which can be regarded as the pmfs of two Poisson mixtures.

Our assumption is that within each class, words in different documents have
equal Poisson parameters, while for documents in different classes, words may follow
different Poisson distributions. For simplicity, we also assume that all classes have
the same number of word clusters. Denote l = {1, , , , L} to be the word clusters,
words in the same word cluster m will have the same parameters, i.e., λi,m = λj,m ≡
λ̃l,m, for c(i, k) = c(j, k), where c(i, k) denotes the cluster label of word i in class
k. Therefore, Equation (10) can be simplified as follows (with L ≪ p):

P (D = d|C = k) ∝
M∑

m=1

πmI(F (m) = k)

L∏

l=1

φ(dk,l|λ̃l,m). (11)

3.6.1 Parameter Estimation. With the classes determined, we apply EM algo-
rithm [Dempster et al. ] to estimate the Poisson parameters λ̃l,m, l ∈ {1, ..., L}, m ∈
{1, ..., M}, the priors of mixture components πm, and the word cluster index c(k, j) ∈
{1, ..., L}, k ∈ {1, ..., K}, j ∈ {1, ..., p}.
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The E-step estimates the posterior probability pi,m:

pi,m ∝ π(t)
m I(C(i))

p
∏

j=1

θ(d(i, j)|λ̃(t)
m,i,j). (12)

The M-step uses pi,m to maximize the objective function

L(π(t+1)
m , λ̃

(t+1)
m,l , c(t+1)(k, j)|π(t)

m , λ̃
(t)
m,l, c

(t)(k, j))

= max

n∑

i=1

M∑

m=1

pi,m log



π(t+1)
m I(C(i))

p
∏

j=1

θ(d(i, j)|λ̃(t+1)
m,i,j )



 ,

and update the parameters

π(t+1)
m =

∑n
i=1 pi,m

∑M
m′=1

∑n
i=1 pi,m′

, (13)

λ̃(t+1)
m =

∑n
i=1 pi,m

∑

j d(i, j)I(C(i))

|d(i, j)|∑n
i=1 pi,m

, (14)

where |d(i, j)| denotes the number of j’s in component l.

Once λ̃
(t+1)
m is fixed, the word cluster index c(t+1)(k, j) can be found by doing

linear search over all components:

c(t+1)(k, j) = argmax
l

n∑

i=1

M∑

m=1

log(d(i, j)|λ̃(t+1)
m,l ). (15)

3.7 Tag Recommendation for New Documents

Normally, the class label C(dt) of a new document dt is determined by Ĉ(x) =
arg maxk P (C = k|D = dt). However in our case, we determine the mixed mem-
bership of a document by calculating its posterior probabilities to classes, with
∑K

k=1 P (C = k|D = dt) = 1. Applying equation (11) and the Bayes rule,

P (C = k|D = dt) =
P (D = dt|C = k)P (C = k)

P (D = dt)

=

∑M
m=1 πmI(F (m) = k)

∏L
l=1 φ(dk,l|λ̃l,m)P (C = k)

P (D = dt)
, (16)

where P (C = k) are the prior probabilities for class k and are set uniform. Finally,
the probability for each tag Ti, i ∈ {1, ..., n} to be associated with the sample is

R(Ti, dt) = P (T = Ti|D = dt) = RankTi
∗ P (C = x|D = dt). (17)

By ranking the tags in descending order of their probabilities, the top ranked
tags are selected for recommendation.

4. APPROACH 2: A PROTOTYPE-BASED METHOD

The second method we introduce here, a prototype-based method, is made up of
three main parts: (1) train a multi-class multi-label Gaussian processes classifier,
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Fig. 8. One-dimensional illustration of Gaussian process construction for classi-
fication. (a) A latent function f(X) drawn from Gaussian Process, where f(xi)
denotes the latent function value of point xi. (b) The class probability of X after

scaling f(X) into (0, 1) by a sigmoid function Φ(fi) = 1 + exp(−fi)
−1, where P (xi)

denotes the class probability at xi. (c) An example of two-dimensional input with
an independent noise-free covariance function of each input. For the output latent
function f , both dimensions are equally important.

(2) find the most informative prototypes (i.e., representatives) for each class, (3)
perform a multi-label classification for a new document by assigning it to one or
more class, and recommend the highest-ranked tags to the document.

4.1 Background of Gaussian Process Classification

A Gaussian process (GP) is a stochastic process consists of a collection of random
variables x, which forms a multivariate Gaussian distribution specified by a mean
function µ(x) and covariance function k(x,x′). For classification, the objective
is to assign a new observation x∗ to one or more predefined classes denoted by
y∗ ∈ {1, ..., C}. GPs can not be applied to the classification task directly because
the values of y are not continuous. Consequently, a latent function f(x) is em-
ployed to infer the labels. The GP prior is therefore placed over f(x). Fig 8 (a)
illustrates an one-dimensional case of the latent function with mean 0. To make a
prediction given a new x∗, one first determine the predictive distribution p(f∗|f),
where f is obtained from the training set, f |Xtrain ∼ N (0,K), with K denoting
the multivariate covariance matrix. The class probability y∗ is then related to the
latent function f∗.

