
Automatic Test Pattern Generation for Functional RTL Circuits
Using Assignment Decision Diagrams

Indradeep Ghosh and Masahiro Fujita

Fujitsu Laboratories of America, Sunnyvale, CA 94086
fighosh,fujitag@fla.fujitsu.com

Abstract
In this paper, we present an algorithm for generating test patterns
automatically from functional register transfer level (RTL) circuits
that target detection of stuck-at faults in the circuit at the logic level.
To do this we utilize a data structure named assignment decision di-
agram which has been proposed previously in the field of high level
synthesis. The advent of RTL synthesis tools have made functional
RTL designs widely popular. This paper addresses the problem of
test pattern generation directly at this level due to a number of ad-
vantages inherent at the RTL. Since the number of primitive ele-
ments at the RTL is usually lesser than the logic level, the problem
size is reduced leading to a reduction in the test generation time
over logic-level ATPG. A reduction in the number of backtracks
can lead to improved fault coverage and reduced test application
time over logic-level techniques. The test patterns thus generated
can also be used to perform RTL-RTL and RTL-logic validation.
The algorithm is very versatile and can tackle almost any type of
single-clock design though performance varies according to the de-
sign style. It gracefully degrades to an inefficient logic-level ATPG
algorithm if it is applied to a logic-level circuit. Experimental re-
sults demonstrate that over 1000 times reduction in test generation
time can be achieved by this algorithm on certain types of RTL cir-
cuits without any compromise in fault coverage.

1. Introduction
The problem of automatic test pattern generation (ATPG) for se-
quential circuits has remained a difficult one in spite of great ad-
vances in ATPG techniques in recent years. The classical ATPG
methods target the problem at the logic level and might require large
amounts of computing time and resources to generate tests of even
moderately sized sequential circuits [1]. By modeling circuits at a
higher level, the number of primitive elements in the circuit is re-
duced, thus making the problem size more tractable. This allows
larger circuits to be handled in less time.

In order to reduce the complexity of sequential ATPG various
design for testability (DFT) schemes have been proposed that alter
the circuit structure and functionality in the test mode to make the
circuit easily testable. Two of the popular methods are scan design
(full or partial) and built-in self-test (BIST) [1]. Though these tech-
niques can increase the testability of a circuit considerably where
sequential ATPG fails, they always come at a cost. There is an
area overhead penalty, sometimes a performance penalty and power
overhead penalty or a combination of all three. Moreover, test ap-
plication time is increased very much in case of scan as scan vectors
need to be sequentially fed into and scanned out of long scan chains.

In this paper, we try to tackle the sequential ATPG problem di-
rectly without any help of additional DFT hardware. Since the
problem becomes too complicated at the logic level, we attempt
to solve the problem at a higher level of abstraction where the num-
ber of primitive elements in the circuit is usually much lower thus
reducing the problem size. Another motivation is the availability of

RTL designs early in the design cycle. With the advent of robust,
high quality RTL synthesis tools from a number of CAD vendors,
designs are increasingly being done at the RTL. This can make the
design process easier and cut design turn-around time drastically.
Most of these descriptions describe the circuit in a cycle-accurate
algorithm kind of fashion which is termed functional RTL. Our test
generation algorithm directly acts on this kind of circuit descrip-
tions. Since it can generate test vectors directly at the RTL, the test
sets may also be used for doing RTL-RTL validation and RTL-logic
validation.

The algorithm makes the following assumptions:
- The RTL design is in VHDL/Verilog and has a single clock line.
- The circuit does not have any complicated asynchronous behavior
other than set/reset of flip-flops.
- The functionality of black boxes or intellectual properties (IPs)
are stated such that each input of the block can be propagated to
an output or a combination of outputs of the block in a fixed num-
ber of cycles and each output of the block can be justified from an
input or combination of inputs of that block in a fixed number of
cycles. If such a block is combinational and a test set for the block
is provided, then the algorithm can attempt to test it. However, if
the block is sequential in nature, then the algorithm cannot test it
without some additional DFT hardware.
- Each finite state machine (FSM) description in the RTL circuit has
a reset state or a single input line that takes the FSM to a fixed state
when it is set or reset.

