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Abstract

This paper reports on a mutual information (MI) based algo-
rithm for automatic extrinsic calibration of a 3D laser scan-
ner and optical camera system. By using MI as the regis-
tration criterion, our method is able to work in situ without
the need for any specific calibration targets, which makes it
practical for in-field calibration. The calibration parameters
are estimated by maximizing the mutual information obtained
between the sensor-measured surface intensities. We calcu-
late the Cramer-Rao-Lower-Bound (CRLB) and show that the
sample variance of the estimated parameters empirically ap-
proaches the CRLB for a sufficient number of views. Fur-
thermore, we compare the calibration results to independent
ground-truth and observe that the mean error also empirically
approaches to zero as the number of views are increased. This
indicates that the proposed algorithm, in the limiting case,
calculates a minimum variance unbiased (MVUB) estimate
of the calibration parameters. Experimental results are pre-
sented for data collected by a vehicle mounted with a 3D laser
scanner and an omnidirectional camera system.

1 Introduction

Today, robots are used to perform challenging tasks that
we would not have imagined twenty years ago. In order
to perform these complex tasks, robots need to sense and
understand the environment around them. Depending upon
the task at hand, robots are often equipped with different
sensors to perceive their environment. Two important cate-
gories of perception sensors mounted on a robotic platform
are: (i) range sensors (e.g., 3D/2D lidars, radars, sonars)
and (ii) cameras (e.g., perspective, stereo, omnidirectional).
Oftentimes the data obtained from these sensors is used in-
dependently; however, these modalities capture complemen-
tary information about the environment, which can be fused
together by extrinsically calibrating the sensors. Extrinsic
calibration is the process of estimating the rigid-body trans-
formation between the reference (co-ordinate) system of the
two sensors. This rigid-body transformation allows repro-
jection of the 3D points from the range sensor coordinate
frame to the 2D camera coordinate frame (Fig. 1).

Substantial prior work has been done on extrinsic cali-
bration of pinhole perspective cameras to 2D laser scanners
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Figure 1: The top panel is a perspective view of the 3D
lidar range data, color-coded by height above the ground
plane. The bottom panel depicts the 3D lidar points pro-
jected onto the time-corresponding omnidirectional image.
Several recognizable objects are present in the scene (peo-
ple, stop signs, lamp posts, trees). (Only nearby objects are
projected for visual clarity.)

(Zhang 2004; Mei and Rives 2006; Unnikrishnan and Hebert
2005) as they are inexpensive and are significantly helpful
in many robotics applications. Zhang (2004) described a
method that requires a planar checkerboard pattern to be
simultaneously observed by the laser and camera systems.
Mei and Rives (2006) later reported an algorithm for the cal-
ibration of a 2D laser range finder and an omnidirectional
camera for both visible (i.e., laser is observed in camera im-
age also) and invisible lasers.

2D laser scanners are used commonly for planar robotics
applications, but recent advancements in 3D laser scanners
have greatly extended the capabilities of robots. In most
mobile robotics applications, the robot needs to automati-
cally navigate and map the environment around them. In
order to create realistic 3D maps, the 3D laser scanner and
camera-system mounted on the robot need to be extrinsi-
cally calibrated. The problem of 3D laser to camera calibra-
tion was first addressed by Unnikrishnan and Hebert (2005),
who extended Zhang’s method (2004) to calibrate a 3D laser
scanner with a perspective camera. Scaramuzza, Harati, and
Siegwart (2007) later introduced a technique for the calibra-
tion of a 3D laser scanner and omnidirectional camera using
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manual selection of point correspondences between camera
and lidar. Aliakbarpour et al. (2009) proposed a technique
for calibration of a 3D laser scanner and a stereo camera
using an inertial measurement unit (IMU) to decrease the
number of points needed for a robust calibration. Recently,
Pandey et al. (2010) introduced a 3D lidar-camera calibra-
tion method that requires a planar checkerboard pattern to
be viewed simultaneously from the laser scanner and cam-
era system.