4.2 Traditional multi-class GP model

Denote a training data set D = {(xi, yi)|i = 1, ..., N} with N training points
X = {xi|i = 1, ..., N} drawn independent and identically distributed (i.i.d.) from
an unknown distribution, and the associated labels y = {yi|i = 1, ..., N}, where
each point xi is a D dimensional feature vector, xi ∈ R

D and yi ∈ {1, ..., C}.
Following the convention in [Rasmussen and Williams 2006], we introduce a vector
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of latent function values of N training points for C classes, which has length CN

f = (f1
1 , ..., f1

N , ..., f j
1 , ..., f j

N , ..., fC
1 , ..., fC

N )T , (18)

where xi has C latent functions fi = (f1
i , ..., fC

i ). We further assume that the GP
prior over f has the form f |X ∼ N (0,K), where K represents the covariance matrix

which is constructed from a pair-wise covariance function K(xn,xn′)
△
= [KN ]nn′ .

Specifically, K is block diagonal of size CN × CN in the matrices K1, ...,KC ,
where each Kj represents the correlations of the latent function values within class
j. A wide range of covariance functions can be chosen for GP classification [Ras-
mussen and Williams 2006].A commonly used function in the classification case is
the squared exponential function, defined as:

[KN ]nn′ = l exp




−1

2

∑D
d′=1

(

x
(d′)
n − x

(d′)
n′

)2

Σ2




 , (19)

where θ = {l,Σ2} corresponds to the hyper-parameters.
Given the training set D, we can compute the posterior of the latent function by

plugging in the Bayes’ rule,

p(f |X, y) =
p(f |x)p(y|f)

p(X, y)

i.i.d.
=

N (0, K)

p(X, y)

N∏

i=1

p(yi|fi), (20)

which is non-Gaussian. In eq.(20), the conditional probability p(y|f) has not been
decided yet. In the multi-class case, y is a vector of the length CN (which is
the same as f), which for each i = 1, ..., N has an entry of 1 for the class which
corresponds to the label of the point xi and 0 for the rest C − 1 entries. One of the
choices is a softmax function:

p(yc
i |fi) =

exp(f c
i )

∑

c′ exp(f c′
i )

. (21)

To proceed, we compute the predictive distribution of the class probability given
a new x∗ in two steps. First, compute the latent value f∗ by integrating out f :

p(f∗|X, y,x∗) =

∫

p(f∗|f , X,x∗) p(f |X, y)
︸ ︷︷ ︸

eq.(20)

df , (22)

then y∗ can be computed by integrating out f∗:

p(y∗|X, y,x∗) =

∫

p(y∗|f∗) p(f∗|X, y,x∗)
︸ ︷︷ ︸

eq.(22)

df∗. (23)

This method takes O(N3) to train due to the inversion of the covariance matrix
K. A range of sparse GP approximations have been proposed [Lawrence et al.
2003; Seeger and Jordan ]. Most of these methods seek a subset of M (M ≪ N)
training points which are informative enough to represent the entire training set.
Consequently, the training cost is reduces to O(NM2) and the corresponding test
cost to O(M2). Next we discuss a sparse way to reduce the computational cost in
the multi-class case.
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4.3 Our Multi-class Sparse GP Model

Our model involves several steps. First, we choose M (M ≪ N) points (denote
as X̄ = {x̄m}M

m=1) from the training set. Then we generate their latent functions
f̄ from the prior. The corresponding f for the entire training set is thus drawn
conditionally from f̄ . See Figure 9 for details.

t

K

f y
D

M
N

θα

Fig. 9. Graphical representation of our sparse multi-class GP model. θ is the
hyper-parameter that define the latent function f . α denotes the extra parameter
for placing a distribution over θ.

First, assume that the M points have already been chosen. Then place a GP
prior on X̄ , which uses the same covariance function as shown in eq. (19), such
that these points have a similar distribution to the training data,

p(f̄ |X̄) = N (f̄ |0,KM ). (24)

Given a new x∗, we utilize M latent functions f̄ for prediction. We compute the
latent values f∗ by integrating the likelihood with the posterior:

p(f∗|x∗, X,y, f̄ , X̄) =

∫

p(f∗|x∗, f̄ , X̄)
︸ ︷︷ ︸

A

p(f̄ |X,y, X̄)
︸ ︷︷ ︸

B

df̄ , (25)

where A represents the single data likelihood by applying to the reduced set of
points. With f̄ determined, the likelihood can be treated as a bivariate normal
distribution, which follows a normal distribution:

f∗|x∗, f̄ , X̄ ∼ N (f∗|kT
x∗

K−1
M f̄ , Kx∗x∗

− kT
x∗

K−1
M kx∗

), (26)

where kx∗
= K(x̄,x∗) and [KM ]ij = K(x̄i, x̄j).

Nevertheless, the problematic form of posterior B does not follow a normal dis-
tribution and has to be approximated.

4.4 Laplace Approximation for the Posterior

Our method to approximate B in eq.(25) is based on the Laplace approximation,
which were used in [Rasmussen and Williams 2006] for binary classification. Using
the Bayes’ rule,

p(f̄ |X,y, X̄) =
p(f̄ |X̄)p(y|f̄ , X, X̄)

p(y|X, X̄)

=
p(f̄ |X̄)

∫

C
︷ ︸︸ ︷

p(f |f̄ , X, X̄)p(y|f) df

p(y|X, X̄)
. (27)
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The detail of the derivation is long and available at the Appendix. The approxi-

mated mean and variance of eq.(27) is:

µ∗ ≃ µp,

Σ∗ = KM + Σp.

where µp =
Q−1P

2
,Σp = Q−1,

Q = (KNMK−1
M )TΛ−1(KNMK−1

M ) + KM ,

P = f̂T Λ−1(KNMK−1
M ). (28)

