
 Int. J. Advance. Soft Comput. Appl., Vol. 1, No. 1, July 2009
ISSN 2074-8523; Copyright © ICSRS Publication, 2009
www.i-csrs.org

Automatic Test Case Generation for UML
Object diagrams using Genetic Algorithm

M. Prasanna1 and K.R. Chandran2

1Research Scholar, Department of CSE,

PSG College of Technology, Coimbatore 641 004, India
e-mail: mp_psg@rediffmail.com

2Professor, Department of IT,
PSG College of Technology, Coimbatore 641 004, India

e-mail: chandran_k_r@yahoo.co.in

Abstract

 A new model based approach for automated generation of test
cases in object oriented systems has been presented. The test cases
are derived by analyzing the dynamic behavior of the objects due to
internal and external stimuli. The scope of the paper has been
limited to the object diagrams taken from the Unified Modeling
Language model of the system. Genetic Algorithm’s tree crossover
has been proposed to bring out all possible test cases of a given
object diagram. Illustrative case study has been presented to
establish the effectiveness of our methodology coupled with mutation
analysis

 Keywords: Depth First Search, Object Diagram, Software Testing, Test Case,
UML.

1. Introduction

Software testing [1] is an important activity in software development life
cycle. Software organizations spend considerable portion of their budget in testing
related activities. A well tested software system will be validated by the customer
before acceptance. Testing includes executing a program on a set of test cases and
comparing the actual results with the expected results. Testing should also focus
on fault prevention. Test cases are usually derived from software artifacts such as
specifications, design or the implementation. To test a system, the implementation
must be understood first which can be done by creating a suitable model of the
system.

M. Prasanna et al. 20

A common source for tests is the program code. Every time the program is
executed, the program is tested by the user. So we have to execute the program
with the specific intent of fixing and removing the errors. In order to find the
highest possible number of errors, tests must be conducted systematically and test
cases must be designed using disciplined techniques. UML [Unified Modeling
Language] [19] is a widely accepted set of notations for modeling object oriented
system. It has various diagrams for depicting the dynamic behavior of objects in a
system. In this paper we use Object diagrams represented in the form of a tree to
extract test cases to verify/validate the behavior of objects concerned.

2. Related Works
Emanuela et al [3] have proposed a model based testing techniques with

test cases generated from UML Sequence diagrams. Sequence diagram is
translated to Labeled Transition Systems and test cases are generated for mobile
phone Applications. Test case works perfectly for small sized mobile phone
application. For bigger applications with bigger LTSs, the set of test cases is
greater and application functionalities test coverage is still a problem. Minimizing
test case redundancy also needs to be dealt using their approach. Samuel et al [5]
have proposed automatic test case generation for UML state diagrams. It covers
all the events associated with state diagrams. They have reduced the number of
test cases by testing the borders determined by simple predicates. They have
illustrated their test case automation for an ice cream vending machine. They were
not able to achieve globally optimal solution using alternating variable method.
They suggested genetic algorithm to achieve the same. Monalisa et al [4]
presented use case diagram graph and Sequence diagram graph for generating test
cases from use case and sequence diagrams for a PIN Authentication scenario in
an ATM system. Test case covers use case initialization faults, dependency faults
and operational faults. It checks the sequential dependency that may exists among
use cases. If test data for test case is not integrated, then it will lead to mine the
same data repeatedly. They concentrated only on system level testing. Iftikhar[6]
has proposed an object oriented approach to convert UML class and state chart
diagram for a Dishwasher system into Java code and his thesis result shows that it
is 60 % more efficient and 3 times more compact than that of Rhapsody’s
approach. Source code is automatically generated from the given UML class and
state chart diagrams. Shaukat Alia et al [8] presented a technique that combines
UML collaboration diagrams and statecharts to automatically generate an
intermediate test model, called SCOTEM (State COllaboration TEst Model) to
generate valid test paths. Their results show that the proposed technique
effectively detects all the seeded integration faults. Mainly All-Path Coverage is
very expensive and it can scale up in all situations. Effectiveness of their
algorithm is proven with Stack case study. Many researchers and practitioners
have been working in generating optimal test cases based on the specifications.

