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Abstract

We study automatic target recognition (ATR) in infrared
(IR) imagery by applying two recent computer vision tech-
niques, Histogram of Oriented Gradients (HOG) and Bag-
of-Words (BoW). We propose the idea of dense HOG fea-
tures which are extracted from a set of high-overlapped lo-
cal patches in a small IR chip and we apply a vocabulary
tree that is learned from a set of training images to support
efficient and scalable BoW-based ATR. We develop a rele-
vance grouping of vocabulary (RGV) technique to improve
the ATR performance by additional voting from grouped
visual words. Different from traditional word grouping
techniques, RGV groups visual words of the same domi-
nant class to enhance the voting confidence in BoW-based
classification. The proposed ATR algorithm is evaluated
against recent sparse representation-based classification
(SRC) approaches that reportedly outperform traditional
methods. Experimental results on the COMANCHE IR
dataset demonstrate the advantages of the newly proposed
algorithm (BoW-RGV) over the recent SRC approaches.

1. Introduction

Automatic target recognition (ATR) is useful and impor-
tant in many civilian and military applications. This task is
often necessary when large amounts of sensor data need to
be processed in a timely manner. The area under observa-
tion is often populated with natural and man-made distrac-
tions and is relatively large compared with the actual target
size. For example, images captured by forward-looking in-
frared (FLIR) sensors, are highly influenced by atmosphere
and weather conditions as well as various background clut-
ters. In general, an ATR system can be divided into four
parts [5]: (1) detection, (2) clutter rejection, (3) feature ex-
traction and (4) classification. We will focus on the last two
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in this work and we are interested in applying and advanc-
ing the recent computer vision techniques to address this
long-standing problem.

There have been many ATR algorithms proposed dur-
ing the last few decades [4, 5]. Broadly speaking, they can
be categorized as learning-based [7, 16] and model-based
[6, 10] approaches. In [11], a comparative study has been
conducted via experiments for some selected algorithms.
The evaluation results suggest that no single approach was
quite satisfactory in terms of the recognition accuracy, de-
manding further investigation in this area. Recently, Patel
et al. [14] proposed a sparse representation-based classifi-
cation algorithm (SRC) for infrared ATR where an l1 mini-
mization problem has been solved to represent a target im-
age as a linear combination of training samples. This sparse
solution reveals the class (i.e., the target type) for a given
IR image chip. It was reported in [14] that the SRC-based
algorithm outperforms most recent ones and will be used as
the major competing method in our research.

Our research in this work is motivated by recent com-
puter vision advancements in object recognition, image
classification and image retrieval. First, we develop a BoW-
based (Bag-of-Words) representation for an IR chip which
involves HOG features extracted from local patches. The
BoW-based representation is expected to be robust to occlu-
sion and background clutter, thanks to its localized nature.
Second, we allow local patches to be highly overlapped to
capture dense HOG features. On the one hand, dense HOG
features support a complete characterization of an IR chip.
On the other hand, it leads to a large number of features of
great redundance. Third, we use the vocabulary tree [13]
to learn a set of visual words from a number of training
chips, where all visual words are treated independently. In-
spired by [12] where a text clustering approach was pro-
posed to group similar words for building a thesaurus auto-
matically, we develop a new relevance grouping of vocabu-
lary (RGV) technique to improve BoW-based classification
by additional voting from grouped visual words. In RGV,
visual words are grouped according to their relevance to the
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same dominant class information. In other words, several
visual words in an unknown target image sharing the same
dominant class information will be allowed to make an ad-
ditional vote to enhance the confidence of that dominant
class. Our relevance-based grouping criteria are very differ-
ent from those similarity-based one in [2, 15]. In this work,
we use the COMANCHE IR dataset provided by the US
Army Research Lab for algorithm evaluation [14], which
involve ten target types viewed under 72 different viewing
angles (also known as pose angle). We will compare our
proposed methods with several SRC variants and experi-
mental results demonstrate the advantages of our algorithms
in terms of both accuracy and efficiency.

2. Proposed method

In this section, we will first introduce the idea of dense
HOG feature extraction. Then we present a new RGV tech-
nique to boost BoW-based classification. We also provide
the pseudo code of the proposed ATR algorithm that in-
volves a two-phase voting.