4.4.1 Determine the class label of test documents. The final step is to assign a
class label to the observation x∗, given the predictive class probabilities by inte-
grating out the latent function f∗:

p(y∗|x∗, X,y, f̄ , X̄) =

∫

p̃(f∗|x∗, X,y, f̄ , X̄)p(y∗|f∗)df∗, (29)

which again cannot be solved analytically. One way to approximate is to use cu-
mulative Gaussian likelihood. In [Rasmussen and Williams 2006], the authors es-
timated the mean prediction by drawing S samples from the Gaussian p(f∗|y),
softmax and averaging the results. Once the predictive distribution of the class
probability is determined, the final label of x∗ can be decided by choosing the
maximum posterior (MAP):

t(x∗) = argmax
c

p(y(x∗)
c|·), c = 1, ..., C. (30)

4.5 Informative Points Selection

It remains to optimize the parameters Θ = {θ, X̄}, which contain the hyper-
parameters (l,Σ) for the covariance matrix K as well as finding the subset X̄
of M points. Traditionally, they are optimized jointly by optimizing the marginal
likelihood of the training data. In our approach, we instead treat them individually.

4.5.1 Parameter Inference for the Covariance Matrix. The marginal likelihood
of y can be obtained by integrating out f̄ ,

p(y|X, X̄, Θ) =

∫

p(y|X, X̄, f̄)p(f̄ |X̄)df̄ =

∫

exp(L(f̄ ))df̄ . (31)

With a Taylor expansion of L(f̄) around ˆ̄f we find

L(f̄) ≃ L(ˆ̄f) + (f̄ − ˆ̄f)∇f̄L(f̄ )
︸ ︷︷ ︸

=0

+
1

2
(f̄ − ˆ̄f)T∇∇f̄L(f̄ )(f̄ − ˆ̄f).

Therefore, the approximation of the marginal likelihood can be written as

p(y|X, X̄, Θ) =

exp(L(ˆ̄f))

∫

exp

(
1

2
(f̄ − ˆ̄f)T∇∇f̄L(f̄ )(f̄ − ˆ̄f)

)

df̄ . (32)

The log marginal likelihood can be obtained by taking logarithm on both sizes
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of the above equation,

log p(y|X, X̄, Θ) = L(ˆ̄f) − CN

2
log 2π − 1

2
log |∇∇f̄L(f̄ )|, (33)

which can be maximized w.r.t. the parameters Θ to obtain l̂ and Σ̂. Note that
each Σc is a D × D symmetric matrix, where D is the number of dimensions. We
assume that each dimension is independent, thus simplifies Σc to be a diagonal
matrix. However, this still yields DC parameters to estimate for Σ. Therefore, we
further assume that within each class c, the covariance of each dimension is the
same, so that the total number of parameters for Σc is reduced to C.

4.5.2 Prototype selection for X̄. The original gradient calculation in eq.(33)
is very complicated. However, we can simplify it with the assumption made on
the covariance matrix. Since each Σc is now independent of each other, we can
estimate the locations of the active points regardless of the choices of l and Σ.
We greedily find the locations of X̄ by stochastic gradient descent method. This
is similar to finding the optimal prototypes for each class, which is a subset of
points that contains enough information for each class. Our method for optimal
prototype search is parallel to [Seo et al. 2003], which is used for K-nearest neighbor
classification. We select a set of M prototypes by minimizing the misclassification
rate of the training set,

L(X, X̄) =
1

N

N∑

n=1

M∑

m=1

P (x̄m|xn)(1 − I(ȳm = yn)), (34)

where the indicator function I is 1 if the condition is hold and 0 otherwise. The
likelihood P (x̄m|x) can be calculated by plugging in the normalized covariance:

P (x̄m|x) =
kx̄mx

∑M
m′=1 kx̄m′x

. (35)

We can further rewrite the loss function in eq.(34) by removing the indicator
function:

L(X, X̄) =
1

N

∑

n

∑

{m:ȳm 6=yn}

P (x̄m|xn)

︸ ︷︷ ︸

lm

, (36)

where lm indicates the individual cost of misclassification, which is continuous in
the interval (0, 1). Therefore, it can be minimized by gradient descent w.r.t. X̄ ,

x̄m(t + 1)

= x̄m(t) − α(t)∇x̄m
lm(t)

= x̄m(t) + α(t)p(x̄m|x) (I(ȳm 6= yn) − lm(t))
δkx̄mx

δx̄m
.

= x̄m(t) +

{
lm(1 − lm)P (x̄m|x)(x̄m − x) if ȳm 6= yn

−lm(1 − lm)P (x̄m|x)(x̄m − x) otherwise

Here α(t) > 0 is a small enough number which specifies the step length of the
descent. The program stops when a stopping criterion is reached. We further
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Fig. 10. An example of prototype selection with M = 2. Left figure shows the
original distribution; right figure, contour-plots the results of descent where black
dots are the starting points.

notice that only those points falling into a particular area of the input space can
contribute to the update of the prototypes. This fact is explained as the window
rule in [Kohonen 2001]. So we can speed up the prototype updates by searching
over those points only. Figure 10 shows an example of two prototypes. It can be
seen that after three steps of descent, our algorithm successfully finds informative
points for each class.

For brevity we hyphenate our method as Sparse Gaussian process with Prototype
Selection (SGPS).

4.6 Discussion of the Computational Cost

The most influential part on the computational cost is the inversion of the covari-
ance matrix K which takes O(N3) time. In the sparse framework, however, it
should be noticed that only the covariance matrix for the M prototypes is required
to be inverted, which refers to KM in our case. To be exact, KM needs to be
inverted when calculating Λ in eq.(40), f ′ in eq.(46), as well as Q and P in eq.(48).
For efficient inversion, Cholesky decomposition is often employed [Rasmussen and
Williams 2006], which ensures that for N training points distributed in C classes,
the training stage can be realized in O(M2NC) time with M prototypes, likewise
O(M2C) per prediction. In practice, the Cholesky decomposition is only required
to be computed once for a training pass, which can then be saved and used in other
equations efficiently. So it almost costs linear time for training a data set with N
points.

