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Abstract—In previous work, we have demonstrated the utility of 
a feedback loop for enabling optimized transmit pulse shaping 
in radar target recognition.  This previous work was based on 
low-fidelity target models, but in this paper, we demonstrate the 
closed-loop, adaptive-waveform approach applied to high-
fidelity target model signatures generated by commercial 
electromagnetic FDTD software.  We also incorporate the radar 
equation into our models for us in the waveform design 
procedure.  Because SNR varies with range, so do our optimized 
waveforms for target recognition.  Constant-modulus waveform 
constraints are enforced, and a template-based classification 
strategy is used.  

I. INTRODUCTION 
Cognitive radar [1] uses an adaptive transmitter to transmit 

customized waveforms.  At each transmission, the adaptive 
transmitter updates its waveform based on the radar’s 
objectives, a probability model for previous measurements, 
and other prior information.  Waveform customization can 
refer to both the temporal structure of the waveform as well as 
the transmit beampattern.  Because the adaptive transmitter 
exploits previous measurements, we can view cognitive radar 
as having a feedback loop between the radar receiver and 
transmitter.  This feedback loop delivers analyzed information 
from previous radar measurements to the radar transmitter in 
the form of updated prior information.  In this paper we focus 
on the customization of a waveforms temporal structure in 
order to perform automatic target recognition (ATR) with 
reduced transmit power and/or at longer range. 

The goal of ATR is to identify an object that is observed 
by the radar system.  In our earlier work [2], an adaptively 
shaped temporal waveform was applied to a target 
identification scenario.  This work showed that a radar 
performing ATR according to cognitive radar principles uses 
fewer radar resources (i.e., reduced power or energy) and 
makes a fast decision with low error rate.  Cognitive radar can 
also be applied to make better use of the radar timeline in 
detection and tracking scenarios.  In [3], a cognitive-radar-
based technique for adaptive beamsteering was implemented. 

This closed-loop approach to beamsteering has been 
demonstrated to improve detection time.  In [4], cognitive 
tracking radar was implemented.  The transmit waveform was 
selected from a prescribed library according to information 
collected by the receiver, and the cognitive tracking radar was 
shown to outperform conventional radar.  In [5], cognitive 
radar with knowledge-aided (KA) processing was proposed.   

We extend our previous work in the area of ATR with two 
contributions in this paper.  First, we use new high-fidelity 
target signatures.  In previous work, our target signatures were 
generated from simple arbitrary target outlines and hand-
placed scatterers, which allowed the signatures to vary with 
rotation of the target.  In this paper, we use commercial EM 
software (XFdtd, by Remcom) and publicly available target 
CAD models to calculate target signatures versus angle. 
Second, the radar equation is incorporated directly into the 
target signatures to model propagation loss.  Therefore, the 
radar equation affects the target signature spectral strengths. 
Because optimized waveform design is SNR-dependent, using 
the radar equation in the target signature model affects our 
waveform design procedures.  The performance of closed-loop 
radar can then be considered as a function of target range.   

This paper is organized as follows.  In Section II, we 
present the problem statement and signal model.  In Section 
III, we describe the target signature model.  In Section IV-A, 
we show the waveform design technique and incorporation of 
the radar equation to the design technique.  In Section IV-B, 
we summarize constant-modulus waveform constraints.  In 
Section V, we describe the decision-making procedure and 
probability updates based on Bayes’ Theorem.  In Section VI, 
we show simulation results, and in Section VII, we make our 
conclusions. 

II. PROBLEM STATEMENT AND SIGNAL MODEL 
A monostatic radar system with a matched illumination 

waveform is applied to the target recognition scenario in the 
presence of additive white Gaussian noise (AWGN).  The 
basic problem formulation is similar to our previous work [6]  
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and summarized below.  It is assumed that a target has already 
been detected and is known to be one of M  possible target 
types.  The target has a continuum of target signatures as a 
function of azimuth and elevation angles.  For simplicity, here 
we hold the elevation angle fixed and consider only azimuth 
rotation.  Consider a linear target model as follows.  When the 
radar waveform )(ts  is transmitted, the radar received signal 

)(ty  is denoted as  

 )()(*)()( tntstgty +=  (1) 

where )(tg  is the azimuth-varying target signature of the 
unknown target, *  is the convolution operator, and )(tn  is 
AWGN with power 2

nσ .   

