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Automatic target recognition (ATR) involves processing images for detecting, classifying, and tracking targets embedded in a
background scene. This paper presents an algorithm for detecting a specified set of target objects embedded in visual images for
an ATR application. The developed algorithm employs a novel technique for automatically detecting man-made and non-man-
made single, two, and multitargets from nontarget objects, located within a cluttered environment by evaluating nonoverlapping
image blocks, where block-by-block comparison of wavelet cooccurrence feature is done. The results of the proposed algorithm
are found to be satisfactory.
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1. INTRODUCTION

The last three decades have seen rapid development in elec-
tronic automation, though mechanical automation was there
for the past 200 years. Computer vision researchers have for
many years attempted to model the basic components of
the human visual system to capture our visual abilities. The
steps required for successful implementation of an automatic
target recognition (ATR) task involves automatic detection,
classification, and tracking of a target located in an image
scene.

The wavelet transform is a multiresolution technique,
which can be implemented as a pyramid or tree structure and
is similar to subband decomposition. The discrete wavelet
transform (DWT) has properties that make it an ideal trans-
form for the processing of images encountered in target
recognition applications, including rapid processing, a nat-
ural ability to adapt to changing local image statistics, effi-
cient representation of abrupt changes and precise position
information, ability to adapt to high background noise and
uncertainty about target properties, and a relative indepen-
dence to target-to-sensor distance.

In this paper, target detection is achieved by calculating
cooccurrence matrix features from detail subbands of dis-
crete wavelet transformed, nonoverlapping but adjacent sub-
blocks of different sizes, depending upon the target image.
From these calculations, the subblock with the maximum
of combined wavelet cooccurrence feature values (WCFs)
is identified as a seed window. Then, by applying a region

growing algorithm, the subblock or regions are grouped into
a larger block or region based on some predefined criteria.
Then, the target is identified by a bounded rectangle. The
proposed algorithm is applied on both man-made and non-
man made single-, two-, and multitarget images.

This paper is organized as follows. In Section 2, the de-
tailed literature survey about the texture analysis and target
detection are given. In Section 3, the theory of DWT and
wavelet filter bank for image decomposition are presented.
A brief discussion about gray-level cooccurrence matrix is
given in Section 4. The target detection system is explained
in Section 5. In Section 6, experimental results for various
target images are discussed in detail. Finally, concluding re-
marks are given in Section 7.

2. BACKGROUND

2.1. Texture analysis

The success of most computer vision problems depends on
how effectively the texture is quantitatively represented. Re-
gardless of whether the application is target detection, object
recognition, texture segmentation, or edge detection, one
must be able to recognize and label homogeneous texture
regions within an image and differentiate between distinct
regions [1]. Thus, texture analysis is one of the most impor-
tant techniques used in the analysis and interpretation of im-
ages, consisting of repetition or quasirepetition of some fun-
damental image elements [2].
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Analysis of textures requires the identification of proper
attributes or features that differentiate the textures in the
image for segmentation, classification, and recognition. The
features are assumed to be uniform within the regions
containing the same textures. Initially, texture analysis was
based on the first-order or second-order statistics of tex-
tures [3, 4, 5, 6, 7, 8]. Then, Gaussian Markov random
field (GMRF) and Gibbs random field models were pro-
posed to characterize textures [9, 10, 11, 12, 13, 14]. An
adaptive anisotropic parameter estimation in a weak mem-
brane model which uses the MRF and an adaptive pat-
tern recognition system for scene segmentation are pro-
posed in [15, 16]. Later, local linear transformations were
used to compute texture features [17, 18]. Then, a texture
spectrum technique was proposed for texture analysis [19].
The above traditional statistical approaches to texture anal-
ysis, such as cooccurrence matrices, second-order statistics,
GMRF, local linear transforms, and texture spectrum, are re-
stricted to the analysis of spatial interactions over relatively
small neighborhoods on a single scale. As a consequence,
their performance is best for the analysis of microtextures
only [20].

More recently, methods based on multiresolution or
multichannel analysis, such as Gabor filters and wavelet
transform, have received a lot of attention [20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30]. But, the outputs of Ga-
bor filter banks are not mutually orthogonal, which may
result in a significant correlation between texture features.
Finally, these transformations are usually not reversible,
which limits their applicability for texture synthesis. Most
of these problems can be avoided if one uses the wavelet
transform, which provides a precise and unifying frame-
work for the analysis and characterization of a signal at
different scales [20]. Another advantage of wavelet trans-
form over Gabor filters is that the lowpass and highpass
filters used in the wavelet transform remain the same be-
tween two consecutive scales while the Gabor approach re-
quires filters of different parameters [23]. In other words,
Gabor filters require proper tuning of filter parameters
at different scales. Later, Kaplan proposed extended frac-
tal analysis for texture classification and segmentation and
Wang and Liu proposed multiresolution MRF (MRMRF)
parameters for texture classification [31, 32]. Wavelet sta-
tistical features (WSF) and WCF were proposed and ef-
fectively used for texture characterization and classifica-
tion [33].

