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Automatic Target Recognition of Military Vehicles With
Krawtchouk Moments

The challenge of automatic target recognition of military targets
within a synthetic aperture radar scene is addressed in this paper.
The proposed approach exploits the discrete-defined Krawtchouk mo-
ments, which are able to represent a detected extended target with few
features, allowing its characterization. The proposed algorithm pro-
vides robust performance for target recognition, identification, and
characterization, with high reliability in the presence of noise and
reduced sensitivity to discretization errors. The effectiveness of the
proposed approach is demonstrated using the MSTAR dataset.

I. INTRODUCTION

Target recognition of military vehicles is a topic of in-
creasing interest and demanding requirements [1], [2]. The
knowledge of the vehicles deployed in a specific area of in-
terest is fundamental to the understanding of the threat that
exists (e.g., small intercontinental ballistic missile launcher
rather than a theater missile launcher). Furthermore, it also
allows a better understanding of the activities in a specific
site. Currently, there is a growing interest in the ability
to increase the level of knowledge to the identification or
characterization stage, where the actual capabilities of the
vehicle/object can be better understood. Many current au-
tomatic target recognition (ATR) algorithms for vehicles
require the ability to identify small differences among tar-
gets like a specific configuration of a multirole vehicle.
Furthermore, ATR represents one of the multiple tasks in
which modern platforms are involved. For example, an un-
manned aerial vehicle (UAV) will be acquiring the radar
echoes, performing the imaging using high-performance
computing capabilities [3], maintaining constant communi-
cation with a control center or other platforms, while man-
aging other systems like electro-optical sensors. For this
reason, the processing and the information extraction have
to comply with the low Size Weight And Power (SWAP)
paradigm.

Various approaches have been proposed to address the
ATR challenge. A general approach has been investigated
in [4], where L2 normalization is applied to the image,
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thereby preserving all the information of the image while
assigning to the classifier the task of deriving the model
and separation of targets. After L2 normalization, the syn-
thetic aperture radar (SAR) chips containing the target are
passed to the support vector machine (SVM) that uses a
Gaussian kernel, with the kernel size set to be the average
Euclidean distance between training patterns. The SVM
approach was tested on the MSTAR dataset and compared
with other classifiers such as model matching and neural
network. The work developed at the MIT Lincoln Labo-
ratory [1] provides a complete analysis by investigating
both detection and classification of stationary ground tar-
gets using high-resolution fully polarimetric SAR images.
The algorithm comprises three main stages: detection (or
prescreening), discrimination, and classification. In partic-
ular, a mean-square-error (MSE) classifier is exploited in
this algorithm, whose minimum acceptable value is thresh-
olded, and targets that differ more than the threshold from
the target model are labeled as clutter. The main drawback
of the algorithm is the fact that it relies on a single metric
(MSE), meaning that an accurate knowledge of the target
models is required; otherwise, the algorithm would incur in
misclassification. A robust algorithm has been proposed in
[5], in which an increased number of scattering centres are
selected while retaining low computational complexity. The
approach uses a relatively large number of scatterers with
a variability reduction technique. To reduce the effect of
the variabilities, a novel grid cell structure is developed by
considering the information of potential targets, such as tar-
get sizes, structures, and relative positions of the strongest
scatterers. Furthermore, features related to scatterer angular
stability information are extracted. Discriminative graphi-
cal models have been used in [6] with the aim to fuse
different features and allow good performance with small
training datasets. A two-stage framework is proposed to
model dependencies between different feature representa-
tions of a target image. The approach has been tested using
the MSTAR dataset and the performance resulted to over-
come EMACH, SVM, AdaBoost, and Conditonal Gaussian
Model classifiers.