As for the cost of prototype selection, since the updates re-uses covariance matrix
in eq.(35), no additional storage and computation are required. Therefore, eq.(37)
can be efficiently updated in at most O(NC) time.

4.7 Application to Multi-label Tag Suggestion

So far, we have only considered the case that the each observation is single-labeled,
i.e., belongs to only one class. In fact, many real-world problems are multi-labeled.
In the case of tagged data, each tag associated with a document may be treated as
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Algorithm 2 Multi-label Multi-class Sparse GP Classification (MMSG) for Tag
Recommendation
1: Input: training data D : {(xi,yi)}

N
1 ,xi ∈ R

d, yi = {yi1, ..., yiK̃}
2: M : number of prototypes
3: k: covariance function
4: begin training procedure

5: for i = 1 : N

6: ci = max(s(yi)) //decide the category of xi

7: end for

8: Train a GP classifier given {(xi, ci)
N
1 , M,k}

9: Output: X̄, f̄

10: begin test procedure

11: Input: a test object x∗

12: Decide its category probabilities c∗ given X̄, f̄ (eq.(29))
13: for each category m ∈ {1, ..., C}

14: for each label y
(c)
ij ∈ {y

(c)
i1 , ..., y

(c)

iK̃
}

15: P (y
(c)
ij |x∗) = Rank

(c)
yij

· cm(x∗)
16: end for

17: end for

18: Output: P (y∗,x∗)

a label, which may or may not refer to the same topic as other labels. Thus, the
problem of tag suggestion can be transformed into a multi-label classification prob-
lem where the objective is to predict the probability of a document with all possible
tags (labels) given a fixed tag vocabulary and associated training documents.

The problem of multi-label classification (MLC) is arguably more difficult than
the traditional single-label classification task, since the number of combinations for
two or more classes is exponential to the total number of classes. For N classes, the
total number of possible multi-labeled class is 2N , making it unfeasible to expand
from an algorithm for single-label problems. Much research has been devoted to
increasing the performance of MLC and generalize the framework to single-label
classification; see related work for more information[Tsoumakas and Katakis 2007].

d1 d2 d3 d4

xbox fun game cat puppy

documents

tags

category xbox game fun puppy

Fig. 11. Example of document-tag graph. Each document is associated with multi-
ple tags. Tag with the highest frequency is treated as the category of that document
(shown in bold line).
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As pointed out in [Brinker et al. 2006], multi-label classification can be treated

as a special case of label ranking, which can be realized if the classifiers provide
real-valued confidence scores or a posterior probability estimates for classification
outcomes. Thus, the multi-class SGPS model readily maps to this problem, since
the output vector y∗ contains real-valued scores of the posterior class probabilities.
Specifically, in the multi-label case, we assume that the class label of a training
instance xi is no longer a binary value, but rather a vector yi of binary values where
each yij denotes the existence/absence of xi in class j. We further assume that these
class probabilities can be ranked according to their values, where s(yim) > s(yin)
indicates that yim is preferred to yin. In the context of tags, the value of a tag is
defined as the number of times it has been used to annotate the specific object.
So if a document d1 (cf Figure 11) is tagged 4 times with game, 3 times with
fun and 5 times with xbox, we can rearrange the labels in the descending order,
yielding, { xbox(5), game(4), fun(3) }. Note that normalization is usually required
to ensure the well-defined class probability, thus the class probabilities of the above
case become {0.42, 0.33, 0.25}. Figure 11 shows an example of 4 documents and 5
tags with their categories in bold lines.

In this way we can transform multi-class multi-label classification into multi-
category single-label classification. Specifically, we first assign each xi into a single
category c which corresponds to its top-ranked label (e.g., in the above case, the
category is xbox). Each category contains a set of labels that belong to the objects
in that category. Intuitively, tags that belong to the same category are more se-
mantically related than tags in different categories, i.e., tags in the same category
have a higher co-occurrence rate. However, it should be noted that an individual
tag could belong to multiple categories, e.g., in Figure 11, fun appears in two cat-
egories. The above two phenomenon can be roughly explained by the behavior of
polysemy and synonymy in linguistics. Table I shows three ambiguous tags and
their corresponding categories in one of our experiments.

tags categories

apple
mac apple computers osx technology IT
food health apple nutrition fruit green

tiger
photos nature animal tiger cute animals

sports video tiger woods golf games

opera
music art opera culture design download
software browser opera web tools internet

Table I. Example of ambiguous tags from del.icio.us.

Given a training set {(xi,yi)}N
1 , the within-category scores of all possible labels

are defined as

Rank(c)
yi′

=
1

Z(c)

∑

i:xi∈c

∑

j

s(yij)I(yij = yi′), yi′ = {yi1, ..., yiK̃} (37)

where Z(c) is a normalization factor for category c. We summarize this approach
in Algorithm 2, K̃ refers to the total number of possible labels. During the training
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phase, we train an SGPS model for C categories, as well as calculating the within-
category scores for all labels. In the test phase, we use the model first to determine
the probabilistic distribution of the categories given a new test case. Then combine
this evidence with the within-category scores of tags in a multiplicative fashion to
obtain the final label distribution. The labels are sorted in descending order based
on the estimated likelihoods, the top-ranked tags are used for recommendation.
Figure 12 illustrates the process.

........................

d1

d2

dN

SGPS train

.......

d1

d2

dN

t1

t2

tm

...t11 t1m

...