The algorithm first converts the HDL description into a graph-
like structure called an assignment decision diagram (ADD). This
data structure has been proposed previously to perform high-level
synthesis [2]. The testing algorithm identifies arithmetic operation
modules, logic arrays, registers, latches, memories, multiplexers,
interconnect and random logic blocks from the ADD. Each of these
elements is then tested by justifying test vectors to its inputs from
the primary inputs (PIs) and propagating test responses from its
outputs to the primary outputs (POs). This justification and prop-
agation is done symbolically on the ADD representation with the
help of a nine valued algebra and a branch and bound search pro-
cedure and requires backtracking similar to sequential ATPG. After
this we have a set of justification and propagation paths from PIs
to POs that exercises the elements deep inside the RTL circuit with
test vectors applied at the PIs. This path which may span across
many clock cycles is termed a test environment for the element un-
der test. Finally, a test translation procedure uses test vectors from
a well known test set for the RTL element or a precomputed test
set from a test set library and plugs them into the test environment
to obtain a system-level test set for the RTL element. The system-
level test sets for various RTL elements are concatenated together
to get the complete test set for the RTL circuit.
2. Previous Work
In the past, various attempts have been made to formulate ATPG
algorithms that work on higher levels of design abstraction. A be-
havioral synthesis method has been proposed that generates testable
RTL circuits from data/control flow intensive descriptions and also
generates a system level test set as a byproduct [3]. At the RTL var-
ious testing techniques have been proposed. Most of them are inte-
grated ATPG and DFT insertion techniques targeting BIST [4],[5],

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

a 7
 State
Register ST0 P Q

&!

&

< =

R

− +

Assignment
Conditions

v
vc

c

Assignment Values
−

−

Read Node

Write Node

&

!

−

−

AND

NOT

v

c −

− Value Input

Condition Input

 Assignment
 Decision

Assignment Target

−

− Operator Node

 Assignment
Decision Node

Figure 1: An Assignment Decision Diagram

scan design [6], or test multiplexers [7]. Also all the above tech-
niques target structural RTL circuits and assume a clean separation
between data path and control portions of the circuit. At the func-
tional RTL, an interesting test generation approach uses a combi-
nation of integer linear programming and Boolean satisfiability to
generate vectors targeting functional testing of RTL circuits [8].
This approach tries to find an exact solution to all justification and
propagation problems and uses time-frame expansion to tackle se-
quential circuits. This can lead to an exponential increase in the
complexity of the algorithm and the applicability of the algorithm
to deep sequential circuits remains to be seen.

In this paper we have tried to address most of the above draw-
backs by constructing a practical ATPG algorithm that can tackle
most single-clock functional RTL designs. The algorithm grace-
fully degrades to an inefficient logic-level ATPG algorithm if given
a functional RTL circuit that is pure Boolean in nature. This versa-
tility is one of the main advantages of this algorithm over previous
approaches. The algorithm can be fine tuned to generate greater
fault coverage at the expense of CPU time much like logic-level
sequential ATPG. Finally, we do report results on large, real-life
industrial circuits unlike previous methods.

3. Assignment Decision Diagrams
Any digital system can be viewed as a set of computations on the
PI values and contents of the internal data storage elements in the
system. The results are in turn stored in internal storage elements
or conveyed to the POs. Hence, a digital system can be represented
as a set of conditional assignments to targets that represent storage
elements or output ports in the form of an ADD, as shown in Figure
1. ADDs were first proposed for high level synthesis [2]. However,
they can also be used to represent functional RTL circuits.

In Figure 1, the ADD representation consists of four parts: the
assignment value, the assignment condition, the assignment deci-
sion, and the assignment target. There are just four types of nodes
needed to represent an ADD: read nodes, operation nodes, write
nodes and assignment decision nodes (ADN).

Theassignment value part consists of read nodes and operation
nodes. This part represents the computation of values that are to be
assigned to a storage unit or output port. This value is computed
from the current contents of the input ports or storage element or
constants which are all represented by read nodes. The actual com-
putation is represented as a data-flow graph which has the oper-
ation nodes that may be logical or arithmetic in nature. Theas-
signment condition part consists of read nodes and operation nodes
that are also connected as a data-flow graph. The end product of
the computation is a Boolean value which is the guarding condition
for the assignment value. Theassignment decision part consists of
an ADN. The ADN selects a value form a set of values that are
provided at its value inputs. If one of the conditions to the ADN
evaluates totrue, then the corresponding input value is selected.
The assignment target is represented by a write node. The write
node is associated with the selected value from the corresponding
ADN. A value will be assigned to the write node only if one of the
condition inputs to the ADN evaluates totrue. Since only one value
can be assigned to a target at a time, all assignment conditions for
a given target are mutually exclusive. This is shown in Figure 1.

In case of multi-state designs the cor-
responding ADD would contain a spe-
cial storage unit called astate register.
This state register represents the control
step sequencer and has the same repre-
sentation as any other storage unit. As-
signments to the state register represent
the sequencing of control steps, where
each assignment value is a control step
and each assignment condition repre-
sents the sequencing between steps.