In this paper, an algorithm for ATR based on the
Krawtchouk moments is proposed. The characterization
capability and reliability of the new method are investi-
gated. The Krawtchouk moments were introduced in [7]
and [8] for image-processing application purposes. The
Krawtchouk moments have been applied to 1-, 2-, and 3-D
signals [9]–[12]. In [9], a method using the Krawtchouk
moments was proposed to enhance noise-corrupted speech
signals. In particular, Wiener filtering was applied after rep-
resenting a noisy signal in the Krawtchouk and Tchebychev
domains. Image super-resolution was proposed in [10] for
the specific case of low-resolution video sequences. The
authors of [10] used Krawchouk moments to create a high-
resolution image sequence from a given low-resolution im-
age sequence, as they are orthogonal over a square region,
and are discrete moments. A Krawtchouk-based noise re-
silient gait recognition from videos was proposed in [11].
In this approach, the orthogonality of the moments was

exploited in order to ensure minimal redundancy. Finally,
the extension to 3-D of the Krawtchouk polynomials was
used for shape search and retrieval in [12]. In particular, the
property of the low-order Krawtchouk moments to capture
edges was exploited in order to obtain enhanced discrimi-
nation of 3-D objects with low complexity.

A common issue of most of the families of image mo-
ments [13] is the level of discretization error and poor
robustness in low-signal-to-noise-ratio (SNR) conditions.
This error builds up as the order increases, limiting the ac-
curacy of the computed moments. This drawback results
in target recognition algorithms with less accuracy in dis-
criminating between targets that differ in small compo-
nents, which would be possible if only robust higher order
moments are used.

The Krawtchouk moments have some peculiar charac-
teristics [8], in particular they are discretely defined; thus,
there is no requirement of spatial normalization, and the
discretization error is nonexistent. This translates in a re-
laxation on the amount of resources required to represent
and store the polynomials. Moreover, the computational
cost is reduced due to the orthogonality property of the
Krawtchouk polynomials that relaxes the requirements of
feature selection to mitigate overfitting. These characteris-
tics, together with the capability to precompute the polyno-
mials, make this family of image moments compatible with
SWAP systems.

The remainder of this paper is organized as follows. Sec-
tion II introduces the Krawthcouk moments and describes
the proposed ATR algorithm. Section III discusses the re-
sults obtained using the MSTAR dataset in different noise
conditions. Section IV concludes this paper.

II. ATR ALGORITHM BASED ON THE KRAWTCHOUK
MOMENTS

This section describes the ATR algorithm that is based
on the Krawtchouk moments. First, the analytical formu-
lation of the Krawtchouk moments is provided in order
to support the understanding of the algorithm functional
blocks described successively in detail.

A. Krawtchouk Moments

The classical formulation of the Krawtchouk polyno-
mials introduced in [7] suffers from numerical instabil-
ity. For this reason, the weighted Krawtchouk polynomi-
als that were introduced in [8] have been selected for the
purpose of representing the target in the proposed ATR
approach.

The classical Krawtchouk polynomials of order n are
defined as [8]

Kn(x;p,N) =
N∑

k=0

ak,n,px
k = 2F1

(
−n,−x; −N ;

1

p

)

(1)
where x and n belong to (0, 1, 2, . . . , N), N ∈ N, where N

is the set of natural numbers,p is a real number belonging to
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Fig. 1. Block diagram of the proposed feature extraction and classification algorithm.

the set (0, 1), and 2F1 is the Gauss hypergeometric function

2F1 (a, b; c; z) =
∞∑

k=0

(a)k(b)k
(c)k

zk

k!
(2)

where (·)k is the Pochhammer symbol given by

(a)k = a(a + 1) . . . (a + k − 1) = �(a + k)

�(a)
(3)

and � (·) is the Eulerian Gamma function.
To overcome the numerical instability of these polyno-

mials, a weight [8] can be used leading to the weighted
Krawtchouk Polynomials, i.e.,

K̄n(x;p,N) = Kn(x;p,N)

√
w(x;p,N)

ρ(n;p,N)
(4)

with w(x;p,N) =
(
N

x

)
px(1 − p)N−x and ρ(n;p,N) =

(−1)n
(

1−p
p

)n
n!

(−N)n
.