Here, we consider the automatic, targetless, extrinsic cal-
ibration of a 3D laser scanner and camera system. The
attribute that no special targets need to be viewed makes
the algorithm especially suitable for in-field calibration.
To achieve this, the reported algorithm uses a mutual
information (MI) framework based on the registration of the
intensity and reflectivity information between the camera
and laser modalities.

The idea of MI based multi-modal image registration was
first introduced by Viola and Wells (1997) and Maes et
al. (1997). Since then, the algorithmic developments in MI
based registration have been exponential and have became
state-of-the-art, especially in the medical image registration
field. Within the robotics community, the application of MI
has not been as widespread, even though robots today are of-
ten equipped with different modality sensors. Alempijevic et
al. (2006) reported a MI based calibration framework that re-
quired a moving object to be observed in both sensor modal-
ities. Because of their MI formulation, the results of Alem-
pijevic et al. are (in a general sense) related to this work;
however, their formulation of the MI cost-function ends up
being entirely different due to their requirement of having to
track moving objects. Boughorbal et al. (2000) proposed a
χ2 test that maximizes the statistical dependence of the data
obtained from the two sensors for the calibration problem.
This was later used by Williams et al. (2004) along with two
methods to estimate an initial guess of the rigid-body trans-
formation, which required manual intervention and a special
object tracking mechanism. Boughorbal et al. (2000) and
Williams et al. (2004) are the most closely related previous
works to our own; however, they have reported problems of
existence of local maxima in the cost-function formulated
using either MI or χ2 statistics.

In this work we solve this problem by incorporating scans
from different scenes in a single optimization framework,
thereby, obtaining a smooth and concave cost function, easy
to solve by any gradient ascent algorithm. Fundamentally,
we can use either MI or the χ2 test as both of them provide
a measure of statistical dependence of the two random vari-
ables (McDonald 2009). We chose MI because of ongoing
active research in fast and robust MI estimation techniques,
such as James-Stein-type shrinkage estimators (Hausser and
Strimmer 2009), which have the potential to be directly em-
ployed in the proposed framework, though are not currently.
Importantly, in this work we provide a measure of the un-
certainty of the estimated calibration parameters and empir-
ically show that it achieves the Cramer-Rao-Lower-Bound,
indicating that it is an efficient estimator.

Figure 2: The top panel is an image from the Ladybug3
omnidirectional camera. The bottom panel depicts the
Velodyne-64E 3D lidar data color-coded by height (left), and
by laser reflectivity (right).

Figure 3: The left panel shows the correlation coefficient
as a function of one of the rotation parameters (keeping all
other parameters fixed at their true value). We observe that
the correlation coefficient is maximum for the true roll angle
of 89◦. Depicted in the right panel is the joint histogram of
the reflectivity and the intensity values when calculated at
an incorrect (left) and correct (right) transformation. Note
that the joint histogram is least dispersed under the correct
transformation.

2 Methodology

In our work we have used a Velodyne 3D laser scanner
(Velodyne 2007) and a Ladybug3 omnidirectional camera
system (Pointgrey 2009) mounted to the roof of a vehicle.
A snapshot of the type of data that we obtain from these
sensors is depicted in Fig. 2, and clearly exhibits visual cor-
relation between the two modalities. We assume that the in-
trinsic calibration parameters of both the camera system and
laser scanner are known. We also assume that the laser scan-
ner reports meaningful surface reflectivity values. In this
work, we have previously calibrated the reflectivity values
of the laser scanner using the algorithm reported by Levin-
son and Thrun (2010).

Our claim about the correlation between the laser reflec-
tivity and camera intensity values is verified by a simple ex-
periment shown in Fig. 3. Here we calculate the correla-
tion coefficient for the reflectivity and intensity values for
Fig. 2’s scan-image pair at different values of the calibra-
tion parameter and observe a distinct maxima at the true
value. Moreover, in the right panel we observe that the joint
histogram of the laser reflectivity and the camera intensity
values is least dispersed when calculated under the correct
transformation parameters.
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Figure 4: (left) Image with shadows of trees and buildings
on the road. (right) Top view of the corresponding lidar re-
flectivity map, which is unaffected by ambient lighting.

