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Abstract 

The complexity of VLSI devices increases 

rapidly as technology increases, resulting in an 

increase in the difficulty of test generation.  

Traditional test generation algorithms target 

one fault of a fault set at a time to generate a 

test.  This paper presents a brief overview of a 

few different approaches to concurrent test 

generation.  Concurrent test generation is the 

process of generating tests by “concurrently” 

targeting multiple faults. 

 

1.  Introduction 
Automatic Test Pattern Generation 

(ATPG) is the process of generating a test set (a 

set of input combinations and expected output 

responses) to test for all or most faults in a 

circuit.  The complexity of both sequential and 

combinational ATPG is NP-complete, growing 

with circuit size.  As VLSI technology advances, 

integrated circuits are becoming larger and more 

complex, resulting in the need to develop more 

efficient methods of generating test sets. 

 Many ATPG algorithms generate tests 

by targeting a single fault and finding an input 

vector to activate the fault and propagate its 

effect to a primary output.  The input vector 

generated is a test that can detect the targeted 

fault.  In concurrent test generation, the 

concurrent ATPG targets multiple faults, and 

tests are generated to detect as many targeted 

faults as possible.  Tests are generated by 

“concurrently” targeting multiple faults. 

 In Section 2 of this paper, two similar 

directed search approaches to concurrent test 

generation are described:  one phase of the three 

phase CONTEST algorithm and a phase in many 

genetic algorithm approaches to concurrent 

ATPG.  Both approaches are simulation based 

methods, in which a fault simulator is used 

during the ATPG process.  Before a vector is 

chosen to be added to the test set, it is simulated, 

providing timing analysis during test generation, 

eliminating the generation of hazardous tests.  

This gives simulation based methods a 

significant advantage over other tests generation 

methods [6]. 

 The two concurrent ATPG approaches 

described in section 3 target groups of 

concurrently testable faults, and attempt to 

generate a single test that detects all faults in 

each targeted group.  In both methods, 

concurrent-D algebra and concurrent ATPG 

using single-fault ATPG and simulation, the 

groups of faults targeted during test generation 

are grouped by a unique fault collapsing 

algorithm, which is also described in section 3. 

 

2.  Two Similar Directed Search 

Methods 
 The two concurrent test generation 

methods described in this section use a directed 

search approach.  In the directed search 

approach, the test generator searches the input 

vector space in a “directed” manner for tests.  

The input vector space contains all possible input 

vectors and tests are usually clustered within the 

input vector space [1, 6].  By starting with any 

initial vector, a directed search algorithm directs 

the search for tests toward the test clusters. 

 The first concurrent test generation 

method described is phase 2 of the CONTEST 

algorithm.  CONTEST consists of 3 phases:  

phase 1 generates an initialization vector 

sequence for sequential circuits, phase 2 is the 

concurrent test generation phase, and phase 3 

generates tests by targeting single faults [1, 3, 6].  

In phase 2, the search for tests is a directed 

search which is “directed” by the use of cost 

functions [1, 3]. 

 The second concurrent test generation 

method described is a phase in most genetic 

algorithm approaches to test generation.  This 

approach is similar to phase 2 of the CONTEST 

algorithm [6] and the search through the input 

vector space is directed though the use of fitness 

functions [4].   

 

2.1 CONTEST:  Phase 2 
 In phase 2 of the CONTEST algorithm, 

tests are generated by concurrently targeting all 

undetected faults.  Beginning with an initial 

vector, the circuit is simulated using a concurrent 
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fault simulator.  During simulation, cost 

functions are computed for each target fault.  The 

cost function for a fault is the shortest distance 

that fault’s effect is from a primary output.  If the 

fault effect is observable on a primary output, the 

cost function is zero, and if the fault has no fault 

effect (the fault is not activated) the cost function 

is infinite.  Trial vectors are generated by 

modifying the current input vector with a one bit 

change.  Each trial vector is simulated, and the 

associated costs are computed.  By comparing 

the costs from the current input vector simulation 

with the costs from the trial vector simulation, 

the algorithm either accepts or rejects the trial 

vector.  The trial vector is accepted if the overall 

costs of undetected faults are found to decrease.  