The polynomials defined in (4) are orthogonal, i.e.,

N∑

x=0

K̄n(x;p,N)K̄m(x;p,N) = δnm ∀p,N (5)

where δnm = 1 if n = m, 0 otherwise, with (n,m) ∈
(0, 1, . . . , N)2. Furthermore, the parameter p represents a
shift parameter. In particular, as p deviates from the value
0.5 by �p, the weighted Krawtchouk polynomials are ap-
proximately shifted byN�p [8]. This characteristic can be
exploited to focus on a specific area of interest within the
image, for example, by increasing the number of features
related to a specific section of a target (e.g., a tank turret)
in order to improve the target characterization capabilities.
Considering a 2-D function of interest ψ(x, y), e.g., a SAR
image, with x and y natural numbers in the sets (1, N) and
(1,M), respectively, and M and N representing the image
width and height in samples, the Krawtchouk moments of
order (n,m) are defined as

Qnm =
N−1∑

x=0

M−1∑

y=0

K̄n(y;p1, N − 1)K̄m(x;p2,M − 1)ψ(x, y).

(6)
The moments in (6) provide a powerful tool for repre-

senting 2-D functions with a limited set of values and have
been previously used for image compression and recogni-
tion [14].

B. Algorithm Description

The functional blocks of the proposed ATR algorithm
are depicted in Fig. 1. The starting point is the intensity
SAR image, ψ(x, y), of a target from the set of J possible
targets of interest. Equation (6) can be applied toψ(x, y) for
each order up to (n,m) to form the vector Qnm containing
the Krawtchouk moments

Qnm = [Q00, . . . ,Qnm] . (7)

From (6), it is also possible to estimate the computational
complexity of the proposed approach for feature extraction
that results to be equal to (N ×M)2. The feature vector Qnm

has (n+ 1) × (m+ 1) elements and is normalized using
the following standardization to ensure that any particular
feature will not have a higher impact on the classification
stage [15]:

Q̃nm = (Qnm − μQnm
)/σQnm

(8)

where μQnm
and σQnm

are, respectively, mean and standard
deviation of Qnm.

The feature vectors are then used as input to a clas-
sification algorithm, such as k-nearest neighbors (k-NN),
SVM, or Bayesian classifier. The output of the classifier
is v̂, with values in (1, J ) ∈ N containing the output target
class identifier of the image under test.

III. PERFORMANCE ANALYSIS ON THE MSTAR
DATASET

In this section, the performance analysis of the proposed
algorithm is assessed on real data. The MSTAR dataset is
a collection of SAR images of 14 different military targets
[16], [17], which represents a useful test bench for ATR al-
gorithms. This dataset can be used for the different levels of
target classification. According to the NATO AAP-6 Glos-
sary Terms and Definitions, with “recognition” is meant
the classification of the type/category of target; “identifica-
tion” regards the capability to assign the target to a subclass;
“characterization” takes into account the class variants. Fol-
lowing this definition, Table I reports the different targets
and their grouping in the MSTAR dataset, together with the
number of available images acquired with 15◦ and 17◦ of
depression angle.

The images are supposed to cover the full 360◦ az-
imuth angle. However, due to missing images in the dataset,
the total number of observations does not always cover
each aspect angle. Moreover, different targets have different
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TABLE I
MSTAR Dataset

Target Type # of Images 15–17◦ Recognition Identification Characterization

BMP2 9563 Tank 195–233 R1 I1 C1
BMP2 9566 Tank 196–232 C2
BMP2 C21 Tank 196–233 C3
T72 132 Tank 196–232 I2 C4
T72 812 Tank 195–231 C5
T72 S7 Tank 191–228 C6
2S1 Tank 276–299 I3 C7
T62 Tank 273–299 I4 C8
ZSU Tank 274–299 I5 C9
BTR70 C71 Personnel Carrier 196–233 R2 I6 C10
BTR60 Personnel Carrier 195–256 I7 C11
ZIL131 Truck 274–299 R3 I8 C12
BRDM Reconn. Vehicle 274–298 R4 I9 C13
D7 Bulldozer 274–299 R5 I10 C14

Fig. 2. Performance in terms of normalized correct number of recognition, identification, and characterization on the MSTAR dataset for (a) the
proposed algorithm using the Krawtchouk moments versus the algorithm introduced in [18] using the pseudo-Zernike moments and (b) compared with

the performance achievable using the approach in [5] for various number of brightest scatterers selected.

number of images. In the performance analysis, 191 sam-
ples are used as the minimal number of images available for
all the targets. The training images are selected randomly,
and the same number of images for each target from the set
of images acquired at 15◦ of depression angle is considered.
In order to investigate the robustness of the algorithm for
different training sets available, the selection of the images
used for testing and those used for training is randomized
in each run. In this way, a different subset of training im-
ages is drawn, and, consequently, a different subset of test
images is used in the testing stage. Specifically, a total of
100 Monte Carlo runs are performed for each analysis in
order to be able to draw randomly a wider set of training
and test images for the targets with more than 191 images
available.

