
HILLARY GRIMES III – ELEC 7250 TERM PAPER – CONCURRENT TEST GENERATION

Combinational Circuit Concurrent Test

Generation: A Brief Overview

HILLARY GRIMES III, GRADUATE STUDENT, AUBURN UNIVERSITY

Abstract

The complexity of VLSI devices increases

rapidly as technology increases, resulting in an

increase in the difficulty of test generation.

Traditional test generation algorithms target

one fault of a fault set at a time to generate a

test. This paper presents a brief overview of a

few different approaches to concurrent test

generation. Concurrent test generation is the

process of generating tests by “concurrently”

targeting multiple faults.

1. Introduction
Automatic Test Pattern Generation

(ATPG) is the process of generating a test set (a

set of input combinations and expected output

responses) to test for all or most faults in a

circuit. The complexity of both sequential and

combinational ATPG is NP-complete, growing

with circuit size. As VLSI technology advances,

integrated circuits are becoming larger and more

complex, resulting in the need to develop more

efficient methods of generating test sets.

 Many ATPG algorithms generate tests

by targeting a single fault and finding an input

vector to activate the fault and propagate its

effect to a primary output. The input vector

generated is a test that can detect the targeted

fault. In concurrent test generation, the

concurrent ATPG targets multiple faults, and

tests are generated to detect as many targeted

faults as possible. Tests are generated by

“concurrently” targeting multiple faults.

 In Section 2 of this paper, two similar

directed search approaches to concurrent test

generation are described: one phase of the three

phase CONTEST algorithm and a phase in many

genetic algorithm approaches to concurrent

ATPG. Both approaches are simulation based

methods, in which a fault simulator is used

during the ATPG process. Before a vector is

chosen to be added to the test set, it is simulated,

providing timing analysis during test generation,

eliminating the generation of hazardous tests.

This gives simulation based methods a

significant advantage over other tests generation

methods [6].

 The two concurrent ATPG approaches

described in section 3 target groups of

concurrently testable faults, and attempt to

generate a single test that detects all faults in

each targeted group. In both methods,

concurrent-D algebra and concurrent ATPG

using single-fault ATPG and simulation, the

groups of faults targeted during test generation

are grouped by a unique fault collapsing

algorithm, which is also described in section 3.

2. Two Similar Directed Search

Methods
 The two concurrent test generation

methods described in this section use a directed

search approach. In the directed search

approach, the test generator searches the input

vector space in a “directed” manner for tests.

The input vector space contains all possible input

vectors and tests are usually clustered within the

input vector space [1, 6]. By starting with any

initial vector, a directed search algorithm directs

the search for tests toward the test clusters.

 The first concurrent test generation

method described is phase 2 of the CONTEST

algorithm. CONTEST consists of 3 phases:

phase 1 generates an initialization vector

sequence for sequential circuits, phase 2 is the

concurrent test generation phase, and phase 3

generates tests by targeting single faults [1, 3, 6].

In phase 2, the search for tests is a directed

search which is “directed” by the use of cost

functions [1, 3].

 The second concurrent test generation

method described is a phase in most genetic

algorithm approaches to test generation. This

approach is similar to phase 2 of the CONTEST

algorithm [6] and the search through the input

vector space is directed though the use of fitness

functions [4].

2.1 CONTEST: Phase 2
 In phase 2 of the CONTEST algorithm,

tests are generated by concurrently targeting all

undetected faults. Beginning with an initial

vector, the circuit is simulated using a concurrent

HILLARY GRIMES III – ELEC 7250 TERM PAPER – CONCURRENT TEST GENERATION

fault simulator. During simulation, cost

functions are computed for each target fault. The

cost function for a fault is the shortest distance

that fault’s effect is from a primary output. If the

fault effect is observable on a primary output, the

cost function is zero, and if the fault has no fault

effect (the fault is not activated) the cost function

is infinite. Trial vectors are generated by

modifying the current input vector with a one bit

change. Each trial vector is simulated, and the

associated costs are computed. By comparing

the costs from the current input vector simulation

with the costs from the trial vector simulation,

the algorithm either accepts or rejects the trial

vector. The trial vector is accepted if the overall

costs of undetected faults are found to decrease.

If accepted, the trial vector becomes the current

vector, and the process starts over. When the

costs associated with all single bit changes in the

current vector do not reduce total cost, phase 2

ends and CONTEST begins phase 3. Phase 3

targets single faults to continue the search for

tests, and is needed because phase 2 only

achieves between 65 and 85 percent fault

coverage [1, 3, 6].