Although scenarios such as Fig. 2 do exhibit high corre-
lation between the two sensors, there exist other scenarios
where they might not be as strongly correlated. One such
example is shown in Fig. 4. Here, the ambient light plays
a critical role in determining the intensity levels of the im-
age pixels. As clearly depicted in the image, there are some
regions of the road that are covered by shadows. The gray
levels of the image are affected by the shadows; however, the
corresponding reflectivity values in the laser are not because
it uses an active lighting principle. Thus, in these type of
scenarios the data between the two sensors might not show
as strong of a correlation and, hence, will produce a weak
input for the proposed algorithm. In this paper, we do not
focus on solving the general lighting problem. Instead, we
formulate a MI based data fusion criterion to estimate the
extrinsic calibration parameters between the two sensors as-
suming that the data is, for the most part, not corrupted by
lighting artifacts. In fact, for many practical indoor/outdoor
calibration scenes (e.g., Fig. 2) shadow effects represent a
small fraction of the overall data and thus appear as noise in
the calibration process. This is easily handled by the pro-
posed method by aggregating multiple views.

2.1 Theory

The mutual information (MI) between two random variables
X and Y is a measure of the statistical dependence occur-
ring between the two random variables. Various formula-
tions of MI have been presented in the literature, each of
which demonstrate a measure of statistical dependence of
the random variables in consideration. One such form of MI
is defined in terms of entropy of the random variables:

MI(X,Y ) = H(X) + H(Y )−H(X,Y ), (1)

where H(X) and H(Y ) are the entropies of random vari-
ables X and Y , respectively, and H(X,Y ) is the joint en-
tropy of the two random variables:

H(X) = −
∑

x∈X

pX(x) log pX(x), (2)

H(Y ) = −
∑

y∈Y

pY (y) log pY (y), (3)

H(X,Y ) = −
∑

x∈X

∑

y∈Y

pXY (x, y) log pXY (x, y). (4)

The entropy H(X) of a random variable X denotes the
amount of uncertainty inX , whereas H(X,Y ) is the amount

of uncertainty when the random variables X and Y are co-
observed. Hence, (1) shows that MI(X,Y ) is the reduction
in the amount of uncertainty of the random variableX when
we have some knowledge about random variable Y . In other
words, MI(X,Y ) is the amount of information that Y con-
tains about X and vice versa.

2.2 Mathematical Formulation

Here we consider the laser reflectivity value of a 3D point
and the corresponding grayscale value of the image pixel to
which this 3D point is projected as the random variables X
and Y , respectively. The marginal and joint probabilities of
these random variable p(X), p(Y ) and p(X,Y ) can be ob-
tained from the normalized marginal and joint histograms
of the reflectivity and grayscale intensity values of the 3D
points co-observed by the laser scanner and camera. Let
{Pi; i = 1, 2, · · · , n} be the set of 3D points whose co-
ordinates are known in the laser reference system and let
{Xi; i = 1, 2, · · · , n} be the corresponding reflectivity val-
ues for these points (Xi ∈ [0, 255]).

For the usual pinhole camera model, the relationship be-

tween a homogeneous 3D point, P̃i, and its homogeneous
image projection, p̃i, is given by:

p̃i = K
[

R | t
]

P̃i, (5)

where (R, t), called the extrinsic parameters, are the or-
thonormal rotation matrix and translation vector that relate
the laser coordinate system to the camera coordinate system,
and K is the camera intrinsic matrix. Here R is parametrized
by the Euler angles [φ, θ, ψ]⊤ and t = [x, y, z]⊤ is the Eu-
clidean 3-vector. Let {Yi; i = 1, 2, · · · , n} be the grayscale
intensity value of the image pixel upon which the 3D point
projects such that

Yi = I(pi), (6)

where Yi ∈ [0, 255] and I is the grayscale image.
Thus, for a given set of extrinsic calibration parameters,