In order to investigate the capabilities and the robustness
of the proposed approach, the results of the new algorithm
are compared to those obtained using the pseudo-Zernike
moments [18] and the approach proposed in [5]. In the ex-
periments, a k-NN classifier with k = 3 and p1 = p2 = 0.5
for the computation of the Krawtchouk polynomials have
been used. Fig. 2(a) shows the normalized average num-
ber of correct recognition, identification, and characteri-
zation obtained for both Krawtchouk and pseudo-Zernike

approaches. In the analysis, all the moments available up to
a selected order are considered.

It is seen that the Krawtchouk-based algorithm is su-
perior to the pseudo-Zernike-based algorithm for all the
three levels of target discrimination. For example, consid-
ering moments of order up to 20 (441 features), the per-
centage of correct target recognition reaches 96.02% using
the proposed algorithm, while it is 92.64% for the pseudo-
Zernike algorithm. A similar trend is seen for the target
identification case with performance going from 92.97%
to 86.42% of correct identification when switching from
the Krawtchouk to the pseudo-Zernike approach. This per-
formance difference is confirmed in the target characteri-
zation case with correct target characterization of 84.58%
using the Krawtchouk versus the 77.74% obtained with
the pseudo-Zernike. The identification and characteriza-
tion results, with 6.55% and 6.89% of improvements in
performance, respectively, confirm the capability of the
Krawtchouk moments to represent with higher fidelity
smaller details of the targets. Analyzing the performance
in the best case (190 brightest scatterers case) of the ap-
proach presented in [5] that is reported in Fig. 2(b), it is
shown that the brightest-scatterer-based approach provides
96.83%, 93.81%, and 83.67% of correct target recognition,
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Fig. 3. Performance using Krawtchouck (continuous lines) and pseudo-Zernike (dashed lines) approaches, moments up to order 10, different SNR
levels and values of the parameter ν in (10) equal to 0.5 and 10. (a) Recognition. (b) Identification. (c) Characterization.

identification, and characterization, respectively. This per-
formance is comparable with those achievable using the
proposed Krawtchouk-based algorithm.

To demonstrate the higher robustness to noise of the
Krawtchouk-based approach, a stress analysis under dif-
ferent noise conditions has been performed. In the ex-
periments, additive and multiplicative noise are added to
the dataset that are assumed to initially contain noise free
images.

A. Additive Compound Gaussian Noise

For each pixel of the image, the additive noise d is
modeled as a compound-Gaussian random variable [19],
[20], which can be written in the form

d = √
τg (9)

where τ is a positive real random variable, and g is a
complex circularly symmetric zero-mean Gaussian vari-
able, whose variance is set in order to achieve a certain
SNR.

As the variable τ follows a Gamma distribution

f (x) = 1

� (ν)

1

μν
xν−1e−x/μu (x) (10)

where u (·) is the unit-step function, μ and ν are the scale
and shape parameters, respectively (we set μ = 1/ν in or-
der to have a gamma distribution with unit mean). Equa-
tions (9) and (10) ensure that the amplitude probability
density function of d isK-distributed. SNR levels between
−10 and 20 dB and values of ν of 0.5 and 10 are consid-
ered. Fig. 3 shows that the results using the Krawtchouk
moment approach are more reliable and robust to noise
than the pseudo-Zernike one. For example, it is noticed
from Fig. 3 that considering an SNR level of 0 dB and
ν = 0.5 (impulsive noise), the Krawtchouk moment per-
formance is 93.86%, 88.99%, and 78.83% for recognition,
identification, and characterisation, respectively, while us-
ing pseudo-Zernike moments, the performance dropped to
86.20%, 75.58%, and 63.48%. In this case, the use of the
proposed approach is able to provide more robust results

in presence of additional noise in the images, with perfor-
mance improvement of 7.66% in recognition, 13.41% in
identification, and 15.35% in characterization.