A discrete-time version of the signal model is necessary to 
implement as a computer simulation.  In discrete-time 
notation, the target signature is represented by a length- gL  
vector g , the waveform is denoted as a length- sL  vector s , 
the noise is defined as a length-Ln vector n , and the received 
signal is represented by a length-Ly vector y.  To implement 
the convolution between waveform and target impulse 
response in the discrete-time model, a signal matrix S  is 
defined as [7]  
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Using the signal matrix and above definitions, the discrete-
time signal model is 

 nSgy += . (3) 

To handle target signatures that vary with azimuth angle, 
the azimuth angle is divided into Ng uniformly sized angular 
sectors.  Multiple target signatures are generated for angles 
within each sector, and the signatures are averaged to acquire 
a mean template for that sector.  The mean templates of all M  
target types are defined as ggi MNNit ,...,,...,1),( =g .  When 
the number of sectors Ng is large, the size of each sector is 
small, and the mean-template for each sector is a good 
representation of the target signatures across the sector.  
However, computational complexity increases when we must 
consider many sectors, especially in cognitive radar where 
probabilities associated with each sector will be updated after 
each transmission.  Thus, the sector size should be based on 
both required accuracy and system complexity.  To employ 
prior information about the target orientation (derived, for  
 

example, from target bearing information), the target 
orientation at the beginning of the recognition phase is 
assumed known to within a few angular sectors.   

To set up the target recognition problem in terms of 
hypothesis testing, we define a single hypothesis as 
corresponding to a single angular section within a single target 
type.  Thus, for the sake of feeding information back to the 
transmitter and optimizing the waveform design, each angular 
sector is treated as a different hypothesis.  As measurements 
are received, the probabilities associated with each 
target/sector combination are updated to reflect what has been 
learned.  But to do this, we need to define a probability density 
function (pdf) of the radar received signal for each 
target/sector hypothesis. One potential distribution is Gaussian, 
which might be able to capture both the mean template for a 
sector as well as the variation of the signatures around the 
mean for that sector.  Unfortunately, a multivariate normality 
test applied to the XFdtd target signatures [8] over a sector 
showed that Gaussian was not representative, even as an 
approximate distribution.  Thus, instead of making a Gaussian 
assumption for the target signatures, the signatures are treated 
as constant across a sector, resulting in a deterministic model 
with the mean-template ig  for each sector.  Since the 
waveform s  and target template (given a particular target and 
sector) are deterministic, and the noise n  is AWGN, the 
received signal y  is Gaussian.  The pdf of the complex 
received signal given the ith target/sector hypothesis is defined 
as 

 ))()(1exp(
)(

1)( ,,22 iy
H

iy
n

N
n

iHp μyμy|y −−−=
σπσ

 (4) 

where iiy gSμ =,  is the mean of the received signal under the 
thi  target/sector hypothesis and H)(⋅  is the conjugate 

transpose operator.  The mean signal iy,μ  is waveform-
dependent and must be updated as the transmit waveform 
changes.  

III. TARGET MODEL 
In prior work [6], our target models consisted of arbitrary 

target outlines with scattering centers placed at various 
locations along the outlines.  This model allowed the rotation 
of the target to affect the resulting target signatures.  However, 
the models were admittedly low-fidelity.  Here, we use a 3D 
commercial electromagnetic (EM) simulator, XFdtd, to 
calculate high-fidelity target signatures.  The XFdtd software 
was provided by Remcom.  The setup for generating the 
signatures is as follows.  We used scaled 3D target CAD 
models in the XFdtd simulations.  A monostatic radar was 
located in far-field.  A broadband waveform was transmitted 
to the target and the reflected signal was stored.  The 
procedure was repeated at many different aspect angles to 
create a received signal library.  With each reflected signal, we 
calculated frequency-domain target transfer functions 
according to  

)(/)()( fSfYfG =  (5) 
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Figure 1.  Head-on target signature of F-16 aircraft. 

where )( fG , )( fY , and )( fS  are the Fourier transforms of 
target signature, the radar received signal, and the wideband 
transmitted waveform, respectively.  The bandwidth of the 
transmitted pulse in this signature generation phase was 
significantly larger than the maximum waveform bandwidth 
for any of the ATR simulations that used the signatures.  For 
the cognitive-radar ATR simulations, a section of the target 
transfer function corresponding to the radar transmission band 
was extracted from the wideband function in (5).  The time-
domain target signature was then generated from the inverse 
Fourier transform of the resulting bandlimited target transfer 
function.   