The unique feature of an ADD is its
capability to represent conditions and
computations in a consistent and seam-
less data-flow fashion. Thus, opera-

tions in an ADD are ordered by their data dependencies only. With
this capability an ADD can represent the most parallel represen-
tation of a given description. From the testing point of view this
representation is suitable since it comes as close as possible to the
final structural netlist without taking any synthesis decisions. It is
a known fact that the structure of the final circuit is very impor-
tant for generating vectors that detect stuck-at faults. Since data
library IEEE;
use IEEE.stdlogic 1164.all;
use IEEE.stdlogic arith.all;
use IEEE.stdlogic unsigned.all;
entity TEST is

port (RST, CLK : IN std logic;
APORT, BPORT, CPORT, DPORT : IN stdlogic vector(7 downto 0);
E : IN std logic;
OPORT : OUT stdlogic vector(7 downto 0));

end TEST;
architecture RTL of TEST is

type STATETYPE is (S0, S1, S2, S3);
signal CURRENTSTATE, NEXT STATE: STATETYPE;
signal A, B, C, D, F, G, O, NXTA : std logic vector(7 downto 0);
signal NXT C, NXT D, NXT F, NXT G : std logic vector(7 downto 0);
signal NXT B, NXT O : std logic vector(7 downto 0);
begin

COMBIN: process(CURRENT STATE)
begin

NXT A <= A; NXT B <= B; NXT C<= C; NXT D <= D;
NXT F<= F; NXT G<= G; NXT O<= O; OPORT<= O;
case CURRENTSTATE is

when S0 =>
NXT A <= APORT; NXT B <= BPORT;
NXT C<= CPORT; NXTD <= DPORT;
NXT G<= ”00000000”;
NEXT STATE<= S1;

when S1 =>
if (C < D) then

NXT F<= A + B; NEXT STATE<= S2;
else

NXT F<= A - B; NEXT STATE<= S3;
end if;

when S2 =>
NXT G<= F + G;
if (E = ’0’) then

NEXT STATE<= S1;
else

NEXT STATE<= S3;
end if;

when S3 =>
NXT O<= G - 3; NEXT STATE<= S0;

end case;
end process;

SYNCH: process(CLK, RST)
begin

if (CLK’event and CLK=’1’) then
if (RST=’1’) then

CURRENTSTATE<= S0;
else

CURRENTSTATE<= NEXT STATE;
A <= NXT A; B <= NXT B; C<= NXT C; D<= NXT D;
G<= NXT G; F<= NXT F; O<= NXT O;

end if;
end if;

end process;
end RTL;

Figure 2: RTL VHDL description of circuitTest

and control are integrated, the testing of an element can be done in
an integrated manner without caring about controller and data path
separation. Also logic-level modules like multiplexers, adders,etc
can be easily identified and tested from the description.

Note that for consistency, we are going to use VHDL as the high-
level description language throughout this paper but similar argu-
ments can be made about Verilog descriptions as well. In a VHDL
description each process is converted to an ADD. In case of a com-
binational process and sequential process description of an FSM,
the two processes are combined into a single ADD. The ADDs of
processes are connected together by their input and output ports in-
side a component. There is also a separate block for the concurrent
RTL statements. The components are in turn connected together
to form larger components in a hierarchical fashion. The VHDL
description of an FSM is shown in Figure 2 and the corresponding
combined ADD is shown in Figure 3.

4. Motivational Example
In this section the RTL testing process is described with the help
of the example circuitTest shown in Figure 2. First, an RTL ATPG
algebra needs to be defined that is used to do symbolic justification
and propagation on the RTL circuit. The algebra proposed here suit-
ably modifies and extends similar concepts proposed earlier ([3],
[7]). This makes the symbolic justification and propagation more
versatile and powerful. Note that throughout this discussion the
term variable has been used to signify an RTL variable, RTL signal
or RTL net.
The ATPG algebra

The algebra consists of a set of nine symbols as follows:
- Cg (general controllability) of an RTL variable is the ability to
control its value to any arbitrary value.i.e. if we are able to achieve
Cg on an-bit variable then it is possible to control this variable to
any of 2n values possible on that variable from the PIs.
- C0 (controllability to 0) of a variable is the ability to control the
variable to the value 0,i.e. “000..00” value in case of a multi-bit
variable or 0 in case of a single bit variable.
- C1 (controllability to 1) of a variable is the ability to control the
variable to the value 1,i.e. “000..01” value in case of a multi-bit
variable or 1 in case of a single bit variable.
- Ca1 (controllability to all 1s) of a variable is the ability to con-
trol the variable to the value all 1s,i.e. “111...11” value in case of
multi-bit a variable. In case of 2’s compliment arithmetic it also
means controllability to the -1 value.Ca1 of a single bit variable is
equivalent toC1.
- Cq (controllability to a constant) of a variable is the ability to con-
trol the variable to any fixed constant value.i.e. in case of an-bit
variable we have to ability to control it to any one constant value
out of the 2n values possible on the variable. In case of a single-bit