21 Automatic Test Case Generation for UML

3. The Proposed Method

Firstly, object diagram is drawn using rational rose software. It shows a
snapshot of the detailed state of the system at a point in time. Secondly, it is
mapped to a tree with root node and child nodes. Thirdly, we apply Genetic
Algorithm’s cross over operator which yields in new generation of trees. New
generation of trees are converted into binary trees. Depth first search technique is
applied on the binary trees which results in test case set. Since we use depth first
search algorithm for generating test cases, no single path can be revisited there by
eliminating redundancy.

Our proposed methodology involves the following steps:

1. Construct object diagram using rational rose software and store it
with .mdl as extension.

2. Parse the .mdl file and capture the object names.
3. Build a tree using object names and apply genetic algorithm’s cross over

technique.
4. New generation of trees are formed and convert it to binary trees.
5. Traverse new generation of binary trees using Depth First Search

technique.
6. All the valid, invalid and termination sequences of the application can be

obtained using Step 5.

 The above steps are illustrated in the form of flowchart as shown in Figure 1.

Figure 1: Flowchart of Proposed Methodology

Tree Crossover

OBJECT DIAGRAM GENERAL TREE

SYSTEM
IMPELEMENTATION

GENETIC ALGORITHM

TREE STRUCTURE

TESTING SEQUENCE

TESTING CONDITIONS

M. Prasanna et al. 22

4. Case Study
 An object diagram of a banking system created using Rational Rose tool
has been considered for test case automation process. In this scenario, the user
initiates the process by entering bank name, user name and password in the Bank
System (BS) object and authentication takes place. For new users, the system
invokes New_User_form () and collects details like name, location, phone
number, account type, amount, and customer ID and it is updated to the database.
Already existing users can perform banking operations like deposit, withdraw,
balance and so on. We now generate the possible test cases for this problem using
our proposed methodology.

Step 1:

The Object diagram for a banking system is shown in Figure 2. It
represents the dynamic behavior of objects in a banking system.

Figure 2: Object Diagram of Banking System

F: Bank First
null
View NewuserForm()
View ExistingForm()
Boolean ExitForm()

S: Bank System
Bank_name
User_name
Password

View BankDetails()

B: Bank
Cust_id
Amount
Find Details()
Back()

W: Withdraw Account
Balance
Cust_id
getWithdrawAmount(amt)
Boolean ModifyDec ()

D: Saving Account
 Balance
Cust _id
getDepositAmount(amt)
Boolean ModifyInc()

N: Bank New
Name
Location
Type
Phone_no
Amount
Cust_id
Dispose()
AddNewCustInfo()
RejectInfo()

T: Testing
Balance
Cust_id
Verify (amt)

23 Automatic Test Case Generation for UML

Step 2:

Tree Form:

 Tree structure is very simple, understandable and can be easily maintained in
the computer memory. We could easily traverse the tree to obtain complete Test
case set. Redundant test cases can be avoided and time complexity is less in trees.
To represent banking system in a tree form, we need to make the following
modifications as illustrated in Figure 3a:

a. The objects are represented as nodes and placed in a vertical line one after the
other

b. The object inputs (attributes) are arranged in left branch of the corresponding
node

c. The object outputs (methods) are arranged in the right branch of the
corresponding node

d. If any duplication occurs, then object name is added as prefix for the nodes

 The steps (a to d) discussed above also applies to the figures 3b to 3d.

 3a 3b

 3c 3d

Figure 3: Converting Object to Tree Structure

M. Prasanna et al. 24

Step 3:

 Genetic Algorithm’s cross over method is applied on the trees shown in Figure
3a to 3d. One crossover point is selected among the parent trees and it gives new
generation offspring (Figure 4). This technique is applied on all the tree structures
obtained from the object diagram of the application. Figure 5 is also obtained in
the same manner.

Figure 4: Tree Cross Over (3d & 3c) in Banking System

Figure 5: Tree Cross Over (3d & 3b) in banking System

Step 4:
 The tree shown in Figure 4 is not a binary tree. The binary tree can be

formed by arranging the nodes in the left branch of the root node in vertical order
and arrange its sibling in horizontal order. Now this will form a binary tree and it

25 Automatic Test Case Generation for UML

is shown in figure 6a. The structure is redrawn to depict the exact binary tree as
shown in figure 6b. Similarly we use figure 7 to represent the generation of the
binary tree from figure 5 using step4.