Two examples of target signatures generated by XFdtd are 
shown in Figures 1 and 2.  A monostatic radar is located 
slightly above the target’s horizontal plane at 20° elevation.  
A wideband pulse with 5 GHz bandwidth was simulated via 
XFdtd.  Figure 1 shows the head-on target signature for an F-
16. The length of F-16 CAD model is 1.445 m 
(approximately a 10:1 scale model).  The peaks of the target 
signature correspond to the location of scatterers in the CAD 
model.  The first peak corresponds to the tip of the nose and 
the second peak corresponds to the canopy of aircraft.  The 
two largest peaks correspond to the largest under-wing 
missiles.  The last peak is from the tail of the aircraft.  The 
length of target signature between the first peak and the last 
peak is slightly smaller than the CAD length, because the 
radar is above the target and the reflection from the tail 
happens at the leading edge of the tail.  Figure 2 shows the 
target signature of an A-10 CAD model at 30° azimuth.  The 
length of A-10 CAD model is 0.817 m.  The first and the last 
small peaks correspond to the nose and tail of the A-10, 
respectively.  The four big peaks are generated by the two  

 

Figure 2.  Azimuth angle 30 ˚ target signature of A-10 aircraft. 

 
under-wing landing-gear housings and two engines.  In 
XFdtd, the propagation of the EM wave in space is calculated 
according to Maxwell’s equations, which provides much 
more representative target signatures than we have used 
previously.    
 

IV. RADAR WAVEFORM DESIGN 

A. Waveform design and the radar equation 
The waveform design technique that we use here is based 

on maximization of mutual-information. The technique is 
adapted from the analysis in [9] and summarized below.  We 
assume that an ensemble of target impulse responses exists.  
We also assume that the radar waveform has several 
constraints (energy, time, and frequency).  For a Gaussian 
target ensemble, the waveform that maximizes the mutual 
information between the radar received signal and the 
(Gaussian) ensemble of target impulse responses can be 
found according to [9] 
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where the ensemble’s spectral function is defined as 
}|)}({)({|)( 22 fGEfGEfG −=σ , )( fG  is the Gaussian target 

transfer function, and sT  is the sampling interval of the 
signals.  The total energy in the waveform is controlled by the 
scalar value A, such that   
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As mentioned, the above design technique is based on a 
Gaussian ensemble, which we do not have.  Fortunately, the 
spectral variance function can be extended for a finite number 
of discrete target hypotheses according to [2] 

 ∑ ∑
= =
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g gMN

i

MN

i
iiiiG fGPfGPf

1 1

222 |)(||)(|)(σ  (8) 

where )( fGi  is the Fourier transform of the ith mean target 
template.  This spectral variance can be substituted in (6), and 
the waveform spectrum is found according to the waterfilling 
technique [9].  In this technique, the desired waveform energy 
spectrum is acquired by inverting the function 

)(2/ 22 fTA Gyn σσ−  and pouring energy into the lowest parts 
of the inverted function until the allowable energy is gone.  
The amount of energy that is poured into each spectral 
component determines the waveform’s magnitude spectrum. 
The phase of the waveform is an additional design variable 
that may be used to meet other design constraints, such as a 
constant modulus constraint.  