2.1. Dense HoG Feature Extraction

Recently, several local feature descriptors (SIFT, HOG,
SURF, PCA-SIFT) have been proposed in the literature for
a variety of computer vision applications. Especially, the
HOG (Histogram of Gradient) descriptor [8] that encap-
sulates the gradient information of an image in orderless
histograms will be used in this work due to its simplicity
and robustness to noise, occlusion and variations of views
and illumination. HOG features are extracted from highly-
overlapped local patches which are centered on a set of
densely sampled pixels in the target region, as shown in Fig-
ure 1. In our work, sampling density is fixed to 1 pixel and
we refer this approach as dense HOG feature extraction.

Figure 1: Dense HOG feature extraction from a set of highly
overlapped local patches which are centered on densely
sampled pixels (red).

2.2. RGV for BoW-based Classification

Due to the highly-overlapped nature of local patches,
there is significant redundance among dense HOG features
which can be quantized in a feature space to form a col-
lection of visual words. Thus an image can be represented
by a BoW that encodes the occurrences of different visual
words. Each word contains some attributes pertaining to
certain target type. To support scalable and fast ATR, we
can construct a vocabulary tree via hierarchical K-means
clustering of all dense HOG features extracted from training
chips [13], where a weighting scheme (e.g. term frequency-
inverse document frequency (tf-idf ) weighting) is applied to
the vocabulary to reduce the effect of frequently occurring
words. During learning, each cluster is recursively parti-
tioned up to a certain level which forms a hierarchical tree-
like structure called the vocabulary tree. Each leaf of the
tree or lowest level cluster center (centroid) represents a vi-
sual word, as shown in Figure 2.

Feature 
Extraction

Hierarchical clustering of 
features

Vocabulary Tree

Training Dataset

V1 V2 V3 V4 V5 V6 V7 V8 V9

Visual word, Vi

Figure 2: Steps of visual vocabulary creation. After feature
extraction, hierarchical k-means clustering is applied to fea-
ture vectors. Each level of hierarchy represents an equiva-
lent level (L) of tree structure and K represents branching
factor. In this tree, K = 3 and L = 3.

Usually, BoW-based classification treats each visual
word independently. Inspired by text retrieval in [12], we
want to improve classification performance by exploiting
the occurrence of multiple visual words sharing the same
dominant class information. To do so, we need to find the
dominant information for each visual word and then group
the visual words of similar relevance in terms of label pre-
diction (i.e., the target identity and pose angle in the context
of IR ATR). We refer to this process as Relevance Group-
ing of Vocabulary (RGV). Finding an appropriate grouping
results in an optimization problem where different criteria
may be involved [2, 15]. In our work, the RGV process is
performed in two sequential steps as follows:
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Visual
Word

C1 C2 C4C3 . . . . .

id1 id2 id3 . . . . .

θ1 θ2 θ3 . . . . .

Figure 3: The layout of a visual word (ci = class label, idi =
image ID, θi = pose of corresponding target in image idi).

2.2.1 Step 1: Finding dominant class, T ∗

As an IR image chip represents a single target class along
with a specific pose angle, a visual word may be viewed as a
collection of similar local features originating from images
of different target classes. Therefore, each word is also as-
sociated with a number of pose angles under each of these
classes (See Figure 3). Before visual word grouping, we
first tag each word with the dominant class label. The dom-
inant class of a visual word is defined as the class having
the word’s maximum influence. Having the same dominant
class is a prerequisite to form a group of visual words. We
use two popular metrics (Information Gain and Chi-Square)
adapted from Information Retrieval literature to determine
the dominant class for each visual word. For a visual word
v, whose dominant class is denoted by T ∗, we can find a
pose distribution under the class label T ∗ which is also used
for grouping.