Xi and Yi are the observations of the random variables X
and Y , respectively. The marginal and joint probabilities
of the random variables X and Y can be obtained from the
kernel density estimate (KDE) of the normalized marginal
and joint histograms of Xi and Yi. The KDE of the joint
distribution of the random variables X and Y is given by
(Scott 1992):

p(X,Y ) =
1

n

n
∑

i=1

KΩ

([

X
Y

]

−

[

Xi

Yi

])

, (7)

whereK( · ) is the symmetric kernel and Ω is the bandwidth
or the smoothing matrix of the kernel. In our experiments
we have used a Gaussian kernel and a bandwidth matrix
Ω proportional to the square root of the sample covariance

matrix (Σ1/2) of the data. An illustration of the KDE of
the probability distribution of the grayscale values from the
available histograms is shown in Fig. 5.

Once we have an estimate of the probability distribution
we can write the MI of the two random variables as a func-
tion of the extrinsic calibration parameters (R, t), thereby
formulating an objective function:

Θ̂ = argmax
Θ

MI(X,Y ;Θ), (8)
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Figure 5: Kernel density estimate of the probability distribu-
tion (right), estimated from the observed histogram (left) of
grayscale intensity values.

whose maxima occurs at the sought after calibration param-
eters, Θ = [x, y, z, φ, θ, ψ]⊤.

2.3 Optimization

We use the Barzilai-Borwein (BB) steepest gradient ascent
algorithm (Barzilai and Borwein 1988) to find the calibra-
tion parameters Θ that maximizes (8). The BB method pro-
poses an adaptive step size in the direction of the gradient
of the cost function. The step size incorporates the second
order information of the objective function. If the gradient
of the cost function (8) is given by:

G ≡ ∇MI(X,Y ;Θ), (9)

then one iteration of the BB method is defined as:

Θk+1 = Θk + γk
Gk

‖Gk‖
, (10)

where Θk is the optimal solution of (8) at the k-th iteration,
Gk is the gradient vector (computed numerically) at Θk,
‖ · ‖ is the Euclidean norm and γk is the adaptive step size,
which is given by:

γk =
s⊤k sk

s⊤k gk

, (11)

where sk = Θk −Θk−1 and gk = Gk −Gk−1.
The convex nature of the cost function (Fig. 6) is achieved

by aggregating scans from different scenes in a single opti-
mization framework and allows the algorithm to converge to
the global maximum in a few steps. Typically the algorithm
takes around 2-10 minutes to converge, depending upon the
number of scans used to estimate MI. The complete algo-
rithm is shown in Algorithm 1.

2.4 Cramer-Rao-Lower-Bound of the Variance of
the Estimated Parameters

It is important to know the uncertainty in the estimated pa-
rameters in order to use them in any vision or simultane-
ous localization and mapping (SLAM) algorithm. Here we
use the Cramer-Rao-Lower-Bound (CRLB) of the variance
of the estimated parameters as a measure of the uncertainty.
The CRLB (Cramer 1946) states that the variance of any un-
biased estimator is greater than or equal to the inverse of the
Fisher Information matrix. Moreover, any unbiased estima-
tor that achieves this lower bound is said to be efficient. The
Fisher information of a random variable Z is a measure of

Figure 6: The MI cost-function surface versus translation
parameters x and y for a single scan (left) and aggregation
of 10 scans (right). Note the global convexity and smooth-
ness when the scans are aggregated. The correct value of
parameters is given by (0.3, 0.0). Negative MI is plotted
here to make visualization of the extrema easier.

Algorithm 1 Automatic Calibration by maximization of MI

1: Input: 3D Point cloud {Pi; i = 1, 2, · · · , n},
Reflectivity {Xi; i = 1, 2, · · · , n}, Image {I},
Initial guess {Θ0}.

2: Output: Estimated parameter {Θ̂}.
3: while (‖Θk+1 −Θk‖ > THRESHOLD) do

4: Θk →
[

R | t
]

5: for i = 1 → n do
6: p̃i = K

[

R | t
]

P̃i

7: Yi = I(pi)
8: end for
9: Calculate the joint histogram: Hist(X,Y ).