As seen in (6), the optimum waveform depends on the 
noise power as well as the strength of the target ensemble 
(through the spectral variance). When SNR is low, the 
waveform defined by (6) will tend to have energy in only a 
couple narrow spectral bands. When SNR is high, the 
waveform becomes diversified and spreads its energy over the 
allowable band. Because the waveform design is SNR-
dependent, it is important to factor the radar equation into the 
signal model. The power, Pr, of the return signal from the 
target at the radar receiver can be calculated by the radar 
equation according to [10] 

 
2 2

3 4(4 )
T a

r T T eff
P G

P P C P
R

λ σ σ σ
π

= = =  (9) 

where TP  is the radar transmit power, aG  is the antenna gain, 
λ  is the operating wavelength, σ  is radar cross section, and 
R  is the range between radar and target.  The variable C  can 
be incorporated into σ  to represent an effective radar cross 
section that varies with range, and this effective radar cross 
section can be used to properly scale the target signature 
library. Therefore, propagation loss is factored into the 
spectral variance function above, which then affects the 
waveform design.  

In this work, we scale the target template libraries such that 
the average level of the magnitude of all target transfer 
functions for a particular target is equal to the average square 
root of RCS for that target.  In other words, suppose that a 
target has an RCS of σ, then we set the target transfer function 
scaling such that 

 ( ) EG f C σ⎡ ⎤= ⎣ ⎦ . (10) 

This normalization ensures that for a narrowband waveform 
centered around frequency f0, we have a constant-valued 
transfer function over the waveform bandwidth with average 
magnitude equal to 

 ( )0E EG f C σ⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦ . (11) 

The received waveform will then be 
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With the scaling of the radar range equation incorporated into 
the target signature, the signal model now fits the form of (1) 
as required by the mutual information waveform design 
method.  

B. Waveform constraint 
Any practical radar system has a peak power limitation, so 

the temporal radar waveform should be designed and operated 
under this limitation. Thus, a constant modulus [11] constraint 
on the radar waveform is necessary to operate the radar system 
efficiently.  

The technique used here to construct a constant-modulus 
signal with a prescribed Fourier transform magnitude is based 
on iterative magnitude and amplitude projections.  The 
technique is presented in [11] and summarized below.  The set 
of functions { )(tv } with equal Fourier transform magnitude 

)(wF over the frequency set Ψ  is denoted as MD .  Then, we 
can define a magnitude projection operator MP  that projects 
an arbitrary function )(tx  to nearest point on MD .  Assuming 

the Fourier transform of )(tx  is )(|)(|)( wjewXwX Ω= , the 
magnitude projection procedure is represented by 
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The set of functions { )(tv } with positive constant value B  
over the temporal duration T  is represented by AD .  Then, 
we can also define an amplitude projection operator AP  that 
projects an arbitrary function )(tx  to closest point on AD .  

Assuming )(tx  is equal to )()( tjeta φ , the amplitude projection 
is defined as  
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)(φ
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The above magnitude and amplitude projection is performed 
iteratively according to  

 )()(1 txPPtx kMAk =+  (15) 

where )(txk  is the arbitrary function after thk  projection.  
After many iterations, the function )(tx  maintains exact 
constant modulus amplitude, but has a Fourier transform 
magnitude that approximates the desired Fourier magnitude.   
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V. FIXED NUMBER OF ITERATIONS AND BAYES’ THEOREM 
We adopt a procedure whereby a classification decision is 

made after transmitting a fixed number of optimized 
waveforms.  Therefore, the number of transmissions is fixed 
in advance.  At each transmission, the likelihoods are formed 
and the probabilities associated with each target/sector 
combination are updated.  The expression of the thi  
hypothesis likelihood after the thk  transmission depends on 
joint pdf of the received signals on all transmissions.  
However, since the radar waveform and target signature are 
modeled as deterministic, and the white Gaussian noise 
samples are uncorrelated and independent, the measurement 
data are statistically independent.  Then, the joint pdf of the 
data on all transmissions can be accumulated to update the 
likelihood of the ith hypothesis according to  

 ikikiiki PpppHp )()()()|( 2211 yyyy ∝  (16)  

where )( kikp y  is the pdf of the thk  received signal for the 
thi  hypothesis, ky  is the received signal due to thk  

transmission, and iP  is the probability of the thi  hypothesis 
prior to any transmissions.  The final decision is made after 
the number of transmission reaches the pre-defined iteration 
limit. The hypothesis iH  corresponding to the highest 
likelihood is the final decision. 