If accepted, the trial vector becomes the current 

vector, and the process starts over.  When the 

costs associated with all single bit changes in the 

current vector do not reduce total cost, phase 2 

ends and CONTEST begins phase 3.  Phase 3 

targets single faults to continue the search for 

tests, and is needed because phase 2 only 

achieves between 65 and 85 percent fault 

coverage [1, 3, 6]. 

 

2.2 Concurrent ATPG  using Genetic 

Algorithms 
 Many ATPGs based on genetic 

algorithms include a phase of concurrent test 

generation which is similar to phase 2 of the 

CONTEST algorithm.  Both directed search 

approaches are “evolutionary”, meaning they 

“evolve” tests by accepting or rejecting vectors 

based on how well they detect faults [4, 5, 6]. 

 Test generation using genetic 

algorithms begins with a set of vectors, which 

initially is usually generated randomly, called a 

population.  Each vector has an associated fitness 

which is evaluated through simulation [5, 6].  

The higher the fitness function, the more “fit” a 

vector is to detect faults.  The population is 

improved iteratively, with each iteration 

producing a new population, and each population 

produced is called a generation.  Each generation 

is “evolved” from the previous generations 

through three evolutionary operators called 

selection, mutation, and crossover [4, 5, 6]. 

 In selection, two of the higher fit 

individuals (vectors) are selected from the 

population for reproduction in generating the 

next generation [4, 5].  The crossover 

evolutionary operator exchanges bits between 

two selected vectors of the population to produce 

two vectors for the next generation.  Mutation is 

the process of modifying bits from a selected 

vector in the population to produce a new vector 

for the next generation [4, 6].  The generation of 

vectors for a new generation is biased toward 

higher fitness [5, 6], and the overall fitness of the 

population generally increases in successive 

generations [5]. 

 As the population is evolved, the best 

test is stored separately.  With each new 

generation, new vectors are compared to the best 

test, and the best test is updated if a better test is 

found.  The best test is added to the test set after 

the last generation is produced.  This process is 

repeated, and tests are generated until fault 

coverage does not improve [5]. 

 

3.  Methods Targeting Groups of 

Concurrently Testable Faults 
 The two approaches to concurrent test 

generation discussed in this section use a unique 

independence fault collapsing algorithm prior to 

concurrent test generation.  The purpose of this 

algorithm is to group faults into subsets where 

most faults in each group (subset) are likely to 

have a concurrent test [7,8,9].  Both methods 

discussed, concurrent-D algebra and concurrent 

ATPG using single-fault ATPG and simulation, 

attempt to generate a concurrent test for all or 

most faults in each group. 

 

3.1 Independence Fault Collapsing 

Algorithm 
Independent faults are faults that have 

no common test.  One example would be a sa0 

and a sa1 fault on the same line.  Because both 

faults cannot be active for the same test vector, 

they cannot have a common test.  Concurrently-

testable faults are defined as two faults that are 

not independent and do not have a dominance 

relationship.  Two concurrently testable faults 

have both a concurrent test, which is a test for 

both faults, and a unique test, which is a test for 

one fault but not the other [7, 8, 9]. 

The independence fault collapsing 

algorithm begins with a dominance collapsed 

fault set, and an independence graph and 

independence matrix is generated.  In an 

independence graph, each node represents a 

fault, and an edge between two faults (nodes) 

means that the two faults are independent.  In an 

independence matrix, each fault has a row and a 

column, and each position in the matrix has a “0” 

or a “1”.  A “1” is placed at that position if the 

two faults are independent, and a 0 is placed if 
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they are not independent (there exists a common 

test for both faults) [7, 8]. 

Three methods to determine 

independence relations between faults in the 

dominance collapsed fault set are described in [7, 

8].  In the first method, structural independences 

are found for boolean gates, shown in figure 1 [7, 

8]. 