The confusion matrices showing the percentage of cor-
rect characterization obtained for ν = 0.5 and moments up
to order 10 (121 features) are reported in Tables II and III,
for Krawtchouk and pseudo-Zernike approaches, respec-
tively. A figure of merit for the overall performance of ATR
algorithms considers the ratio of the sum of the values ap-
pearing in the diagonal of the confusion matrix to the sum
of all the other values. This should have a value as high
as possible, which is infinite for a perfect algorithm [21].
In this paper, this figure of merit will be referred to β,
which is computed as 3.65 and 1.69 from Tables II and III,
respectively.

Moreover, the tables show that in presence of dif-
ferent configurations of the same vehicle (like BMP2
and T72), the capability of target characterization of the
Krawtchouk-based algorithm is superior compared to the
pseudo-Zernike. For example, considering the two 3 × 3
top-left matrices of the confusion matrices relative to the
BMP2 and T72 targets, and marked in red and blue for
clarity, it is seen that both exhibit a more “diagonal” be-
havior in the Krawtchouk case than in the pseudo-Zernike
one. In particular, the figure of merit β is 1.56 and 1.02
when the red matrices are considered and 4.62 and 2.83 for
the blue matrices in the Krawtchouk and pseudo-Zernike
cases, respectively. These latest results demonstrate the ca-
pability of the Krawtchouk moments to maintain a good
representation of details in presence of noise.

B. Multiplicative Noise

In the multiplicative noise case, the modulus of each
pixel is multiplied with a square root of a Gamma random
variable, whose scale and shape parameters are chosen as
μ = 1/ν. Moments of order between 1 and 20 and values
of ν of 0.5 and 10 have been considered, and the results
obtained in this analysis are shown in Fig. 4. As seen in
Fig. 4, in this situation, the performance obtained using
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TABLE II
Confusion Matrix Showing the Percentage of Correct Characterization Using Krawtchouk, SNR 0 dB, Order 10, and Additive Compound

Gaussian Noise, ν = 0.5

BMP2 BMP2 BMP2 T72 T72 T72 2S1 T62 ZSU BTR70 BTR60 ZIL131 BRDM D7
9563 9566 C21 132 812 S7 C71

BMP2 9563 65.06% 11.38% 18.62% 0.20% 1.00% 0.45% 1.12% 0.27% 0.33% 0.16% 0.06% 0.06% 0.27% 1.00%
BMP2 9566 23.38% 59.69% 11.37% 0.25% 1.08% 1.12% 0.28% 0.42% 0.59% 1.31% 0.21% 0.22% 0.09% 0.00%
BMP2 C21 30.97% 14.91% 48.58% 0.91% 0.92% 0.55% 1.29% 0.29% 0.19% 0.84% 0.02% 0.20% 0.24% 0.12%
T72 132 0.58% 0.53% 1.38% 84.75% 4.20% 5.13% 0.08% 0.54% 2.13% 0.02% 0.04% 0.43% 0.03% 0.17%
T72 812 0.44% 0.69% 0.93% 3.89% 76.90% 13.79% 0.22% 0.97% 1.61% 0.22% 0.03% 0.29% 0.00% 0.02%
T72 S7 0.48% 1.40% 0.79% 9.04% 14.23% 70.76% 0.12% 0.52% 0.91% 0.32% 0.51% 0.80% 0.02% 0.08%
2S1 1.16% 2.08% 2.64% 0.41% 0.84% 0.15% 85.96% 0.28% 0.28% 3.75% 0.48% 0.81% 0.45% 0.71%
T62 2.14% 1.67% 3.00% 2.86% 1.98% 2.04% 2.93% 77.15% 2.90% 0.66% 0.48% 1.01% 0.82% 0.35%
ZSU 1.13% 0.55% 1.37% 1.47% 0.04% 0.20% 0.47% 2.67% 89.03% 0.85% 0.14% 0.02% 0.45% 1.61%
BTR70 C71 0.25% 0.29% 0.74% 0.28% 0.48% 0.06% 0.70% 0.09% 0.01% 92.75% 2.30% 1.00% 1.04% 0.00%
BTR60 0.68% 0.37% 1.53% 0.21% 0.14% 1.14% 0.29% 0.83% 1.09% 3.42% 88.13% 0.49% 1.35% 0.34%
ZIL131 2.15% 0.87% 1.69% 0.95% 0.86% 1.40% 5.08% 0.90% 0.32% 2.59% 0.51% 79.22% 2.90% 0.57%
BRDM 1.31% 2.15% 1.65% 0.84% 0.47% 0.94% 3.17% 1.65% 3.27% 3.39% 1.11% 0.98% 78.13% 0.95%
D7 0.26% 0.54% 0.72% 0.08% 0.00% 0.05% 0.12% 0.08% 0.32% 0.00% 0.32% 0.01% 0.59% 96.91%