2.2 Concurrent ATPG using Genetic

Algorithms
 Many ATPGs based on genetic

algorithms include a phase of concurrent test

generation which is similar to phase 2 of the

CONTEST algorithm. Both directed search

approaches are “evolutionary”, meaning they

“evolve” tests by accepting or rejecting vectors

based on how well they detect faults [4, 5, 6].

 Test generation using genetic

algorithms begins with a set of vectors, which

initially is usually generated randomly, called a

population. Each vector has an associated fitness

which is evaluated through simulation [5, 6].

The higher the fitness function, the more “fit” a

vector is to detect faults. The population is

improved iteratively, with each iteration

producing a new population, and each population

produced is called a generation. Each generation

is “evolved” from the previous generations

through three evolutionary operators called

selection, mutation, and crossover [4, 5, 6].

 In selection, two of the higher fit

individuals (vectors) are selected from the

population for reproduction in generating the

next generation [4, 5]. The crossover

evolutionary operator exchanges bits between

two selected vectors of the population to produce

two vectors for the next generation. Mutation is

the process of modifying bits from a selected

vector in the population to produce a new vector

for the next generation [4, 6]. The generation of

vectors for a new generation is biased toward

higher fitness [5, 6], and the overall fitness of the

population generally increases in successive

generations [5].

 As the population is evolved, the best

test is stored separately. With each new

generation, new vectors are compared to the best

test, and the best test is updated if a better test is

found. The best test is added to the test set after

the last generation is produced. This process is

repeated, and tests are generated until fault

coverage does not improve [5].

3. Methods Targeting Groups of

Concurrently Testable Faults
 The two approaches to concurrent test

generation discussed in this section use a unique

independence fault collapsing algorithm prior to

concurrent test generation. The purpose of this

algorithm is to group faults into subsets where

most faults in each group (subset) are likely to

have a concurrent test [7,8,9]. Both methods

discussed, concurrent-D algebra and concurrent

ATPG using single-fault ATPG and simulation,

attempt to generate a concurrent test for all or

most faults in each group.

3.1 Independence Fault Collapsing

Algorithm
Independent faults are faults that have

no common test. One example would be a sa0

and a sa1 fault on the same line. Because both

faults cannot be active for the same test vector,

they cannot have a common test. Concurrently-

testable faults are defined as two faults that are

not independent and do not have a dominance

relationship. Two concurrently testable faults

have both a concurrent test, which is a test for

both faults, and a unique test, which is a test for

one fault but not the other [7, 8, 9].

The independence fault collapsing

algorithm begins with a dominance collapsed

fault set, and an independence graph and

independence matrix is generated. In an

independence graph, each node represents a

fault, and an edge between two faults (nodes)

means that the two faults are independent. In an

independence matrix, each fault has a row and a

column, and each position in the matrix has a “0”

or a “1”. A “1” is placed at that position if the

two faults are independent, and a 0 is placed if

HILLARY GRIMES III – ELEC 7250 TERM PAPER – CONCURRENT TEST GENERATION

they are not independent (there exists a common

test for both faults) [7, 8].

Three methods to determine

independence relations between faults in the

dominance collapsed fault set are described in [7,

8]. In the first method, structural independences

are found for boolean gates, shown in figure 1 [7,

8].

Figure 1: Structural Independence Relationships

for Boolean Gates

The second method uses the structural

independence relationships to find implied fault

independences between subnetworks in a

hierarchally described circuit. This method is

based on hierarchal fault collapsing [7, 8], which

collapses fault sets of smaller subnetworks and

stores the resulting data in a library in the form

of a dominance matrix. The dominance matrix

contains information about equivalence and

dominance relationships between the

subnetwork’s inputs or outputs and faults in the

fault list [2]. If the two subnetworks are

connected as shown in figure 2, and fault a is

equivalent to fault b, then an independence

relationship between faults c and d would imply

an independence relationship between faults a

and d. Also, if fault b dominates fault a, then

independence between faults c and d would

imply independence between faults a and d [7,

8].

Figure 2: Independence Relations between

Subnetworks

The third method determines functional

independence relationships using an ATPG that

checks for redundant faults and three copies of

the circuit shown in figure 3. Each fault is

inserted in C, and the ATPG detects faults in A.

If the finds a redundant fault in A, then that fault

is independent of the fault currently inserted in C

[7, 8].