A B C D E F G O30CLKRST ’1’ S0 S1 S2 S3 APRT BPRT CPRT DPRTCurr_st

Event

A B C D F O OPRTCurr_st

= = = = = =
< =

&

&
!

&

&

&

& &

!

&

G

!

&

+ − −

+

&

InIn In In In

Out

p

r

Clock−edge testing expressionIn

Figure 3: ADD representing circuitTest

variable, it is the ability to control it to either 0 or 1
- Cz (controllability to the Z value) of a variable is the ability to
control the variable to the high-impedance Z state. In case of an-
bit variable, it is the ability to control the variable to the “ZZZ...Z”
vector.
- Cs (controllability to a state) of a state variable is the ability to
control the variable to a particular state. Note thatCs is applicable
to only state variables defined in an FSM.
- O (observability) of a variable is the ability to observe a fault at a
variable. In case of a multi-bit variable, it signifies that some faulty
value is present on the variable which is different from its correct
value. In case of a single-bit value, it signifies the 1/0 faulti.e. the
good value on the variable should be 1 and the faulty value 0 (it is
the same asD in theD-algorithm used in logic-level ATPG [1]).
- O’ (complement observability) is defined for single-bit variables
only. It signifies the 0/1 faulti.e. the good value on the variable
should be 0 and the faulty value 1 (it is the same asD̄ in the D-
algorithm).

Note thatCg on a variable subsumesC0, C1, Ca1, andCq on
that variable. Similarly either ofC0 or C1 or Ca1 subsumesCq.
We have chosen to represent only these few constants in the alge-
bra because it is sufficient to control one of the input ports of any
two-input arithmetic or logical operator supported in VHDL (syn-
thesizable) to a suitable constant from this set in order to transfer
test data from the other input port to the output port of the operator.
Based on the above symbols we can formulate transformation rules
for justification and propagation. For exampleCg at the output of
an addition operation can be transformed toCg at its left input,Cq
at its right input orvice versa. Similarly O at the input of a multi-
plication can be transformed toO at the output and either aC1 or
Ca1 at the other input. ObviouslyCg of all PIs are trivial andO or
O’ of all POs are trivial. Also,Cq for constant values are trivial.

Now, we have to introduce the notion of time frames. Also, to
take care of bus splits and joins we have to introduce the bit indices
of a variable. Thus we define an RTLjustification/propagation
record as a six valued set containing the ATPG objective, variable
name, upper bit index and lower bit index of the variable, time
frame value, and a state value which is present in case ofCs and
empty otherwise. For exampleCg(a[7:0], 0, -) implies that we need
to meet the objective of general controllability on variablea[7:0]
in time frame 0. SimilarlyCs(Curr st, 3, S0) means that we need
to control the value of state variableCurr st to S0 in time frame 3
and so on. Note that bit-widths of state variables may be unknown
at the functional RTL level.
State transition Graphs

In case of an FSM kind of description as in Figure 2,
a state transition graph (STG) is also made along with the
ADD only for the state variable. In the FSM thereset states

(states which
are reached by
setting or reset-
ting input lines
to the FSM) are
identified. Note
that existence of
such a state(s) is
an assumption.
Also identified
are input states.
These are the
states where data
is read from input
variables to the
process where
the FSM exists.
Similarly output
states are states
where the results
of computations
within the FSM
description are
written into

variables which are outputs to the process in which the FSM

exists. If there are multiple processes in a component, then these
input and output variables can be found by doing a simple inter
process connectivity analysis or a connectivity analysis between
the process variables and the PI/PO ports. The state transition
graph for the FSM in circuitTest along with the various type of
states is shown in Figure 4.
Testing arithmetic modules

The first step for testing an RTL module is to find a set of justifi-
cation (propagation) paths from (to) the module inputs (outputs) to
the system PIs (POs). The VHDL description of the circuit is con-
verted into an ADD representation. From the ADD the algorithm
first identifies all multi-bit arithmetic operations in the circuit. It
then tries to test each operation sequentially.