10: Calculate the kernel density estimate of the joint dis-
tribution: p(X,Y ;Θk).

11: Calculate the MI: MI(X,Y ;Θk).
12: Calculate the gradient: Gk = ∇MI(X,Y ;Θk).
13: Calculate the step size γk.

14: Θk+1 = Θk + γk
Gk

‖Gk‖
.

15: end while

the amount of information that the observations of the ran-
dom variable Z carries about an unknown parameter α, on
which the probability distribution of Z depends. If the dis-
tribution of a random variableZ is given by f(Z;α) then the
Fisher information is given by (Lehmann and Casella 2011):

I(α) = E

[

(

∂

∂α
log f(Z;α)

)2
]

. (12)

In our case the joint distribution of the random variables
X and Y (as defined in (7)) depends upon the six dimen-
sional transformation parameter Θ. Therefore, the Fisher
information is given by a [6× 6] matrix

I(Θ)ij = E

[

∂

∂Θi
log p(X,Y ;Θ)

∂

∂Θj
log p(X,Y ;Θ)

]

,

(13)
and the required CRLB is given by

Cov(Θ) ≤ I(Θ)−1, (14)

where I(Θ)−1 is the inverse of the Fisher information ma-

trix calculated at the estimated value of the parameter Θ̂.

2056



3 Experiments and Results

We present results from real data collected from a 3D
laser scanner (a Velodyne HDL-64E) and an omnidirectional
camera system (a Point Grey Ladybug3) mounted on the
roof of a vehicle. Although we present results from an omni-
directional camera system, the algorithm is applicable to any
kind of laser-camera system, including monocular imagery.
In all of our experiments scan refers to a single 360◦ field
of view 3D point cloud and its time-corresponding camera
imagery.

3.1 Calibration Performance Using a Single Scan

In this experiment we show that the in situ calibration per-
formance is dependent upon the environment in which the
scans are collected. We collected several datasets in both in-
door and outdoor settings. The indoor dataset was collected
inside a large garage, and exhibited many nearby objects
such as walls and other vehicles. In contrast, most of the out-
door dataset did not have many close by objects. In the ab-
sence of near-field 3D points, the cost-function is insensitive
to the translational parameters—making them more difficult
to estimate. This is a well-known phenomenon of projective
geometry, where in the limiting case if we consider points
at infinity, [x̃, ỹ, z̃, 0]⊤, the projection of these points (also
known as the vanishing points) are not affected by the trans-
lational component of the camera projection matrix. Hence,
we should expect that scans that only contain 3D points
far-off in the distance (i.e., the outdoor dataset) will have
poor observability of the extrinsic translation vector, t, as
opposed to scans that contain many nearby 3D points (i.e.,
the indoor dataset). In Fig. 7(a) and (b) we have plotted the
calibration results for 15 scans collected in outdoor and in-
door settings, respectively. We clearly see that the variabil-
ity in the estimated parameters for the outdoor scans is much
larger than that of the indoor scans. Thus, from this exper-
iment we conclude that we need to have nearby objects in
order to robustly estimate the calibration parameters from a
single-view.

3.2 Calibration Performance Using Multiple
Scans

In the previous section we showed that it is necessary to have
nearby objects in the scans in order to robustly estimate the
calibration parameters; however, this might not always be
practical—depending on the environment. In this experi-
ment we demonstrate improved calibration convergence by
simply aggregating multiple scans into a single batch opti-
mization process. Fig. 7(c) shows the calibration results for
when multiple scans are considered in the MI calculation.
In particular, the experiments show that the standard devi-
ation of the estimated parameters quickly decreases as the
number of scans are increased by just a few. Here, the red
plot shows the standard deviation (σ) of the calibration pa-
rameters computed over 1000 trials, where in each trial we
randomly sampled {N = 5,10, · · · , 40} scans from the avail-
able indoor and outdoor datasets to use in the MI calculation.
The green plot shows the corresponding CRLB of the stan-
dard deviation of the estimated parameters. In particular, we

see that with as little as 10–15 scans, we can achieve very ac-
curate performance. Moreover, we see that the sample vari-
ance asymptotically approaches the CRLB as the number of
scans are increased, indicating this is an efficient estimator.