...

t21 t2m

tc1 tcm

.......................

category 1

category C

d∗

SGPS test

{P (c = 1|d∗), ..., P (c = C|d∗)}

× tag ranking

sort results

...t∗1 t∗m{ }

test doc

suggested tags

training

trained

model

docs

Fig. 12. The training and test processes of MMSG. Each di is a document and each
ti is a tag.

5. EXPERIMENTS

To assess the performance of the two proposed frameworks, we empirically analyze
them using real-world data sets in this section. We will focus on the quality of the
tagging results as well as the efficiency of the tagging algorithms5.

5.1 Evaluation Metrics

In addition to the standard precision, recall, F-score and Kendall τ rank correlation
metric [Kendall 1938] that measures the degree of correspondence between two
ranked lists, we also propose the following metrics to measure the effectiveness of
tagging performance.

—Top-k accuracy: Percentage of documents correctly annotated by at least one of
the top kth returned tags.

5Other experimental results such as the performance of the sparse Gaussian processes model and
the multi-class multi-label algorithm on bench-mark data sets are available in [Song et al. 2008].
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—Exact-k accuracy: Percentage of documents correctly annotated by the kth rec-

ommended tag.

—Tag-recall: Percentage of correctly recommended tags among all tags annotated
by the users.

—Tag-precision: Percentage of correctly recommended tags among all tags recom-
mended by the algorithm.

5.2 Data Sets

For evaluation, we made an effort to acquire three data sets from several most
popular tagging websites.

CiteULike is a website for researchers to share scientific references by allowing
users to specific their personal tags to the papers. We acquired the tagged data set
from CiteULike for over two years from November 15, 2004 to February 13, 2007.
We mapped the data set to papers that are indexed in CiteSeer6 to extract the
metadata. Each entry of the CiteULike record contains four fields: user name, tag,
key (the paper ID in CiteSeer), and creation date. Overall, there are 32,242 entries,
with 9,623 distinct papers and 6,527 distinct tags (tag vocabulary). The average
number of tags per paper was 3.35.

Del.icio.us is one of the largest web2.0 web sites that provides services for users
to share personal bookmarks of web pages. We subscribed to 20 popular tags
in del.icio.us, each of which is treated as a topic. For these topics, we retrieved
22,656 URLs from March 3rd, 2007 to April 25, 2007. For each URL, we crawled
del.icio.us to obtain the most popular tags with their frequencies. We also harvested
the HTML content of each URL. We ended up with 215,088 tags, of which 28,457
are distinct (tag vocabulary), averaging 9.5 tags per URL. The total size of the
data set is slightly over 2GB.

BibSonomy is a newly developed web 2.0 site which provides the sharing of social
bookmarks for both web pages and scientific publications. We collected data from
BibSonomy between Oct 15 2007 and Jan 10 2008. We randomly sampled 50 tags
from the tag lists. For each tag, we retrieved the content of bookmarks with related
tags. Overall, the BibSonomy data set contains 14,200 unique items with 37,605
words. The total number of tags is 6,321.

Table II shows top 10 tags for all three data sets7. For preprocessing, we con-
sidered the temporal characteristics of tags and ordered the data by time and used
the earlier data for training and tested on later data. We performed experiments
with training data from 10% to 90%.

5.3 Comparison to Other Methods

We compare the performance of tag recommendation of our algorithm with three
other approaches.

The first unsupervised learning method we consider is the classic collaborative
filtering algorithm [Breese et al. 1998]. The Vector Similarity (VS) approach is
used to calculate the similarity between documents, which computes the cosine
similarity between a query Q and each training document Di, Sim(Q, Di) =

6http://citeseer.ist.psu.edu/
7All data sets are available upon request.
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CiteULike del.icio.us BibSonomy
Tag Name Frequency Tag Name Frequency Tag Name Frequency

clustering 245 internet 1743 tools 2459
p2p 220 technology 1543 computing 2294
logic 185 java 1522 software 1974

network 175 software 1473 blog 1717
learning 175 web 1429 internet 1647
haskell 166 photography 1375 web 1631
web 162 news 1328 analysis 1562

distributed 151 music 1291 data 1248
algorithm 142 business 1115 search 1196
algorithms 140 travel 1092 design 1117

Table II. Top 10 most popular tags in CiteULike, del.icio.us and BibSonomy with
respective frequencies.

P

i
n(Q,j)n(i,j)√

P

j
n(Q,j)2

√
P

i
n(i,j)2

, where n(i, j) represents the count of j’s word in document

i. The top t tags from s most similar documents are then considered. In our exper-
iment, we set both t and s to be 3, resulting in 9 recommendations for each query
document. To improve performance, we augment the vector similarity approach by
applying information-gain [Kullback and Leibler 1951] (VS+IG) to select roughly
5% of the total features.

The second method we compare to is the famous topic model by Blei [Blei et al.
2003], namely Latent Dirichlet Allocation (LDA). For tag recommendation, we first
trained a n-topic LDA model [Blei et al. 2003], where n is decided by the number of
tag categories. The posterior probability of P (topic|doc) is then used to determine
the similarity between a test document and the training ones. Tags are therefore
suggested to the new document from the most similar training documents.

The last method we consider here is a variant of the supervised learning method
Support Vector Machine (SVM). We choose SVM for comparison because it has
been shown that SVM usually outperforms other classifiers for text classification
[Cristianini and Shawe-Taylor 2000]. We first use SVMstruct to train a multi-label
SVM model for the training documents8, and then use the same ranking function
as in eq.(37) to return top ranked tags for recommendation.