In the closed-loop radar system, the waveforms are 
updated at each transmission.  To update the waveform, the 
hypothesis probabilities are update by Bayes’ theorem 
according to (16) (except for a scaling factor that ensures the 
probabilities sum to unity).  The updated probabilities are 
substituted into (8) to update the radar waveform.  

 
VI. RESULTS 

We performed a computer simulation of a radar target 
recognition scenario based on the techniques above.  We have 
two plane targets (F-16 and A-10).  We assume that the 
elevation angle between the horizontal plane of the target and 
the radar line of sight is 20°, such that the monostatic radar is 
a little above the target.  We consider azimuth angles over a 
90° range from head-on to broadside of each target.  We 
generated target signatures at every 0.1° interval.  Since we 
know the actual size of these targets from the literature, we 
use a scaling factor to adjust the sampling interval and 
bandwidth of the original CAD-based XFdtd target signatures 
to the actual target size, approximately.  Table I shows the 
lengths and scaling factors.  The target signatures are grouped 
into 1° sectors.  The target signatures within each uniform 
angular sector are averaged to generate a mean-template.  We 
assume that we have prior knowledge about the velocity and 
bearing information of a target.  Thus, for a given trial of the 
ATR simulation, we can narrow down the possible target 
angular sectors to two adjacent mean-templates for each 
target.  We treat each sector as a hypothesis, so we have four 
hypotheses in total for a given trail. For randomly selected 

  
TABLE I.  TARGET LENGTHS AND SCALING FACTORS 

Targets Actual length(m) CAD length(m) Scaling factor 

F-16 15.06 1.445 10 

A-10 16.26 0.817 20 
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Figure 3.  Error rates versus transmit power for fixed number of 

transmissions. 
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Figure 4.  Error rates versus range for fixed number of transmissions. 

target angles that do not fall on the 0.1° increments, we 
generate the true target signature by a weighted average of 
the two adjacent target signatures. We compare the 
performance of two waveforms: the information-based 
waveform realized via the spectral variance strategy over a 
250-MHz bandwidth, and a 250-MHz wideband impulse.  We 
use the radar equation to compare the performance of the 
waveforms based on the range between radar and target.  The 
radar parameters used were an antenna gain of 30dB at S 
band, a noise temperature of 290 K, and an average total RCS 
for each target of 1 2m .  Five waveforms were transmitted 
before making a decision.  We ran 200,000 Monte Carlo trials 
(over noise realizations and orientation angle), and counted 
the number of incorrect decisions to compute error rates. 
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Figure 3 shows the error rates versus transmit power.    
The information-based waveform performs better than the 
wideband waveform for the same range because the 
information-based waveform puts energy into the frequency 
bands where spectral discrimination is strong. The radar 
return signal from farther range has lower signal-to-noise 
(SNR), so the error rates are higher.  The two waterfilling 
waveforms (for R = 20 km and 30 km) at error rate 0.01 are 
shift by approximately 7 dB.  Because the ratio between these 
distances is 30/20 = 1.5, and the received power has a 1/R4 
relationship to target range, ))5.1/(1(log*10 4

10 = -7.0437dB, 
and the 7 dB shift is expected. The information-based 
waveforms require about 5 dB less power than the wideband 
waveforms at the same range.  Figure 4 shows the error rates 
versus range when the transmit power is 26 dB.  In this case, 
the information-based waveform can achieve the same error 
rate as the wideband waveform, but at an approximately 30% 
increase in range.  

VII. CONCLUSIONS 
We have simulated a closed-loop radar system for target 

recognition using high-fidelity target models calculated via 
commercial EM software and publicly available target CAD 
models.  We also incorporated the radar equation into the 
target signatures as part of the waveform design process.  The 
information-based waveform with a constant modulus 
constraint was compared to a flat-spectrum wideband 
waveform in a target recognition scenario.  The two targets 
being classified were an F-16 and an A-10. The results show 
that the information-based waveform provides approximately 
5 dB improvement in transmitted power for the same error 
rate, which translated to a more than 30% increase in 
recognition range.   
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