3.3 Quantitative Verification of the Calibration
Result

We performed the following three experiments to quantita-
tively verify the results obtained from the proposed method.

Comparison with χ2 test (Williams et al. 2004) In this
experiment we replace the MI criteria by the χ2 statistic used
by Williams et al. (2004). The χ2 statistic gives a measure
of the statistical dependence of the two random variables in
terms of the closeness of the observed joint distribution to
the distribution obtained by assuming X and Y to be statis-
tically independent:

χ2(X,Y ;Θ) =
∑

x∈X,y∈Y

(

p(x, y;Θ)− p(x;Θ)p(y;Θ)
)2

p(x;Θ)p(y;Θ)
.

(15)
We can therefore modify the cost function given in (8) to:

Θ = argmax
Θ

χ2(X,Y ;Θ). (16)

The comparison of the calibration results obtained from
the χ2 test (16) and with the MI (8) (using 40 scan-image
pairs) is shown in Table 1. We see that the results obtained
from the χ2 statistics are similar to those obtained from the
MI criteria. This is mainly because the χ2 statistics and MI
are equivalent and essentially capture the amount of corre-
lation between the two random variables (McDonald 2009).
Moreover, aggregating several scans in a single optimiza-
tion framework generates a smooth cost function, allowing
us to completely avoid the estimation of the initial guess of
the calibration parameters by manual methods introduced in
(Williams et al. 2004).

Comparison with the checkerboard pattern method
(Pandey et al. 2010) Pandey et al. proposed a method that
requires a planar checkerboard pattern to be observed simul-
taneously from the laser scanner and the camera system. We
compared our minimum variance results (i.e., estimated us-
ing 40 scans) with the results obtained from the method de-
scribed in (Pandey et al. 2010) and found that they are very
close (Table 1). The reprojection of 3D points on the image
using results obtained from these methods look very simi-
lar visually. Therefore, in the absence of ground truth, it is
difficult to say which result is more accurate. The proposed
method though, is definitely much faster and easier as it does
not involve any manual intervention.

Comparison with ground-truth from the omnidirec-
tional camera’s intrinsics The omnidirectional camera
used in our experiments is pre-calibrated from the manu-
facturer. It has six 2-Megapixel cameras, with five cam-
eras positioned in a horizontal ring and one positioned ver-
tically, such that the rigid-body transformation of each cam-
era with respect to a common coordinate frame, called the
camera head, is well known. Here, Xhci is the Smith, Self,
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(a) Single-scan: outdoor dataset. (b) Single-scan: indoor dataset. (c) Multi-scan: outdoor and indoor dataset.

Figure 7: Single-view calibration results for outdoor and indoor datasets are shown in (a), (b). The variability in the esti-
mated parameters (especially translation) is significantly larger in the case of the outdoor dataset. Each point on the abscissa
corresponds to a different trial (i.e., different scan). Multiple-view calibration results are shown in (c). Here we use all five
(horizontal) images from the Ladybug3 omnidirectional camera during the calibration. Plotted is the uncertainty of the recov-
ered calibration parameter versus the number of scans used. The red plot shows the sample-based standard deviation (σ) of the
estimated calibration parameters calculated over 1000 trials. The green plot represents the corresponding CRLB of the standard
deviation of the estimated parameters. Each point on the abscissa corresponds to the number of aggregated scans used per trial.