5.4 Quality of the Tagging Performance

Table III lists the top user tags for each of the top 8 papers, as well as the top
tags recommended by our algorithm. The bold fonts indicate an overlap. Gener-
ally, at least one correct recommendation is made for each paper, and the first tag
recommended always matches one of the user tags. In addition, although some rec-
ommended tags do not match the user tags literally, most of them are semantically
relevant. e.g., “www” is relevant to “web”; “communities” is often consisted in “so-
cial networks”; “page” and “rank” together have the same meaning as “pagerank”.
In the best scenario, 7 of 9 recommended tags match with the user tags for the

8http://www.cs.cornell.edu/People/tj/svm light/svm struct.html
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Paper Name Tags Top User Tags Our Tags

The PageRank Citation google, pagerank, search, PMM: search, web, rank,
Ranking: Bringing Order to 135 ranking, web, social-networks, mining, pagerank, page,
the Web (Larry Page et al.) networks, socialnetworks, ir rank, www, ir

MMSG: google, ir, mining,
www, pagerank, ranking

learning, web, algorithm

The Anatomy of a Large-Scale google, search, pagerank, PMM: search, web, engine,
Hypertextual Web Search 94 web, engine, www, www, page, rank,
Engine (Sergey Brin et al.) web-search, ir, graphs ir, classification, mining

MMSG: google, ranking, www

ir, algorithm, web

algorithms, network, social

ReferralWeb: Combining Social folksonomy, collaboration, tagging, PMM: networks, network, adhoc,
Networks and Collaborative 88 social-networks, networks, social, mobile, mobilitymodel, filtering,
Filtering (Henry Kautz et al.) filtering, recommender, network tagging, social, socialnetwork

MMSG: networks, network, ir,
web, social, recommender,
algorithm, tagging, learning

A Tutorial on Learning With bayesian, networks, learning, PMM: bayesian, networks, learning,
Bayesian Networks 78 network, statistics, bayes, tutorial, network, bayes, learn,
(David Heckerman) modeling, graphs, algorithms modeling, data, graphical

MMSG: network, networks, learning,
bayes, algorithm, web,
algorithms, search, mining

Maximizing the Spread of social, influence, network, PMM: network, networks, social,
Influence through a Social 73 socialnetworks, diffusion, socialnetworks, adhoc, models,
Network (David Kempe et al.) research, spread, networking machinelearning, algorithm, data

MMSG: network, networks, web,
learning, social, mining,
algorithm, research, data

Authoritative Sources in a ranking, hyperlink, web, search, PMM: web, search, data,
Hyperlinked Environment 47 www, ir, graphs, clustering, query, hyperlink, communities,
(Jon M. Kleinberg) hub, authority, hyperlinks engine, information, extraction

MMSG: ir, web, www,
mining, learning, algorithm,

ranking, rank, search

Indexing by Latent Semantic lsi, indexing, ir, lsa, semantics, PMM: index, svd, data,
Analysis 45 semantic, information-retrieval, query, theory, clustering,
(Scott Deerwester et. al.) latent, language, index information, retrieval, learning

MMSG: ir, data, indexing,
web, www, algorithm,
ranking, query, index

The Small-World Phenomenon: small-world, networks, network, PMM: networks, network, web,
An Algorithmic Perspective 43 web, social, webgraph, power-law, algorithm, algorithms, graphs,
(Jon M. Kleinberg) ir, algorithm, graphs, graph data, www, ir

MMSG: network, networks, ir,
www, web, algorithm,
social, ranking, graph

Table III. Top 8 most popular papers from CiteULike data. The top 9 recommended tags are
listed as “Our Tags”. Tags with bold font match one of the user-annotated tags.
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paper “A Tutorial on Learning With Bayesian Networks”, which has a Kendall τ
rank of 0.78.

Algorithm Precision Recall F-Score Kendall τ rank
CiteULike
VS+IG 25.88% 36.57% 30.18% 0.13
LDA 29.15% 43.33% 36.71% 0.19
SVMstruct 33.21% 50.17% 43.25% 0.29
PMM 39.17% 56.35% 49.96% 0.37
MMSG 40.27% 59.11% 51.08% 0.41
delicious
VS+IG 27.66% 39.05% 32.16% 0.09
LDA 32.71% 48.33% 42.95% 0.18
SVMstruct 40.21% 61.44% 50.63% 0.25
PMM 43.52% 62.31% 52.77% 0.37
MMSG 47.38% 66.16% 54.23% 0.44
BibSonomy
VS+IG 25.11% 40.05% 36.90% 0.13
LDA 31.75% 49.68% 42.17% 0.28
SVMstruct 33.45% 52.93% 45.56% 0.33
PMM 35.21% 55.72% 47.23% 0.37
MMSG 39.45% 57.01% 52.32% 0.39

Table IV. Tagging performance.

We present a summary of the experimental results in Table IV. Overall, our
models PMM and MMSG exhibit better performance for all three data sets. On
average, PMM and MMSG performs 3.2 times better than VS+IG, 2.1 times better
than LDA, and 1.3 times better than SVM. Note that for MMSG, the performance
is efficiently achieved by using only 5% of the training instances.

In addition, we also examined the performance of individual tags by looking at the
top 10 suggested tags. We are interested in the difference in performance between
popular tags (e.g., web, network, clustering) and rare tags (e.g., asp.net, latex, 3d).
For each data set, we chose the top-5 most/least popular tags and averaged the
suggesting results. Figure 13 depicts the results. It can be observed that MMSG
and PMM outperform SVM and others in most cases. We notice that while SVM is
comparable to MMSG and PMM for popular tags, our algorithm shows a clear edge
over SVM for rare tags, with more than 18% and 15% improvement respectively.
Since rare tags appear in fewer documents, this result gives credibility to the claim
that MMSG works well with very few training instances.