TABLE III
Confusion Matrix Showing the Percentage of Correct Characterization Using Pseudo-Zernike, SNR 0 dB, Order 10, and Additive Compound

Gaussian Noise, ν = 0.5

BMP2 BMP2 BMP2 T72 T72 T72 2S1 T62 ZSU BTR70 BTR60 ZIL131 BRDM D7
9563 9566 C21 132 812 S7 C71

BMP2 9563 49.06% 15.43% 22.36% 1.54% 0.80% 1.38% 1.91% 0.79% 0.29% 2.60% 0.61% 1.34% 1.53% 0.35%
BMP2 9566 24.53% 42.68% 18.41% 1.82% 1.29% 2.38% 1.78% 0.73% 0.33% 2.90% 0.71% 1.13% 1.20% 0.11%
BMP2 C21 28.45% 18.47% 39.30% 0.99% 1.07% 2.37% 2.24% 1.31% 0.41% 2.06% 0.61% 0.85% 1.20% 0.66%
T72 132 2.85% 3.05% 3.04% 65.09% 6.29% 10.04% 0.79% 2.79% 1.45% 0.51% 1.09% 1.73% 0.53% 0.74%
T72 812 2.57% 2.77% 2.06% 7.25% 55.82% 19.74% 1.36% 2.43% 1.62% 0.79% 1.13% 1.55% 0.20% 0.72%
T72 S7 2.08% 3.46% 2.67% 9.93% 10.66% 60.46% 0.74% 1.68% 1.64% 1.37% 0.94% 2.35% 0.48% 1.54%
2S1 1.90% 5.91% 3.64% 1.30% 1.44% 2.26% 60.06% 2.31% 2.93% 10.78% 0.70% 4.49% 0.83% 1.46%
T62 5.51% 4.55% 8.71% 4.34% 3.29% 4.75% 4.62% 49.85% 2.88% 2.98% 2.30% 1.83% 2.20% 2.20%
ZSU 0.84% 0.89% 1.17% 1.47% 0.39% 0.95% 0.77% 7.06% 77.18% 0.02% 0.61% 0.31% 0.98% 7.35%
BTR70 C71 2.47% 2.36% 2.32% 0.27% 0.11% 0.12% 1.68% 0.70% 0.02% 85.52% 1.16% 0.95% 2.27% 0.05%
BTR60 1.43% 1.96% 2.02% 1.27% 0.36% 1.76% 0.99% 1.59% 0.86% 8.46% 75.01% 1.05% 2.70% 0.54%
ZIL131 1.83% 2.34% 3.76% 2.60% 1.76% 1.36% 6.47% 2.85% 0.58% 6.73% 3.43% 63.84% 1.66% 0.79%
BRDM 1.70% 2.92% 1.23% 0.72% 0.44% 1.04% 3.30% 1.75% 1.94% 4.30% 3.31% 0.85% 74.72% 1.78%
D7 1.84% 0.71% 1.79% 1.16% 0.40% 2.17% 1.45% 2.22% 5.18% 0.15% 0.44% 0.40% 0.70% 81.38%

Fig. 4. Performance using Krawtchouck (continuous lines) and pseudo-Zernike (dashed lines) approaches, for different moment orders and
multiplicative noise levels with ν = 0.5 and ν = 10. (a) Recognition. (b) Identification. (c) Characterization.
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TABLE IV
Confusion Matrix Showing the Percentage of Correct Characterization Using Krawtchouk, Order 10, and Multiplicative Noise, ν = 0.5