6a 6b

Figure 6: Binary Tree form of banking System by crossing fig 3d & 3c

7a 7b

Figure 7: Binary Tree form of banking System by crossing 3d & 3b

M. Prasanna et al. 26

Step 5:
 Traverse the binary tree using Depth First Search technique. It gives all

the valid, invalid and termination sequences for the given application. The
mapping information is given in Table 1 and the testing sequences of the banking
system are shown in the Table 2.

Table 1: Mapping Information

S. No Objects in sequence model Nodes

1. User U
2. Deposit D
3. Bank First F
4. Banking System S
5. Bank B
6. Withdraw W
7. Testing T
8. Bank Name Bn
9. User Name Un
10. Password Pw
11. Name Na
12. Location Lo
13. Phone Ph
14. Amount Am
15. Customer ID Ci
16. View Bank Vb
17. View New User Information Vn
18. Bank Customer ID Bci
19. Bank Amount Bam
20. Deposit Customer ID Dci
21. Boolean Modify Dec Bd
22. Withdraw Customer ID Wci
23. Withdraw Balance WBa
24. Testing Balance TBa
25. Testing Customer ID Tci
26 Boolean Modify Inc Bi
27. Balance Ba
28. View Existing Ve
29. Boolean Exit Be
30. Dispose Di
31. Add Information Ai
32. Reject Information Ri
33. Find Information Fi
34. Back Bk
35. Deposit Amount Da
36. Withdraw Amount Wa
37. Verify Vi
38. Type Ty
39. End K

27 Automatic Test Case Generation for UML

Table 2: Test Case Table for Banking System

S.No SEQUENCE RESULT
1. USBnUnPw VALID
2. USBnFVb VALID
3. USBnFVnVeBe VALID
4. USBnFNNaDDiAiRi VALID
5. USBnFNNaWDiAiRi VALID
6. USBnFNNaBDiAiRi VALID
7. USBnFNNaWWciWba VALID
8. USBnFNNaBBciBam VALID
9. USBnFNNaDDciKDaBi VALID
10. USBnFNNaBDciKFiBk VALID
11. USBnFNNaLoTyPhAmCi VALID
12. USBnFNNaWTWaBd VALID
13. USBnFNNaWTTbaTci VALID
14. USDDiAiRi INVALID
15. USBnFNNaWTTbaKVi VALID
16. USBnVbVeBe INVALID
17. USTWaBd INVALID
18. UNNaDCiBa INVALID
19. UBBciWBa INVALID
20. USNaLoTyPhAmCi INVALID
21. UTWaBd INVALID
22. UWBk INVALID
23. UDiAiRi INVALID
24. USBnVnPwFNNaLoTyPhAmCiDDciBaKDaBiDiAiRiVnVeReVb TERMINATION
25. USBnVnPwFNNaLoTyPhAmCiBBciBamKFiBkDiAiRiVnVeReVb TERMINATION
26. UBBciBamDDciBaKBaBiFi TERMINATION
27. UBBciBamWWciWBaTTBaTciKViWaBdFiBK TERMINATION
28. UDDciBaWWciWBaTTBaTciKViWaBdDaBi TERMINATION
29. USBnUnPwFNNaLoTyPhAmCiWWaWbaTTbaTciK

ViWaBdDiAiRiVnVeBeVb
TERMINATION

30. UBBciBam VALID
31. UDDciBa VALID
32. UBBciWWciWBa VALID
33. UDDciWWciWBa VALID
34. UBBciWFiBK VALID
35. UDDciWBaBi VALID
36. UBBciWWciTTBaTci VALID
37. UDDciWWciTTBaTci VALID
38. UBBciWWciTTBaKVi VALID
39. UBBciWWciTWaBd VALID
40. UDDciWWciTWaBd VALID
41. UBBciBam VALID
42. UBDDciBa VALID
43. UBDDciKBaBi VALID
44. UBDFi VALID
45. UDDciBa INVALID
46. UKBaBi INVALID
47. UDDaBi INVALID