 

 
Figure 1: Structural Independence Relationships 

for Boolean Gates 

 

The second method uses the structural 

independence relationships to find implied fault 

independences between subnetworks in a 

hierarchally described circuit.  This method is 

based on hierarchal fault collapsing [7, 8], which 

collapses fault sets of smaller subnetworks and 

stores the resulting data in a library in the form 

of a dominance matrix.  The dominance matrix 

contains information about equivalence and 

dominance relationships between the 

subnetwork’s inputs or outputs and faults in the 

fault list [2].  If the two subnetworks are 

connected as shown in figure 2, and fault a is 

equivalent to fault b, then an independence 

relationship between faults c and d would imply 

an independence relationship between faults a 

and d.  Also, if fault b dominates fault a, then 

independence between faults c and d would 

imply independence between faults a and d [7, 

8]. 

 
Figure 2:  Independence Relations between 

Subnetworks 

The third method determines functional 

independence relationships using an ATPG that 

checks for redundant faults and three copies of 

the circuit shown in figure 3.  Each fault is 

inserted in C, and the ATPG detects faults in A.  

If the finds a redundant fault in A, then that fault 

is independent of the fault currently inserted in C 

[7, 8]. 

 

 
Figure 3:  Using ATPG to find Functional 

Independence Relationships 

 
 Once independence relationships have 

been determined, the independence matrix is 

generated, and the algorithm computes the 

degree of independence for each fault.  The 

degree of independence is computed by adding 

all positions in a fault’s row or column in the 

independence matrix.  Faults are then rearranged 

in the independence matrix by decreasing order 

of their degree of independence, and a similarity 

metric is computed for each pair of faults.  The 

similarity metric is a measure of how similar two 

faults are in concurrent testability with respect to 

all faults, and its value ranges between 0 and the 

total number of faults.  If N=number of faults 

and x is a position in the independence matrix, 

the similarity index between two faults is [7, 8]: 
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If two faults are equivalent, their similarity 

metric is 0, and if they are independent, their 

similarity metric is the maximum value 

(indicating they are not similar) [7, 8]. 

 The algorithm then begins grouping 

faults by adding each fault to an initially empty 

graph in decreasing order of degree of 

independence.  In this graph, each node 

represents a group of faults.  The first fault added 

simply creates the first node.  Before each 
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remaining fault is added, a similarity index is 

computed for each node already in the graph.  

The similarity index for a node is the maximum 

similarity metric between a fault already in that 

node and the fault that is to be added.  The fault 

is then placed in the node with the smallest 

similarity index.  If the similarity index of every 

node is the maximum, then there is a fault in 

every node that is independent of the fault being 

added, so a new node is created.  After adding all 

faults, each node contains a set of faults that are 

likely to have a concurrent test [7, 8]. 

 This independence fault collapsing 

algorithm begins with a dominance collapsed 

fault set, so functional dominance collapsing 

must be preformed before generating the 

independence matrix.  Since both functional 

dominance collapsing and independence matrix 

generation are based on ATPG and complex, a 

second method to generate the independence 

matrix is presented in [7].  This method uses a 

fault simulator that simulates without fault 

dropping to generate the independence matrix 

starting with an equivalence collapsed fault set.  

First, an independence graph is generated 

assuming all faults are independent (every node 

has an edge to every other node).  Then the fault 

simulator is used to simulate random vectors and 

find which faults are detected by each vector.  

When more than one fault is found to be detected 

by the same vector, the edge between these faults 

in the independence graph is removed.  When a 

large number of random vectors are simulated 

without removing an edge in the independence 

graph, the process stops, and the independence 

matrix is generated without the complexity of 

functional dominance collapsing or functional 

independence identification [7]. 