2.2. Target detection

Kubota et al. proposed a vision system with real-time fea-
ture extractor and relaxation network using a multiresolu-
tion technique [34]. An algorithm for boundary detection
using edge dipole and edge field is presented in [35]. An
adaptive pixel-based data fusion is proposed for boundary
detection [36]. Huntsberger and Jawerth proposed wavelet-
based techniques for automatic target detection and recogni-
tion and for acoustic and nonacoustic antisubmarine war-
fare [37, 38]. Espinal et al. proposed wavelet-based frac-
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Figure 1: Image decomposition. (a) One level. (b) Two levels.

tal dimension for ATR [1]. Chernoff bounds was proposed
for ATR from compressed data [39]. Regularized complex
DWT (CDWT) optical flow algorithm was used for mov-
ing target detection in infrared imagery [40]. Then, Tian
and Qi used spectral analysis statistics and wavelet coeffi-
cient characterization (SSWCC) for target detection and clas-
sification [41]. Later, Renyi’s information and wavelets were
used for target detection [42]. Howard et al. proposed di-
rected principal component analysis followed by clustering
for real-time intelligent target detection [43]. Then, a preat-
tentive selection mechanism based on the architecture of
the primate visual system was implemented for target de-
tection in cluttered natural scenes [44]. Kubota et al. pro-
posed edge-based probabilistic relaxation for subpixel con-
tour extraction, a useful subtechnique for target detection
[45].

Although there have been previous efforts involved in
texture analysis and target detection, limitations still exist
in their applicability in detecting man-made and non-man-
made, two and multitargets. Our approach effectively ex-
ploits the cooccurrence features, derived from detail sub-
bands of discrete wavelet transformed images for the detec-
tion of man-made and non-man-made two and more targets,
in both cluttered and noncluttered environments.

3. DISCRETE WAVELET TRANSFORM

Wavelets are functions generated from one single function ψ
by dilations and translations. The basic idea of the wavelet
transform is to represent any arbitrary function as a super-
position of wavelets. Any such superposition decomposes the
given function into different scale levels where each level is
further decomposed with a resolution adapted to that level
[46].

The DWT is identical to a hierarchical subband sys-
tem where the subbands are logarithmically spaced in fre-
quency and represent octave-band decomposition. By ap-
plying DWT, the image is actually divided, that is, de-
composed into four subbands and critically subsampled as
shown in Figure 1a. These four subbands arise from separa-
ble applications of vertical and horizontal filters as shown in
Figure 2.
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Figure 2: Wavelet filter bank for one-level image decomposition.
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Figure 3: Cooccurrence matrix-orientations. (a) d = (1, 1)− 135◦. (b) d = (1,−1)− 45◦. (c) d = (0, 1)− 0◦. (d) d = (1, 0)− 90◦.

The filters h and g shown in Figure 2 are one-dimensional
lowpass filter (LPF) and highpass filter (HPF), respectively.
Thus, decomposition provides subbands corresponding to
different resolution levels and orientations. These subbands
labeled LH1, HL1, and HH1 represent the finest scale wavelet
coefficients, that is, detail images, while the subband LL1 cor-
responds to coarse-level coefficients, that is, approximation
image. To obtain the next coarse level of wavelet coefficients,
the subband LL1 alone is further decomposed and critically
sampled using a similar filter bank shown in Figure 2. This
results in a two-level wavelet decomposition as shown in
Figure 1b. Similarly, to obtain further decomposition, LL2
will be used. This process continues until some final scale is
reached.

The values or transformed coefficients in approxima-
tion and detail images (subband images) are the essen-
tial features, which are as useful for texture discrimination
and segmentation. Since textures, either micro or macro,
have nonuniform gray-level variations, they are statisti-
cally characterized by the values in the DWT transformed
subband images or the features derived from these sub-
band images or their combinations. In other words, the
features derived from these approximation and detail sub-
band images uniquely characterize a texture. The features
obtained from these DWT transformed images are shown
here as useful for target detection and are discussed in the
Section 5.