M. Prasanna et al. 28

5. Mutation Testing
The effectiveness of test cases can be evaluated using a fault injection

technique called MUTATION ANALYSIS. Mutation testing is a process by which
faults are injected into the system to verify the efficiency of the test cases.
Mutation based analysis is a fault-based testing strategy that starts with a
program to be tested and makes numerous small syntactic changes into the
original program. Program with injected faults is called MUTANTS. The faults
are inserted and tested in the following manner. One faulty version of the
program is created at a time and run against all the test cases one by one until
either fault is revealed or all test cases are executed. A fault is considered to be
revealed, if the output of faulty version of program is different from the original
program on same input. If a test case set is capable of causing behavioral
differences between original program and mutant, mutant is considered as killed
by test. The product of mutation analysis is a measure called Mutation Score,
which indicates the percentage of mutants killed by a test set. Mutants are
obtained by applying mutation operators that introduce the simple changes to
original program (or Specification).The faults are kept in separate versions of the
program to avoid interactions between faults such as masking.

5.1 Fault Injection
The test cases derived using the Genetic Algorithm for the Banking

system table 1 is considered for testing process. The following parameters listed
in table 3 were considered for mutation analysis process. For the Banking system
object diagram, we created 61 mutants that use mutation operator as shown in
Table 3. The summary of the mutants are shown in Table 4.

Table 3: Operator and Description

S.No. OPERATOR DESCRIPTION

1 Function Replaces the name of the function

2 Guard condition Changes/deletes the guard condition

3 Relation operator Replaces the relational operator

4 Data value Replaces the value of data

5 Data name Replaces the name of data

6 Parameter Change the letters of the parameter

7 SQL query Change the query lines and field

8 Subclass name Change the super class name in the sub class

29 Automatic Test Case Generation for UML

Table 4: Summary of the mutants for Banking System

Operator Faults Injected Faults Found

Function 11 11

Guard condition 3 2

Relational operator 8 5

Data value 15 10

Data name 5 5

Parameter 3 3

SQL query 8 6

Subclass name 7 7

Total 61 49

5.2 Mutation Score

The product of mutation analysis is a measure called Mutation Score,
which indicates the percentage of mutants killed by a test set. Mutation score is
found by comparing the faults injected to faults found.

Score = (∑ faults found / ∑faults injected) * 100.

For Banking System Application, we injected 61 faults and 49 were
revealed from the test cases generated. Using the above formula, we get 80.3%
score for Bank system object diagram which shows efficiency level of our
approach. It is diagrammatically represented in the form of bar chart as shown in
Figure 8 for various operators listed in table 4.

The mutation testing analysis is represented as bar chart in Figure 8.

0

2

4

6

8

10

12

14

16

Fn. G cdn. Rel op value name Param SQL sc

Fault inj

Fault fnd

Figure 8: Mutation Testing

We also performed Unit Level and Integration Level Testing and whose

results are summarized in Table 5.

No. of
Faults

Mutation Operators

M. Prasanna et al. 30

Table 5: Experimental Results

Faults Number of Faults

Inserted

Faults found by Aynur,

Offutt Approach [10]

Faults found by our

approach

Unit Faults 31 24(77%) 25(80%)

Integration Faults 18 15(83%) 16(88%)

6. Conclusion
 This paper suggests a model based approach in dealing with object
behavioral aspect of the system and deriving test cases based on the Tree structure
coupled with Genetic algorithm. Our experimental results shows that it has the
capability to reveal 80% fault in the Unit level and 88% fault in the integration
level. We have viewed testing an application as traversing a path through the DFS
for a binary tree to generate appropriate and adequate test cases. The mutation
testing conducted has yielded 80.3% effectiveness in the actual testing process
carried out with the generated test cases. Parser and the banking system
application have been developed using Java Swing. From the experimental results,
we conclude that our methodology is useful to generate test cases after the
completion of the design phase and errors could be detected at an early stage in
the software development life cycle.

7. Open problem

Our proposed algorithm could be applied for other UML Diagrams like
Usecase, Sequence, Collaboration, Activity, State Chart diagrams for generating
test cases as a further research in this direction.

8. Acknowledgement
We would like to thank PSG College of Technology Management for

providing the necessary facilities to carry out the research work.