 

3.2 Concurrent ATPG using 

Concurrent-D Algebra 
 Test generation using concurrent-D 

algebra, proposed in [7], targets all faults in each 

collapsed set to generate a concurrent test.  In 

concurrent-D algebra, a D has the same meaning 

as a D in D algebra.  During single-fault ATPG, 

if a signal is affected by the targeted fault, then it 

is assigned the value D, then that signal would be 

a “1” if the fault is not present, and a “0” if the 

targeted fault is present.  The main difference in 

concurrent-D algebra approach is that the ATPG 

is targeting multiple faults concurrently.  When a 

signal in the circuit is affected by a single fault 

i , its value is set to iD  or iD , and when 

multiple faults i  and j  affect a line, it’s value is 

set to ijD  or ijD  [7].  Concurrent-D algebra for 

a 2-input AND gate [7] and a 2-input OR gate is 

shown in table 1 below: 

 

 
Table 1:  Concurrent-D Algebra for 2-input 

AND [7] and OR Gate 

 

A concurrent ATPG program using concurrent-D 

algebra has not been implemented [7, 9], but a 

different approach to concurrent ATPG is 

proposed in [7] that uses a single fault ATPG 

and a fault simulator, which is discussed in the 

next section. 

 Results obtained by manual application 

of concurrent-D algebra on the c17 benchmark 

circuit to generate a concurrent test are reported 

in [7], and are shown here in figure 4.  There are 

11 sa1 faults in the dominance collapsed fault set 

for c17, which are grouped into 4 groups after 

applying the independence fault collapsing 

algorithm, shown in table 2 [7, 9].  The three 

faults in fault group 2 are targeted concurrently, 

and a single concurrent test, “01111”, that 

detects all faults in the group is generated [7].   

 

Fault Group Faults 

1 1, 8 

2 2, 3, 9 

3 4, 6, 10 

4 5, 7, 11 

Table 2:  Fault Groups for c17 
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Figure 4:  Results of Concurrent-D Algebra Targeting Faults 2, 3, and 9 

 

3.3 Concurrent ATPG Using Single-

Fault ATPG and Simulation 
 After the independence fault collapsing 

algorithm, faults are grouped into sets of faults 

that are likely to have a concurrent test.  This 

approach to concurrent ATPG is presented in [7], 

and attempts to generate a single test to detect 

most faults in each collapsed group using a 

single fault ATPG and a fault simulator.  Since a 

smaller set of tests is likely for a fault with a 

higher degree of independence as opposed to a 

fault with a lower degree of independence, the 

generation of a single test for the group begins 

by targeting the fault with the largest degree of 

independence using a single fault APTG.  All 

test vectors are generated for the targeted fault, 

and simulated using a fault simulator to choose a 

vector as a single test for the group.  The chosen 

vector is the one that is found to detect the 

highest number of faults in the group, and the 

highest number of faults outside the group if 

multiple vectors detect the same number of faults 

in the group [7-9]. 

 Results of concurrent ATPG using 

single-fault ATPG and simulation on 18 various 

combinational circuits are reported in [7].  Table 

3 is taken from these results and shows a 

comparison of the number of tests generated and 

the number of groups produced by the 

independent fault collapsing algorithm.  One 

circuit (4-b ALU) shows 12 tests generated for 

13 groups, and in 7 circuits the number of tests 

generated is equal to the number of groups.  For 

the remaining 11 circuits, the number of tests 

generated is only slightly larger than the number 

of groups, showing the efficiency of this 

concurrent ATPG approach in generating a 

single test per group. 

 

Circuit 
# of 

Groups 

# of 

Generated 
Tests 

Circuit 
# of 

Groups 

# of 

Generated 
Tests 

1-b adder 5 5 c499 52 52 

2-b adder 5 5 c880 24 29 

4-b adder 5 5 c1355 84 84 

8-b adder 7 7 c1908 106 111 

16-b adder 7 9 c2670 81 92 

32-b adder 7 11 c3540 107 130 

4-b ALU 13 12 c5315 92 104 

c17 4 4 c6288 23 25 

c432 30 34 c7552 190 198 

Table 3:  Results of Concurrent ATPG using Single-Fault ATPG and Simulation 
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4.  Conclusion 
 Because ATPG is NP-complete, many 

algorithms have been developed that attempt to 

reduce the complexity in deriving a set of tests to 

adequately test modern complex devices.  As 

seen from good results in [1, 3, 4, 5, 7, 8, 9], the 

concurrent ATPG algorithm approach to 

reducing difficulties in test generation shows 

promise for the future of ATPG.  
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