Information Gain (I.G.): Assume C is a set of N
classes, C = {c1, c2, . . . , cN} and V = {vj}Mj=1 is the vi-
sual vocabulary. According to information theory literature,
I.G. is known as a measure of knowledge gained about class
ci because of the fact that word vj is present. It considers
both occurrence and non-occurrence of words in images. In
other words, if ci and vj are independent, then information
gain I.G. will be zero [3]. The information gain I.G.i of a
word vj over ci is defined as follows [3],

I.G.i(vj) = H(ci)−H(ci|vj)−H(ci|¬vj). (1)

where H(ci) is the entropy of ci and H(ci|vj) and
H(ci|¬vj) are conditional entropies of ci in the presence
and absence of word vj respectively. Assume IR chip I
belongs to class ci and the set of words representing I is
denoted as Iv , we have:

H(ci) = −P (ci) logP (ci), (2)

H(ci|vj) = −P (vj , ci) logP (ci|vj), (3)

H(ci|¬vj) = −P (¬vj , ci) logP (ci|¬vj), (4)

where,

P (ci) = Prob(I ∈ ci),

P (vj , ci) = Prob(vj ∈ Iv and I ∈ ci),

P (ci|vj) = Prob(I ∈ ci given vj ∈ Iv).

v1

v2

v4

v8

v6

v5

v7

v9

v3

T*v6=c1, Pf=x, Өv6

T*v1=c1, Pf=y, Өv1

x ~ y ≤  εt

Өv6  ~Өv6 ≤ εθ v1 v6

d-dimensional feature space
R()

T*v1 ==T*v6

div()
2-step decesion process

c1

Figure 4: An illustration of RGV where each circle repre-
sents a visual word (left box) and the dotted boundary indi-
cates the formation of a relevance group (right box).

Using the above equations, for each visual word vj , a se-
quence of I.G.’s is computed for N classes.

Chi-Square (C.S.): It also measures dependency be-
tween word vj and class ci. In other words, if vj and ci
are dependent, then the occurrence (or non-occurrence) of
vj makes the occurrence of ci more likely (or less likely).
Following the above notations, the Chi-Square metric for vj
with respect to class ci is defined as follows [3],

C.S.i(vj) =
m(P (vj ,ci)P (¬vj ,¬ci)−P (vj ,¬ci)P (¬vj ,ci))

2

P (vj)P (¬vj)P (ci)P (¬ci)

(5)
where m is the size of dataset (here, total number of IR
chips). Like the previous metric, a collection of C.S.’s for
word vj can be computed for N classes.

Using any of the two metrics defined above, we can find
the dominant class T ∗ of a visual word as follows,

T ∗ = argmax
i
{I.G.i}Ni=1 or argmax

i
{C.S.i}Ni=1.

This dominant class signifies its maximum knowledge gain
towards that class over other class labels.

2.2.2 Step 2: Grouping of Visual Words

If two words u and v share the same dominant class, they
will be considered as the candidate words to form a rele-
vance group. Assume Ω = {v1, v2, . . . , vk} is a relevance
group of visual words sharing the same dominant class cp.
Given two words (vi, vj) in Ω, they will satisfy the follow-
ing conditions regarding the similarity of their knowledge
gain towards the same dominant class and the divergence of
their pose distributions (Θvi and Θvj ):

|R(vi)−R(vj)| ≤ εt, (6)

div(Θvi ,Θvj ) ≤ εθ (7)

where (vi, vj) ∈ Ω, div(·) is a divergence measure between
two distributions, R(v) is the I.G.-based or C.S.-based rel-
evance function of a word v defined as in (1) and (5) un-
der the dominant class of v, εt and εθ are thresholds cho-
sen to ensure non-overlap grouping. In our paper, we used
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Kullback-Leibler (KL) divergence [9] as div(.). The whole
RGV process is illustrated in Figure 4.

2.3. ATR via 2-phase Voting

The classification is accomplished by a 2-phase voting.
The final ATR decision is made by combining the results
from the two phases. Phase-I voting is similar to the base-
line BoW approach described in Algorithm 1. In Phase-II,
we will utilize the RGV groups to boost up the contribution
of coexistent visual words belonging to same group.