BMP2 BMP2 BMP2 T72 T72 T72 2S1 T62 ZSU BTR70 BTR60 ZIL131 BRDM D7
9563 9566 C21 132 812 S7 C71

BMP2 9563 55.57% 14.27% 20.48% 1.07% 1.55% 0.88% 1.79% 0.91% 0.62% 0.33% 0.36% 0.36% 0.60% 1.21%
BMP2 9566 20.85% 55.14% 14.81% 1.09% 1.02% 1.81% 1.40% 0.69% 0.96% 0.79% 0.21% 0.78% 0.38% 0.07%
BMP2 C21 26.77% 17.64% 45.04% 1.15% 0.98% 0.76% 2.33% 1.56% 0.68% 0.57% 0.27% 0.59% 0.73% 0.96%
T72 132 1.15% 1.25% 1.59% 76.36% 5.05% 6.99% 0.33% 1.63% 3.40% 0.06% 0.34% 1.41% 0.06% 0.38%
T72 812 0.48% 0.98% 1.38% 5.35% 69.12% 16.32% 0.42% 2.06% 2.36% 0.17% 0.23% 1.02% 0.03% 0.10%
T72 S7 0.93% 1.51% 1.07% 9.96% 14.58% 64.92% 0.51% 1.02% 2.39% 0.27% 0.30% 1.89% 0.36% 0.30%
2S1 1.79% 2.03% 2.92% 0.57% 0.88% 0.68% 82.40% 1.13% 0.60% 3.34% 0.61% 1.52% 0.30% 1.25%
T62 1.92% 1.37% 2.68% 3.17% 2.98% 3.02% 3.53% 70.35% 5.66% 0.43% 0.89% 1.64% 0.91% 1.46%
ZSU 0.78% 0.56% 1.16% 0.94% 0.16% 0.47% 0.71% 3.06% 87.99% 0.43% 0.36% 0.13% 0.44% 2.80%
BTR70 C71 1.06% 0.74% 0.96% 0.47% 0.88% 0.32% 2.96% 0.52% 0.16% 86.43% 2.95% 1.14% 1.36% 0.04%
BTR60 1.22% 1.07% 1.39% 0.69% 0.34% 1.22% 1.19% 1.68% 1.74% 4.35% 81.33% 1.16% 1.31% 1.31%
ZIL131 1.85% 1.19% 1.75% 1.43% 1.27% 1.50% 6.79% 2.30% 0.74% 2.13% 0.82% 74.85% 1.94% 1.43%
BRDM 2.45% 1.90% 2.40% 0.88% 0.32% 1.20% 5.00% 2.56% 4.12% 2.65% 1.89% 1.05% 72.53% 1.04%
D7 0.40% 0.23% 0.65% 0.08% 0.01% 0.10% 0.30% 0.30% 1.19% 0.01% 0.12% 0.18% 0.43% 96.00%

TABLE V
Confusion Matrix Showing the Percentage of Correct Characterization Using Pseudo-Zernike, Order 10, and Multiplicative Noise, ν = 0.5