4. GRAY-LEVEL COOCCURRENCE MATRIX

The cooccurrence method of texture description is based on
the repeated occurrence of some gray-level configuration in
the texture and this configuration varies rapidly with dis-
tance in fine textures and slowly in coarse textures [3]. Con-
sider the part of textured image to be analyzed is of size
M × N . In the cooccurrence matrix, an occurrence of some
gray-level configuration is described by a matrix of relative
frequencies Cθ,d(i, j) describing how frequently two pixels
with gray levels i, j appear in the window separated by a dis-
placement vector d in direction θ. For example, if the dis-
placement vector is specified as (1, 1), it has the interpreta-
tion of one pixel below and one pixel to the right, in the
direction of 45◦ as shown in Figure 3a and if it is specified
as (1,−1), it has the interpretation of one pixel below and
one pixel to the left, in the direction of 135◦ as shown in
Figure 3b. Similarly, the displacement vector (0, 1) has the
interpretation of zero pixel below and one pixel to the right,
that is, in the direction of 0◦ as shown in Figure 3c and the
displacement vector (1, 0) has the interpretation of one pixel
below and zero pixel to the left, that is, in the direction of 90◦

as shown in Figure 3d.

These cooccurrence matrices are symmetric if defined
as given below. However, an asymmetric definition may
be used, where matrix values are also dependent on the
direction of cooccurrence. Nonnormalized frequencies of
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Figure 4: Target detection system.

cooccurrence as functions of angle and distance can be
represented as
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∣
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(1)

where |{· · · }| refers to set cardinality and D = (M × N) ×
(M ×N).

The gray-level cooccurrence matrix C(i, j) can be ob-
tained by counting all pairs of pixels having gray levels i and
j, separated by a given displacement vector d in the given di-
rection.

5. TARGET DETECTION SYSTEM

The steps involved in the target detection process is shown in
Figure 4.

Here, the input images of size N ×N are considered. The
target detection is carried out by considering nonoverlapping
sub-images (i.e., blocks) of different sizes, depending upon
the target images. Each distinct sub-image block, taken from
the top-left corner of the original image, is decomposed us-
ing one- or two-level DWT and wavelet cooccurrence matri-
ces (C) are derived for θ = 135◦ and d = (1, 1) (i.e., one pixel
below and one pixel to the right) for detail subbands (i.e.,
LH1, HL1, HH1, LH2, HL2, and HH2). Here, it is impor-
tant to note that the required level of DWT decomposition
depends on the window size used, that is, for larger window
size, the image can be decomposed into more levels of DWT,

while for smaller window size, a smaller level of DWT de-
composition is used. In turn, the window size depends on
the size of the target and the image.

Contrast =
N
∑

i, j=1

(i− j)2C(i, j), (2)

Cluster shade =
N
∑

i, j=1

(

i−Mx + j −My

)3
C(i, j), (3)

Cluster prominence =
N
∑

i, j=1

(

i−Mx + j −My

)4
C(i, j), (4)

where

Mx =

N
∑

i, j=1

iC(i, j), My =

N
∑

i, j=1

jC(i, j). (5)

Then, from these cooccurrence matrices (C), significant
WCFs such as contrast, cluster shade, and cluster promi-
nence are computed using the formulae given in (2) to (4).
These feature values are subjected to either linear or loga-
rithmic normalization, depending on their dynamic ranges.
The contrast features have moderate values and hence they
are subjected to linear normalization, while cluster shade
and cluster prominence are subjected to logarithmic nor-
malization, since they have very large dynamic range of val-
ues. Selecting the seed block often can be based on the
nature of the problem. When a priori information is not
available, the procedure is to compute at every pixel or
subregion the same set of properties that ultimately will
be used for the selection of seed and also for the grow-
ing process. In our implementation, the sub-image block,
with the maximum of combined normalized feature values
of contrast, cluster shade, and cluster prominence (Shigh)
is identified as seed block or seed window. The concept of
wavelet and cooccurrence features show that the feature val-
ues are high for a window that is surely a part of the tar-
get.

Region growing is a region-based segmentation process
in which subregions are grown into larger regions based
on predefined criteria such as threshold and adjacency.
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Input: Target image of size N ×N

Output: Target detected image

(1) Read the target image.

(2) Obtain 32× 32 or 16× 16 sub-image blocks, starting from
the top-left corner.

(3) Decompose sub-image blocks using 2D-DWT.

(4) Derive cooccurrence matrices for detail subbands of DWT
decomposed sub-image blocks.

(5) Calculate WCFs, such as contrast, cluster shade, and cluster
prominence, from cooccurrence matrices.

(6) Repeat Steps 2 to 5 for all sub-image blocks.

(7) Sort the sum of feature values of all windows in ascending
order and choose the window, having the maximum
combined feature values (Shigh) as the seed window.

(8) Obtain the threshold, that is, the average of feature sums of
the first n% windows.

(9) Apply the region growing algorithm using the mean
distance method by merging windows based on the
threshold and adjacency.

(10) Highlight the target by a bounded rectangle.