Algorithm 1 Phase-I voting using the original BoW.
1: Input: Vocabulary tree, T , query image, Iq .
2: Output: The first N -class histogram, S1(c) with c =

(1, ..., N)
3: Initialization: extract HOG descriptors from Iq using

dense sampling and initialize the N -class histogram.
4: begin
5: for all features in the query image do
6: current node← root
7: while current node has no children do
8: choose the best match child node v.
9: current node← v

10: end while
11: retrieve the associated class labels and their respec-

tive weights from the current node.
12: add the weights to the bins of corresponding class

labels.
13: end for
14: return the first N -class histogram.
15: end

Given a query image, Iq , Phase-I voting returns an N -
class histogram S1(c) with c = (1, ..., N) by using visual
words of Iq , showing the confidence of each class towards
the estimation of the target class. Phase-II voting described
in Algorithm 2 provides an additional N -class histogram,
S2(c) with c = (1, ..., N), indicating the additional contri-
bution from relevance groups, Π. After the 2-phase voting,
we combine two N -class histograms as,

S(c) = S1(c) + S2(c), ∀c ∈ {1, 2, . . . , N}. (8)

The final classification (ATR) result is obtained by:

Cq = argmax
i

{S(c)}Ni=1 (9)

where Cq is the estimated target class for query image Iq .

3. Experiments

In this section, we evaluate the proposed RGV algorithm
by comparing it with the baseline BoW method and several
SRC variants that are implemented from the open-source

Algorithm 2 Phase-II voting using the RGV.

1: Input: Relevance groups,Π = {Ω1,Ω2 , . . . ,ΩR}, and
query image, Iq .

2: Output: The second N -class histogram, S2(c) with
c = (1, ..., N).

3: Initialization: Revisit all visual words in Iq and initial-
ize the second N -class histogram.

4: begin
5: for all visual words in Iq belonging to Π do
6: find their dominant class labels and weights.
7: add the weights to the bins of corresponding class

labels.
8: end for
9: return the second N -class histogram.

10: end

SRC package (spectral projected gradient (SPGL1) [1]).
Specifically, we chose three sparse solutions, i.e., Lasso,
Basis Pursuit Denoise (BPDN) and Basis Pursuit(BP) as
those used in [14].

3.1. Infrared Dataset

The original Comanche IR dataset has two groups of IR
chips along with ground-truth information (target type, pose
etc.). The SIG group contains 13860 chips captured under
relatively favorable atmospheric conditions. The dimension
of each chip is 40 × 75 pixels. There are 10 types of mili-
tary targets denoted as TG1, TG2, TG3, ..., TG10 (see Fig-
ure 5) in SIG and each target is viewed at 72 different ori-
entations in azimuth (0◦, 5◦, . . . , 360◦) from a fixed range.
Another group named ROI contains around 3300 chips con-
sisting of five targets TG1, TG2, TG3, TG4 and TG7 where
aspect angles are coarsely sampled (at 45◦) under less fa-
vorable conditions. In our experiments, we only have the
SIG dataset available. The SIG set is randomly partitioned
into two non-overlapped sub-groups, SIG-TRAIN (10872
chips) and SIG-TEST (2988 chips) used for training and
testing respectively. For the sake of fair performance com-
parison, we have used the same settings for all experiments,
unless otherwise stated.

3.2. Recognition performance

The dimension of HOG feature is controlled by the num-
ber of cells and the histogram bin size. In all our experi-
ments, the cell size is 5 × 7 pixels and the number of his-
togram bin is 5. In each image chip, a local 4× 4-cell patch
is defined for every pixel in the central region (14× 18 pix-
els) of the chip and thus there are 252 dense HOG features
extracted for each chip. Although there is a tremendous
redundancy in this dense HOG features extraction, the hier-
archical vocabulary tree can efficiently quantize them into a
more compact set of visual words.
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Table 1: Target recognition performance(%) using proposed RGV and baseline BoW methods at different vocabulary sizes.

Vocabulary Tree
Parameters

Vocabulary Size ‖V ‖ Avg #Features/Word
(Quantization ratio)

BoW
RGV with I.G. RGV with C.S.

Accuracy ‖Π‖ Accuracy ‖Π‖
K=5 L=6 15,625 175.34 84.60 85.61 10256 86.08 10857
K=6 L=6 46,637 58.75 91.30 92.60 1827 93.17 8552
K=7 L=6 117,347 23.35 94.91 96.05 1271 96.39 4702
K=7 L=7 747,424 3.67 97.82 99.10 356 99.10 880

* K=Branch factor, L=#Levels, ‖Π‖=the number of relevance groups, I.G.=Information Gain, C.S.=Chi-Square.

Figure 5: Ten different target vehicles in Comanche IR dataset.