5.4.1 Model Selection for Tag Suggestion. Next we quantitatively show how
the model selection reflects the performance of tag suggestion. In the graph-based
method, parameters include number of topic clusters K, number of mixture model
components M and number of word clusters L. In our experimental setting, we
select these parameters by performing cross validation on the training set.
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Fig. 13. Tag suggestion results on popular and rare tags for CiteULike, Delicious
and BibSonomy.

In the prototype-based framework, model selection involves the decision of (1) the
number of prototypes, (2) the covariance function and (3) the hyper-parameters.
Since the hyper-parameters are often associated with the covariance function and
can be chosen by optimizing the marginal likelihood of the training data, we then
focus on how (1) and (2) affect the performance. A common covariance function
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Fig. 14. Comparison of tagging performance of SVM, PMM and MMSG. Two
covariance functions used: SE = squared exponential, NN = neural network.

used for classification is the squared exponential function (SE) in eq.(19). An
alternative function takes the form of neural network (NN):

K(x,x′) =
2

π
sin−1

(

2x̃T Σx̃′

√

(1 + 2x̃T Σx̃)(1 + 2x̃′T Σx̃′)

)

, (38)

with x̃ being the augmented vector of the input x.
For brevity, we only use the Del.icio.us data set to illustrate the results of model

selection. We compare our results with SVM which uses the same two covariance
functions. Figure 14 demonstrates the results on the three methods. We set the
number of prototypes M to be 5%, 10%, 20% and 50% respectively. It can be
observed that MMSG generally outperforms SVM by roughly 10% at each point.
With the number of prototypes increases, the precision also soars up from 50% to
62% for MMSG. Meanwhile, by using neural network as the covariance function,
both SVM and MMSG gain about 2% precision at each point. It can also be
observed that by using the optimal subset selection, the PMM method (denoted as
PMM-OPT) performs almost as good as MMSG with SE kernel. Overall, MMSG-
NN shows the best performance.

5.4.2 Optimal Prototype Selection for Tag Suggestion. To justify the use of the
prototype selection (PS) algorithm for the prototype-based method, we compare
with the criteria used in [Seeger and Williams 2003] which efficiently includes points
into the active set based on information gain (IG). We also include a random
selection (RS) method as the baseline. Figure 15 presents the results on del.icio.us.
Generally, prototype selection shows better precision than IG in all four cases. To
be specific, prototype selection gains more than 10% performance improvement
comparing with information gain when M = 50%.
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Fig. 15. Tagging performance of three selection algorithms and PMM-OPT. RND
= random selection, IG = information gain, PS = prototype selection.

5.5 Discussion of the Quality of Recommendation

It has been observed in our experiment that most algorithms performed better in
the CiteULike data set than the Del.icio.us data set, while the performance of the
BibSonomy data is sort of in between. Remember that the CiteULike data contains
mostly scientific documents, Del.icio.us has mostly web URLs with unstructured
contents, while BibSonomy has both documents and web pages. We thus give two
explanations for the degraded performance on the web page tag recommendation
task. First, we notice that our algorithm usually fails when the content of a specific
URL contains little of the necessary information, i.e., words in our case. As an
example, for the topics “photography” and “travel”, many pages only contain im-
ages and short descriptions, making it hard for our model to determine the proper
components for a test sample.

Second, unlike structured scientific documents with controlled vocabularies, the
heterogeneous nature of web pages not only results in varied length (word count)
of the html pages, but also the distribution of the tag vocabulary. In fact, for
PMM, the tag/doc ratio for the CiteULike data is 0.68 (6,527 unique tags vs. 9,623
papers), compared with 1.26 (28,457 unique tags vs. 22,656 URLs) for del.icio.us.
A previous study [Golder and Huberman 2006] has shown that the tag vocabulary
usually does not converge for a specific user, reflecting a continual growth of inter-
ests. Thus, we believe that a large tag vocabulary could possibly compromise the
recommendation performance for unstructured web pages. On average, 2.91 correct
tags are recommended for each test sample.
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5.6 Efficiency of Tag Recommendation Methods

To show that our model is capable of making real-time tagging for large volumes of
documents, we evaluate our model in terms of the average tagging time for query
documents. Different proportions of training documents (from 10% to 90 %) are
tested.

Figure 16 and Table V present the performance of CiteULike and del.icio.us data
respectively9. Our approaches exhibit stable performance on both data sets with
very small variance. On average, only 1.08 seconds is needed by MMSG for each
test document on CiteULike and 1.23 seconds for del.icio.us. While PMM shows a
slightly slower prediction speed, the time still scales linear to the number of training
data. On the other hand, the average tagging time for SimFusion and VS+IG is
6.4 and 16 seconds respectively, expected to grow exponentially with the increase
of the features.
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Fig. 16. Average tagging time on the CiteULike data set. Our models require the
least time for making recommendations.

6. CONCLUSION AND FUTURE WORK

We presented two document-centered approaches for efficient and effective tag rec-
ommendation in social recommender systems. Our models were able to recommend
good tags to users in real-time when testing on large-scale data sets. Comparing to
user-centered approaches, our models were more sophisticated with better adapt-
ability to practical systems.