BMP2 BMP2 BMP2 T72 T72 T72 2S1 T62 ZSU BTR70 BTR60 ZIL131 BRDM D7
9563 9566 C21 132 812 S7 C71

BMP2 9563 46.98% 17.16% 23.11% 1.76% 0.70% 1.68% 1.88% 0.96% 0.37% 1.89% 0.52% 1.03% 1.42% 0.54%
BMP2 9566 21.53% 44.78% 19.70% 1.67% 1.24% 2.89% 2.00% 0.72% 0.65% 2.32% 0.79% 0.95% 0.63% 0.12%
BMP2 C21 25.81% 18.69% 40.79% 1.59% 1.05% 2.39% 2.58% 1.28% 0.41% 1.46% 0.86% 1.09% 0.99% 1.02%
T72 132 2.25% 2.11% 2.19% 66.52% 5.98% 11.28% 0.80% 2.65% 1.59% 0.22% 1.28% 1.81% 0.18% 1.14%
T72 812 1.06% 1.47% 1.23% 7.49% 56.06% 21.91% 2.28% 3.34% 1.37% 0.35% 0.65% 1.86% 0.12% 0.79%
T72 S7 1.29% 2.16% 1.71% 11.26% 10.10% 61.79% 1.07% 2.33% 1.67% 0.71% 0.89% 3.01% 0.15% 1.85%
2S1 1.67% 3.85% 3.20% 0.97% 1.70% 2.57% 67.12% 3.18% 1.79% 6.58% 0.95% 4.42% 0.48% 1.52%
T62 2.32% 1.51% 4.07% 3.51% 2.94% 5.30% 5.77% 63.20% 4.29% 0.84% 1.44% 1.73% 0.99% 2.09%
ZSU 0.35% 0.49% 0.42% 0.63% 0.18% 0.67% 0.31% 5.65% 83.33% 0.00% 0.26% 0.58% 0.27% 6.86%
BTR70 C71 2.49% 2.55% 2.45% 0.17% 0.24% 0.41% 2.96% 0.80% 0.05% 83.92% 1.86% 0.47% 1.55% 0.08%
BTR60 1.54% 1.46% 1.93% 1.30% 0.62% 2.15% 1.91% 1.81% 1.37% 7.00% 75.61% 0.72% 1.73% 0.86%
ZIL131 0.87% 1.09% 2.16% 1.37% 1.20% 1.46% 7.42% 3.84% 0.82% 2.39% 2.12% 72.70% 0.86% 1.69%
BRDM 1.66% 2.53% 1.59% 0.87% 0.45% 0.89% 2.59% 1.85% 1.56% 3.47% 2.13% 0.69% 77.83% 1.89%
D7 0.58% 0.22% 0.89% 0.40% 0.16% 1.11% 0.76% 2.10% 6.02% 0.01% 0.24% 0.81% 0.33% 86.38%

the Krawtchouk approach results in higher reliability and
robustness to noise compared to those obtained using the
pseudo-Zernike. For example, considering an SNR level of
0 dB and ν = 0.5, the algorithm using the Krawtchouk mo-
ments results to be correct in 91.43%, 84.57%, and 73.65%
of cases for recognition, identification, and characterisation,
respectively, while using the pseudo-Zernike moments, the
performance dropped to 88.46%, 79.50%, and 67.25%. In
this case, the use of the proposed approach is able to provide
more robust results in the presence of multiplicative noise
in the images, with performance improvement of 2.97%
in recognition, 5.07% in identification, and 6.40% in char-
acterization capabilities. For completeness, the confusion
matrices showing the percentage of correct characterization
obtained for the ν = 0.5 and moments up to order 10 are
reported in Tables IV and V for Krawtchouk and pseudo-
Zernike, respectively. In these cases, β results to have the
values of 2.66 and 1.96, respectively. Again, in red and
blue, the variations of BMP2 and T72 are reported. Also,
for the multiplicative noise case, the Krawtchouk moments
show a better capability to maintain a good representation

of details compared to those obtained using the pseudo-
Zernike moments; in particular, β results to be 1.35 and
1.05 for the BMP2 target and 3.61 and 2.71 for the T72
case for the Krawtchouk and pseudo-Zernike approaches,
respectively.

These results demonstrate the higher robustness to the
presence of noise of the Krawtchouk moments, making
the proposed approach particularly suitable for more noisy
SAR images like those acquired with low-cost sensors
mounted on UAVs and low-frequency SAR images (e.g.,
foliage-penetrating SAR).

IV. CONCLUSION

In this paper, an algorithm for ATR based on the
Krawtchouk moments has been presented. The proposed
approach was shown to provide a more reliable solution
to the ATR challenge from SAR images with higher ca-
pabilities in discriminating between different subclasses of
targets and in noisy environments. The performance of the
proposed algorithm was assessed using the real MSTAR
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dataset that contains different vehicles in various config-
urations. The superior performance and robustness of the
Krawtchouk-based algorithm have been confirmed by the
experimental results, demonstrating improvements, in par-
ticular, on the characterization of targets, over the approach
using the pseudo-Zernike moments that suffers from dis-
cretization errors and is less robust in the presence of noise.
Hence, the proposed approach is particularly suitable for
SWAP systems and with potential to be used on SAR im-
ages acquired with low-cost sensors mounted on UAVs and
foliage-penetrating SAR images.
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