Table 2: Comparison of the proposed method with the re-
cent approaches in terms of recognition rate(%).

Proposed RGV SRC methods [14]

C.S. I.G. Lasso BPDN BP

TRAIN-SIG 99.92 99.98 - - -

TEST-SIG 99.10 99.10 97.96 97.42 97.69

* RGV is for K=7, L=7 from Table 1.

We use different vocabulary sizes under different branch
factors (K) and tree levels (L). Table 1 shows that the pro-
posed (RGV) outperforms the original BoW model. To
form RGV groups, we chose εt as ∼ 2 × 10−3 and ∼
9× 10−5 for C.S. and I.G. based grouping respectively and
εθ as 0.8. As seen from the table, ‖V ‖ (i.e., the number of
visual words) and ‖Π‖ (i.e., the number of RGV groups) are
inversely related. When ‖V ‖ is small, then each visual word
tends to be a collection of large number of features, hence
there will be very little similarity among groups resulting
in large ‖Π‖. As ‖V ‖ increases, ‖Π‖ becomes smaller.
Therefore, the average number of visual words per group
increases from 1.52 to 2099.51 for RGV with I.G. and from
1.44 to 849.35 for RGV with C.S.

Table 2 compares the proposed method with the state-of-
the-art SRC based approaches [14]. RGV is able to achieve
near perfect results for both training and testing chips which
outperforms SRC methods. It is believed that dense HOG
features can better encode the thermal distribution of a tar-
get signature. A confusion matrix can be useful to assess the
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Figure 6: Confusion matrix corresponding to RGV based
classification (with vocabulary tree parameter K = 6, L =
6 and grouping with C.S.).

efficiency of our proposed method. It represents the number
of correct and incorrect predictions (estimated target class)
made by the classification model compared to the actual tar-
get class (See Figure 6).

3.3. Effect of εt and εθ

Forming relevant groups is largely dependent on the
choice of εt and εθ. Since εt is found to be more impor-
tant to create non-overlapping groups, based on our exper-
iments, we only varied the value of εt and kept εθ fixed.
εt can be thought as a radius of a circular neighborhood
around a visual word v in the feature space and words em-
braced by this region will form one group. For the sake of
simplicity and avoiding the formation of overlapped groups
in RGV, words that are once assigned to a group will not
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Figure 7: Effect of εt on recognition performance using
K=7, L=6 and RGV with C.S.. Numbers adjacent to points
denote ‖Π‖ (number of groups computed at corresponding
εt). ‖Π‖ decreases from 4702 to 959.

be considered for further grouping. A small εt will pro-
duce a large number of groups (large ‖Π‖) with a small
average group size (i.e., the number of words per group).
On the other hand, a larger εt can lead to a larger group
size with the possibility of grouping non-relevant words to-
gether. Eventually, this may introduce ambiguity in Phase-
II voting. Thus, when εt is large enough to contain all words
of same dominant class in a single group (i.e. 10 groups for
10 target classes), the RGV approach converges to the base-
line BoW. As shown in Figure 7, where C.S.-based RGV
is implemented with various εt values for a specific vocab-
ulary (K=7, L=6), ATR recognition accuracy starts from
96.39% with the smallest εt (‖Π‖ = 4702) and decreases
as εt increases (with smaller and smaller ‖Π‖).

4. Conclusion

In this work, we study the long-standing IR ATR prob-
lem and our research is deeply motivated by the recent ad-
vancements in the fields of object detection, image classifi-
cation and retrieval. Based on the idea of BoW, the higher
level clustering of similar visual words, constructing visual
phrases or semantic categorization are now becoming areas
of interest among computer vision researchers. First, it is
shown that the dense HOG feature is an effective approach
to the ATR task where IR chips usually have limited spa-
tial resolution. Second, the vocabulary tree is useful to re-
duce the redundancy of dense HOG features by creating a
compact set of visual words for scalable object recognition.
Third, BoW-based recognition is efficient and robust in the
context of IR ATR, although the spatial information of local
features are totally ignored. Nevertheless, the introduction
of RGV further improves the ATR performance by boosting
up the contribution of coexistent visual words belonging to
the same relevance group. The reported ATR results on the

Comanche IR dataset are among the state-of-the-art in the
literature.
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