Future work could access how our frameworks can be extended to including user
interests into our document-centered approach to achieve more powerful predicative

9The experiment was performed on a 3.0GHZ sever
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% Train MMSG PMM SVMstruct LDA VS+IG

10 0.35 ± 0.2 0.64 ± 0.4 2.5 ± 1.7 1.7 ± 0.5 17.3 ± 10.8
20 0.38 ± 0.2 0.69 ± 0.5 2.7 ± 1.6 1.9 ± 0.5 25.8 ± 10.9
30 0.43 ± 0.2 0.72 ± 0.5 2.9 ± 1.8 2.2 ± 0.6 33.3 ± 12.7
40 0.47 ± 0.3 0.77 ± 0.5 3.3 ± 1.9 2.5 ± 0.7 46.8 ± 12.9
50 0.53 ± 0.3 0.79 ± 0.6 3.3 ± 2.0 2.6 ± 0.7 53.2 ± 13.1
60 0.56 ± 0.3 0.83 ± 0.6 3.8 ± 2.5 2.9 ± 1.1 59.0 ± 14.1
70 0.60 ± 0.4 0.88 ± 0.8 4.1 ± 2.4 3.2 ± 1.2 86.8 ± 14.6
80 0.62 ± 0.6 0.93 ± 0.7 4.4 ± 2.6 3.6 ± 1.4 106.2 ± 19.8
90 0.65 ± 0.6 0.94 ± 0.8 4.8 ± 2.8 3.7 ± 1.5 117.2 ± 25.9

Average 0.51±0.34 0.80±0.60 3.53±2.15 2.70±0.91 60.62±14.98

Table V. Average tagging time (seconds) for the three data sets.

performance. Statistical significance tests will be performed to examine the general-
ization of our methods to other data sets. We also prepare to implement our models
on real-world applications such like the CiteSeerX scientific digital library10.
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Appendix: Derivation of the mean and variance of the posterior in eq.(27) using Laplace
Approximation

Since the denominator p(y|X, X̄) in eq.(27) is independent of f , we only need to
concern the un-normalized posterior when making the inference. We notice that
for part C in the above equation, p(y|f) can be obtained from eq.(21) and is not
Gaussian. Taking the logarithm of C in eq. (27), we have:

L(f)
△
= log p(f |f̄ , X, X̄)

︸ ︷︷ ︸

L1

+ log p(y|f)
︸ ︷︷ ︸

L2

, (39)

where L1 corresponds to the complete data likelihood, which can be generated i.i.d.
given the inputs, i.e.,

p(f |f̄ , X, X̄) =

N∏

n=1

p(fn|xn, f̄ , X̄)
︸ ︷︷ ︸

eq.(26)

= N (f |KNMK−1
M f̄ ,Λ), (40)

ACM Transactions on Computational Logic, Vol. V, No. N, September 2008.



34 ·
with Λ = diag(λ), λn = Kn − kT

nK−1
M kn, [KNM ]nm = K(xn, x̄m). Combining

eq.(40) & (21), we can evaluate eq.(39) as follows:

L(f) =

(

−CN

2
log 2π − 1

2
log |Λ| − 1

2
(WTΛ−1W)

)

+

(

yT f −
N∑

i=1

log(

C∑

c=1

exp f c
i )

)

, (41)

where W = f − KNMK−1
M f̄ . By differentiating eq.(41) w.r.t. f , we obtain

∇fL(f) = −Λ−1f + Λ−1KNMK−1
M f̄ + y − m, (42)

where m is a vector of the same length as y and mc
i = p(yc

i |fi). At the maximum,
we have the MAP value of f :

f̂ = KNMK−1
M f̄ + Λ(y − m̂). (43)

Differentiating eq.(42) again, we obtain

∇∇fL(f) = −Λ−1 − M, M
△
= diag(m) − ΠΠT . (44)

According to [Rasmussen and Williams 2006], Π corresponds to a matrix of size
CN×N , which can be obtained by vertically stacking diag(mc). Using the Newton-
Raphson formula, we obtain the iterative update equation for f :

f ′ = f − (∇∇f )
−1∇f (45)

= (Λ−1 + M)−1(Mf + Λ−1KNMK−1
M f̄ + y − m).

Applying the Taylor Expansion, we obtain

L(f) = L(f̂ ) − 1

2
∇∇fL(f)(f − f̂)2. (46)

Thus the integral part in eq.(27) can be estimated analytically:

∫

(C)df =

∫

exp(L(f))df

=

∫

exp

(

L(f̂ ) − 1

2
∇∇fL(f)(f − f̂)2

)

df

= exp
(

L(f̂ )
)∫

exp

(

−1

2
∇∇fL(f)(f − f̂)2

)

df

= exp
(

L(f̂ )
)√

2π |∇∇fL(f)|−1
. (47)

Note that the above equation essentially forms a normal kernel for f̄ , where the
only part that contains f̄ is 1

2 ((f − KNMK−1
M f̄)T Λ−1(f − KNMK−1

M f̄)). Back to
eq.(27), as p(f̄ |X̄) follows a normal distribution according to eq.(24), the posterior
also forms a normal distribution. Consequently, we only need to calculate the mean
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and variance. After some matrix manipulation, we have

µp =
Q−1P

2
,Σp = Q−1,

where Q = (KNMK−1
M )T Λ−1(KNMK−1

M ) + KM ,

P = f̂TΛ−1(KNMK−1
M ). (48)

In this way the Laplace approximation gives an estimated results p̃(f̄ |X,y, X̄) of
the posterior in eq.(27). We can thus compute the latent values of the new x∗ by
plugging the result into eq.(25). The estimated latent values p̃(f∗|·) now forms a
Gaussian since both A and B in this equation are Gaussian. The only effect is to
compute the mean and covariance, which is given by

µ∗ ≃ µp, (49)

Σ∗ = KM + Σp. (50)
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