Figure 3: Using ATPG to find Functional

Independence Relationships

 Once independence relationships have

been determined, the independence matrix is

generated, and the algorithm computes the

degree of independence for each fault. The

degree of independence is computed by adding

all positions in a fault’s row or column in the

independence matrix. Faults are then rearranged

in the independence matrix by decreasing order

of their degree of independence, and a similarity

metric is computed for each pair of faults. The

similarity metric is a measure of how similar two

faults are in concurrent testability with respect to

all faults, and its value ranges between 0 and the

total number of faults. If N=number of faults

and x is a position in the independence matrix,

the similarity index between two faults is [7, 8]:

∑
=

−−+=
N

k

jkikijijji xxxNxffSIM
1

||)1(),(

If two faults are equivalent, their similarity

metric is 0, and if they are independent, their

similarity metric is the maximum value

(indicating they are not similar) [7, 8].

 The algorithm then begins grouping

faults by adding each fault to an initially empty

graph in decreasing order of degree of

independence. In this graph, each node

represents a group of faults. The first fault added

simply creates the first node. Before each

HILLARY GRIMES III – ELEC 7250 TERM PAPER – CONCURRENT TEST GENERATION

remaining fault is added, a similarity index is

computed for each node already in the graph.

The similarity index for a node is the maximum

similarity metric between a fault already in that

node and the fault that is to be added. The fault

is then placed in the node with the smallest

similarity index. If the similarity index of every

node is the maximum, then there is a fault in

every node that is independent of the fault being

added, so a new node is created. After adding all

faults, each node contains a set of faults that are

likely to have a concurrent test [7, 8].

 This independence fault collapsing

algorithm begins with a dominance collapsed

fault set, so functional dominance collapsing

must be preformed before generating the

independence matrix. Since both functional

dominance collapsing and independence matrix

generation are based on ATPG and complex, a

second method to generate the independence

matrix is presented in [7]. This method uses a

fault simulator that simulates without fault

dropping to generate the independence matrix

starting with an equivalence collapsed fault set.

First, an independence graph is generated

assuming all faults are independent (every node

has an edge to every other node). Then the fault

simulator is used to simulate random vectors and

find which faults are detected by each vector.

When more than one fault is found to be detected

by the same vector, the edge between these faults

in the independence graph is removed. When a

large number of random vectors are simulated

without removing an edge in the independence

graph, the process stops, and the independence

matrix is generated without the complexity of

functional dominance collapsing or functional

independence identification [7].

3.2 Concurrent ATPG using

Concurrent-D Algebra
 Test generation using concurrent-D

algebra, proposed in [7], targets all faults in each

collapsed set to generate a concurrent test. In

concurrent-D algebra, a D has the same meaning

as a D in D algebra. During single-fault ATPG,

if a signal is affected by the targeted fault, then it

is assigned the value D, then that signal would be

a “1” if the fault is not present, and a “0” if the

targeted fault is present. The main difference in

concurrent-D algebra approach is that the ATPG

is targeting multiple faults concurrently. When a

signal in the circuit is affected by a single fault

i , its value is set to iD or iD , and when

multiple faults i and j affect a line, it’s value is

set to ijD or ijD [7]. Concurrent-D algebra for

a 2-input AND gate [7] and a 2-input OR gate is

shown in table 1 below:

Table 1: Concurrent-D Algebra for 2-input

AND [7] and OR Gate

A concurrent ATPG program using concurrent-D

algebra has not been implemented [7, 9], but a

different approach to concurrent ATPG is

proposed in [7] that uses a single fault ATPG

and a fault simulator, which is discussed in the

next section.

 Results obtained by manual application

of concurrent-D algebra on the c17 benchmark

circuit to generate a concurrent test are reported

in [7], and are shown here in figure 4. There are

11 sa1 faults in the dominance collapsed fault set

for c17, which are grouped into 4 groups after

applying the independence fault collapsing

algorithm, shown in table 2 [7, 9]. The three

faults in fault group 2 are targeted concurrently,

and a single concurrent test, “01111”, that

detects all faults in the group is generated [7].