References
[1] Bertolino.A, “Software Testing: Guide to the software engineering body of

knowledge”, IEEE Software, Vol. 16, 1999, pp. 35-44.

[2] Zhi Quan, Bernhard and Gioranni, “Automated Software Testing and
Analysis: Techniques, Practices and Tools”, Proc. of Intl Conf. on System
Sciences, HICSS’07, 2007, pp 260.

[3] Emanuela G, Franciso and Patricia,” Test Case Generation by means of UML
sequence diagrams and Labeled Transition Systems,” IEEE, 2007, pp.1292-
1297.

31 Automatic Test Case Generation for UML

[4] Monalisa Sarma and Rajib Mall, “Automatic Test Case Generation from UML
Models,” 10th International Conference on Information Technology, 2007, pp.
196-201.

[5] Philip Samuel, R. Mall, and A.K. Bothra ,”Automatic Test Case Generation
Using UML State Diagrams”, IET Software, 2008, pp. 79-93.

[6] Iftikhar, “Automatic Code Generation from UML class and State Diagrams”,
PhD Thesis, University of Tsukuba, Japan, 2005.

[7] Belal and Essam, “The constraints of Object-Oriented Databases”, Internation
Journal of Open Problems in Computer Science and Mathematics, 2008, Vol.1,
No.1,pp. 11-17.

[8] Shaukat Alia, , Lionel C. Briandb, Muhammad Jaffar-ur Rehmana, Hajra
Asghara, , Muhammad Zohaib Z. Iqbala, and Aamer Nadeema, “A state-
based approach to integration testing based on UML models”, Elsevier, Vol.
49, Issue 11 and 12, 2007, pp. 1087-1106.

[9] Marlon Vieira, Johanne Leduc, Bill Hasling, Rajesh Subramanyan and Juergen
Kazmeier, “Automation of GUI testing using a model-driven approach”,
Proceedings of International workshop on Automation of Software Test, 2006,
pp. 9-14.

[10] Aynur Abdurazik, Jeff Offutt and Andrea Baldini, “A Controlled
Experimental Evaluation of Test Cases Generated from UML Diagrams”,
Technical report, George Mason University, ISE-TR-04-03, 2004.

[11] Wang Linzhan, Yuan Jieson, Yu, Hu, LI and Zheng, “Generating Test cases
from UML activity diagram based on Graybox method”, APSEC, IEEE, 2004,
pp.284-291.

[12] Jeff Offutt, Shaoying L and Aynur Abdurazik,”Generating Test Data from
State-based Specifications”, The Journal of Software Testing, Verification and
Reliability, Vol.13, No.1, 2003, pp.25-53.

[13] Dong He Nam, Eric C Mousset and David C Levy, “Automating the Testing
of Object Behaviour: A statechart Driven Approach”, Proceedings of World
Academy of Science, Engineering and Technology, Vol. 11, 2006, pp.145-149.

[14] Niaz I.A and Tanaka J, “An Object-Oriented Approach to Generate Java
Code from UML Statecharts”, Proceedings of International Journal of
Computer and Information Sciences, Vol. 6, 2005.

[15] L. C. Briand and Y. Labiche, “A UML-Based Approach to Application
Testing”, Proceedings of Journal of Software and Applications Modeling, vol.
1 (1), 2002, pp. 10-42.

[16] A. Cavarra, J. Davies, T. Jeron, L. Mournier, A. Hartman and S. Olvovsky,
"Using UML for Automatic Test Generation", Proceedings of ISSTA, 2002.

M. Prasanna et al. 32

[17] Peter Frohlich and Johannes Link, “Automated Test Case Generation from
Dynamic Models”, ECOOP- Object Oriented Programming, Vol. 1850, 2000,
pp. 472-491.

 [18] Jeff Offutt and Aynur Abdurazik, "Generating Tests from UML
specifications", Second International Conference on the Unified Modeling
Language (UML99), 1999, pp. 416-429.

[19] Clay E. Williams, “Software testing and the UML”, International Symposium
on Software Reliability Engineering (ISSRE’99), Boca, Raton, 1999.

[20] Mark Priestley, “Practical Object-Oriented Design with UML”, 2nd edition,
McGraw –Hill, 2005.