Algorithm 1

In our implementation, the region growing algorithm is
based on mean distance method. In this method, the first
step is to sort the feature values of all the windows, that
is, sub-image blocks in ascending order so that the window
whose value is the largest would be the seed window. The
threshold is determined by finding the average (A) of the
first n% of the windows, which are adaptively chosen de-
pending upon the target image. Now, the feature values of all
the 8-adjacent blocks are compared with the average value,
A, and the Shigh value. The window whose value is closer to
Shigh value will be merged with the seed window. This pro-
cess is repeated for all 8 adjacent blocks. If no window is
merged from the 8 adjacent blocks, then the algorithm ter-
minates. If at least one window is merged from the 8 adja-
cent blocks, then the above procedure will be repeated with
the 16 adjacencies and so on. At the end, a rectangle, bound-
ing all the merged windows, is drawn to highlight the tar-
get detected. The target detection algorithm is given as in
Algorithm 1.

6. EXPERIMENTAL RESULTS AND DISCUSSION

The target detection algorithm discussed in the previous sec-
tion is applied on twelve different man-made single-target
images of sizes either 512 × 512 or 256 × 256, three non-
man-made or natural single-target images, a man-made two-
target fused image, two non-man-made two-target images
(i.e., images with two birds), and a non-man-made mul-
titarget image (i.e., image with animals). These images are
chosen in such a way that some images are with a clear
natural background while other images are in cluttered en-
vironment. Also, the images of different sizes are chosen
to prove the effectiveness of the proposed target detection

algorithm. Though the number of levels of DWT decompo-
sition depends on the window size used, all the target im-
ages are subjected to two levels of wavelet decomposition
using Daubechies fourth-order filter. For the region grow-
ing process, the mean distance method provides better re-
sults compared with the Euclidean distance method. The tar-
get detection results obtained for the first twelve man-made
single-target images are shown in Figures 5 and 6, where
column (a) shows original images, while columns (b), (c),
and (d) show images with seed window, images after re-
gion growing process, and target detected images, respec-
tively. From the figures, it is observed that for all the twelve
images, the proposed algorithm results in a better detection
process.

The target detection results obtained for the three num-
bers of non-man-made single-target images are shown in
Figure 7. The results of the man-made two-target image,
fused from infrared and visible light images using the
method given in [47], are shown in Figure 8. In the re-
sults of the two-target images, the first image of the sec-
ond row shows the image after suppressing the first de-
tected target. The results of non-man-made two-target im-
ages, each having two birds, are shown in Figures 9 and 10.
Finally, the target detection results of the multitarget im-
age having animals are shown in Figure 11, where the first
images of the second, third, and fourth rows show the im-
age after suppressing the first, second, and third detected
targets, respectively. From the results shown in Figures 5–
11, it is observed that the seed window selected is nor-
mally the farthest from the center of the man-made ob-
ject, while for non-man-made (or) natural objects, the seed
window is mostly at the center of the object. Further, the
results obtained for both man-made and non-man-made
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(a) (b) (c) (d)

Figure 5: Man-made single-target detection results (columnwise). (a) Original images. (b) Images with seed window. (c) Images after region
growing. (d) Target detected images.
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(a) (b) (c) (d)

Figure 6: Man-made single-target detection results (columnwise). (a) Original images. (b) Images with seed window. (c) Images after region
growing. (d) Target detected images.
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(a) (b) (c) (d)

Figure 7: Non-man-made single-target detection results (columnwise). (a) Original images. (b) Images with seed window. (c) Images after
region growing. (d) Target detected images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Man-made two-target detection results. (a) Original image fused from IR and visible images. (b)–(d) Results of the first target. (e)
Image after suppressing the first detected target. (f)–(h) Results of the second target.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Non-man-made two-target detection results. (a) Original image having two birds. (b)–(d) Results of the first target. (e) Image
after suppressing the first detected target. (f)–(h) Results of the second target.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Non-man-made two-target detection results. (a) Original image having two birds. (b)–(d) Results of the first target. (e) Image
after suppressing the first detected target. (f)–(h) Results of the second target.

single-, two- and multitarget images are found to be satis-
factory.

7. CONCLUSION

Considering the role of technology in contemporary defense
systems, automating of target detection is very important.
The metric wavelet cooccurrence features used in our imple-

mentation proved to be very appropriate for that task. The
proposed algorithm is found to be successful with the given
set of man-made and non-man-made single-, two-, and mul-
titarget images and the results are very convincing. This is
useful for applications in defense, for finding the flaws in any
objects based on its visual properties of the surfaces, and fault
identification in fabrics which is currently under our active
research.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 11: Non-man-made multitarget detection results. (a) Original image having more animals. (b)–(d) Results of the first target. (e)
Image after suppressing the first detected target. (f)–(h) Results of the second target. (i) Image after suppressing the second detected target.
(j)–(l) Results of the third target. (m) Image after suppressing the third detected target. (n)–(p) Results of the fourth target.
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