Fault Group Faults

1 1, 8

2 2, 3, 9

3 4, 6, 10

4 5, 7, 11

Table 2: Fault Groups for c17

HILLARY GRIMES III – ELEC 7250 TERM PAPER – CONCURRENT TEST GENERATION

Figure 4: Results of Concurrent-D Algebra Targeting Faults 2, 3, and 9

3.3 Concurrent ATPG Using Single-

Fault ATPG and Simulation
 After the independence fault collapsing

algorithm, faults are grouped into sets of faults

that are likely to have a concurrent test. This

approach to concurrent ATPG is presented in [7],

and attempts to generate a single test to detect

most faults in each collapsed group using a

single fault ATPG and a fault simulator. Since a

smaller set of tests is likely for a fault with a

higher degree of independence as opposed to a

fault with a lower degree of independence, the

generation of a single test for the group begins

by targeting the fault with the largest degree of

independence using a single fault APTG. All

test vectors are generated for the targeted fault,

and simulated using a fault simulator to choose a

vector as a single test for the group. The chosen

vector is the one that is found to detect the

highest number of faults in the group, and the

highest number of faults outside the group if

multiple vectors detect the same number of faults

in the group [7-9].

 Results of concurrent ATPG using

single-fault ATPG and simulation on 18 various

combinational circuits are reported in [7]. Table

3 is taken from these results and shows a

comparison of the number of tests generated and

the number of groups produced by the

independent fault collapsing algorithm. One

circuit (4-b ALU) shows 12 tests generated for

13 groups, and in 7 circuits the number of tests

generated is equal to the number of groups. For

the remaining 11 circuits, the number of tests

generated is only slightly larger than the number

of groups, showing the efficiency of this

concurrent ATPG approach in generating a

single test per group.

Circuit
of

Groups

of

Generated
Tests

Circuit
of

Groups

of

Generated
Tests

1-b adder 5 5 c499 52 52

2-b adder 5 5 c880 24 29

4-b adder 5 5 c1355 84 84

8-b adder 7 7 c1908 106 111

16-b adder 7 9 c2670 81 92

32-b adder 7 11 c3540 107 130

4-b ALU 13 12 c5315 92 104

c17 4 4 c6288 23 25

c432 30 34 c7552 190 198

Table 3: Results of Concurrent ATPG using Single-Fault ATPG and Simulation

HILLARY GRIMES III – ELEC 7250 TERM PAPER – CONCURRENT TEST GENERATION

4. Conclusion
 Because ATPG is NP-complete, many

algorithms have been developed that attempt to

reduce the complexity in deriving a set of tests to

adequately test modern complex devices. As

seen from good results in [1, 3, 4, 5, 7, 8, 9], the

concurrent ATPG algorithm approach to

reducing difficulties in test generation shows

promise for the future of ATPG.

5. References
[1] V. D. Agrawal, K. T. Cheng, and P.

Agrawal, “A Directed Search Method for Test

Generation Using a Concurrent Fault Simulator”,

IEEE Trans. On Computer-Aided Design of

Integrated Circuits and Systems, Vol. 8, pp. 131-

138, February 1989.

[2] A. V. S. S. Prasad, V. D. Agrawal, and M.

V. Atre, “A New Algorithm for Global Fault

Collapsing into Equivalence and Dominance

Sets”, Proc. International Test Conf., pp. 391-

397, October 2002.

[3] V. D. Agrawal, K. T. Cheng, and P.

Agrawal, “CONTEST: A Concurrent Test

Generator for Sequential Circuits”, Proc. Des.

Auto. Conf., pp. 84-89, June 1988.

[4] M. Srinivas and L. M. Patnaik, “A

Simulation-Based Test Generation Scheme

Using Genetic Algorithms”, Proc. Int. Conf.

VLSI Design, pp. 132-135, January 1993.

[5] E. M. Rudnick, J. H. Patel, G. S. Greenstein,

and T. M. Niermann, “A Genetic Algorithm

Framework for Test Generation”, IEEE Trans.

On Computer-Aided Design of Integrated

Circuits and Systems, Vol. 16, pp. 1034-1044,

September 1997.

[6] M. L. Bushnell & V. D. Agrawal,

“Essentials of Electronic Testing”, Textbook,

Kluwer academic publishers.

[7] A. S. Doshi, “Independence Fault Collapsing

and Concurrent Test Generation”, MS Thesis.

Auburn University, Department of ECE, Auburn,

AL, USA, 2006.

[8] A. S. Doshi and V. D. Agrawal,

“Independence Fault Collapsing”, Proc. 9
th
 VLSI

Design and Test Symp., pp. 357-366, August

2005.

[9] V. D. Agrawal and A. S. Doshi, “Concurrent

Test Generation”, Proc. 14
th
 IEEE Asian Test

Symp., December 2005.