Table 1: Comparison of calibration parameters estimated
by: [a] (proposed method), [b] (Williams et al. 2004),
[c] (Pandey et al. 2010).

x y z Roll Pitch Yaw
[cm] [cm] [cm] [deg] [deg] [deg]

a 30.5 -0.5 -42.6 -0.15 0.00 -90.27
b 29.8 0.0 -43.4 -0.15 0.00 -90.32
c 34.0 1.0 -41.6 0.01 -0.03 -90.25

and Cheeseman (1988) coordinate frame notation, and rep-
resents the 6-DOF pose (Xhci ) of the ith camera (ci) with
respect to the camera head (h). Since we know Xhci from
the manufacturer, we can calculate the pose of the ith cam-
era with respect to the jth camera as:

Xcicj = ⊖Xhci ⊕Xhcj , {i 6= j}. (17)

In the previous experiments we used all 5 horizontally po-
sitioned cameras of the Ladybug3 omnidirectional camera
system to calculate the MI; however, in this experiment we
consider only one camera at a time and directly estimate the
pose of the camera with respect to the laser reference frame

(Xℓci ). This allows us to calculate X̂cicj from the estimated

calibration parameters X̂ℓci . Thus, we can compare the true
value of Xcicj (from the manufacturer data) with the esti-

mated value X̂cicj .
Fig. 8 shows one such comparison from the two side look-

ing cameras of the Ladybug3 camera system. Here we see
that the error in the estimated calibration parameters re-
duces with the increase in the number of scans and asymp-
totically approaches the expected value of the error (i.e.,

E[|Θ̂−Θ|] → 0). It should be noted that in this experiment
we used only a single camera as opposed to all 5 cameras
of the omnidirectional camera system, thereby reducing the

Figure 8: Comparison with ground-truth. Here we have
plotted the mean absolute error in the calibration parame-

ters (|Xcicj − X̂cicj |) versus the number of scans used to
estimate these parameters. The mean is calculated over 100
trials of sampling N , where N = 10, 20, · · · , 60 scans per
trial. We see that the error decreases as the number of scans
are increased.

amount of data used in each trial to 1/5th. It is our conjec-
ture that with additional trials, a statistically significant val-
idation of unbiasedness could be achieved. Since the sam-
ple variance of the estimated parameters also approaches the
CRLB as the number of scans are increased, in the limit our
estimator should exhibit the properties of a MVUB estima-
tor (i.e., in the limiting case the CRLB can be considered as
the true variance of the estimated parameters). Since in this
experiment we have used only one camera of the omnidirec-
tional camera system to estimate the calibration parameter,
we have demonstrated that the proposed method can be used
for any standard laser-camera system (i.e., monocular too).
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4 Conclusions and Future works

This paper reported an information theoretic algorithm to
automatically estimate the rigid-body transformation be-
tween a camera and 3D laser scanner by exploiting the sta-
tistical dependence between the two measured modalities.
In this work MI was chosen as the measure of this statistical
dependence. The most important thing to take away about
this algorithm is that it is completely data driven and does
not require any artificial targets to be placed in the field-of-
view of the sensors.

Generally, sensor calibration in a robotic application is
performed once, and the same calibration is assumed to be
true for rest of the life of that particular sensor suite. How-
ever, for robotics applications where the robot needs to go
out into rough terrain, assuming that the sensor calibration
is not altered during a task is often not true. Although, we
should calibrate the sensors before every task, it is typically
not practical to do so if it requires to setup a calibration envi-
ronment every time. Our method, being free from any such
constraints, can be easily used to fine tune the calibration of
the sensors in situ, which makes it applicable to in-field cal-
ibration scenarios. Moreover, our algorithm provides a mea-
sure of the uncertainty of the estimated parameters through
the CRLB.

Future works will explore the incorporation of other sens-
ing modalities (e.g., sonars or laser without reflectivity) into
the proposed framework. We believe that even if the sensor
modalities do not provide a direct correlation (as observed
between reflectivity and grayscale values), one can extract
similar features from the two modalities, which can be used
in the MI framework. For instance, if the lidar just gives the
range returns (no reflectivity), then we can first generate a
depth map from the point cloud. The depth map and the cor-
responding image should both have edge and corner features
at the discontinuities in the environment. The MI between
these features should exhibit a maxima at the sought after
rigid-body transformation.
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