Consider the addition operation in stateS1 (highlighted in Fig-
ure 3). To test the operation, we need to control the two inputs
of the operation from the primary inputs and observe the output
response at a primary output. Also in the process we have to

S0 S1

S2 S3

Reset State: S0

Input State: S0

Output State: S3

Figure 4: STG for circuitTest

get the FSM to traverse
from a reset state to an
input state to the oper-
ation execution stateS1
and finally to an out-
put state such that the
justification and prop-
agation objectives are
met. The complete jus-
tification and propaga-
tion search is shown in
Figure 5. The initial ob-

jectives are put in a stack. TheCs objective is required initially
since the operation executes in stateS1 and this state is necessary
for the data flow to happen through the operation. Objectives are
transformed from the top of the stack according to the functionality
of RTL modules. In case of multiple choices, selections are made
randomly except in case ofCs objectives. In those cases the selec-
tion of the next or previous state is based on a greedy proximity
heuristic that tries to guide the state transition sequence according
to the required data flow as mentioned above. If the search fails in
one direction, then it backtracks, abandons an intermediate decision
and continues in a new direction. This is very similar to logic-level
ATPG. There is a backtrack limit, and a time limit on each search.

As shown in Figure 5, first the state sequence is determined for
justification, then the justification paths from the operation inputs to
the PIs are determined followed by propagation paths which need
to conform with the state transition graph. From the ADD view-
point the following actions are taken during justification:
- If a read node is reached and it is not a PI or an input to the pro-
cess, then the objective is shifted to the corresponding write node.
In case of a PI the objective is satisfied. In case of a process input,
the objective is shifted to a write node of another process (or con-
current RTL statements) which feeds the current process.
- If a write node is reached then the corresponding objective is
shifted to one of the value inputs of the ADN feeding the write node

Initial Objectives

O(F[7:0], 1)
Cg(C[7:0], 0)
Cq(D[7:0], 0)

O(F[7:0], 1)
Cg(C[7:0], 0)
Cq(DPRT[7:0], −1)

O(F[7:0], 1)
Cg(CPRT[7:0], −1)

O(G[7:0], 2)
Cs(Curr_st, 1, S2)

O(O[7:0], 3)
Cs(Curr_st, 2, S3)

O(O[7:0], 3)
C0(E[0:0], 1)

O(OPRT[7:0], 3)

~ ~

~

~ ~

(Stack is bottom−up)

O(p[7:0], 0)
Cg(A[7:0], 0)
Cg(B[7:0], 0)
C1(r[0:0], −1)

O(p[7:0], 0)
Cg(A[7:0], 0)
Cg(B[7:0], 0)
Cs(Curr_st, 0, S1)

~
:
:

Trivial requirement or requirement satisfied by transforming to requirement already satisfied

: One of many choices for transformation and backtracking may be required

Some intermeditae steps while traversing through the control logic is not shown

O(p[7:0], 0)
Cg(A[7:0], 0)
Cg(B[7:0], 0)
C1(RST[0:0], −2)

O(p[7:0], 0)
Cg(A[7:0], 0)
Cg(B[7:0], 0)
Cs(Curr_st, 1, S0)

O(p[7:0], 0)
Cg(APRT[7:0], −1)

O(p[7:0], 0)
Cg(A[7:0], 0)
Cg(BPRT[7:0], −1)

Figure 5: Justification/propagation for testing add operation

and the C1 objective is required for the corresponding condition in-
put. Over here there are multiple choices based on the number of
value inputs in the ADN and there is a possibility of backtracking.
If there is a clock-edge testing expression subtree (wait or event
statements) in the expression tree that feeds the condition input then
the time frame number is decremented by 1 (refer to Figure 3).
- If the output of an operation node is reached then it is transformed
according to the functionality of the operation and the RTL alge-
bra. The transformations for different RTL and logical operations
are stored in a look-up table. Usually there are many choices and
there is a potential for backtracks later.

Exactly reverse steps are taken in case of propagation. The only
difference is while propagating from a control input of an ADN to
its output the corresponding value input and complimentary condi-
tion value input need to have different values.

During the justification and propagation, a justification frontier
is maintained in a stack with the objectives that needs to be jus-
tified. This is similar to theJ-frontier used in theD-algorithm.
Newly assigned objectives can conflict with objectives that have al-
ready been satisfied. For example ifCg is required on a variable
in a time frame when there has already been aCg assigned to it
in the same time frame, then it leads to a conflict as it is impossi-
ble to control a variable to two arbitrary values in the same cycle.
Another list of already satisfied objectives is also maintained. New
objectives which are already satisfied are not entered into the stack.
Similarly, during propagation aO-frontier is maintained. The time
frame number starts at 0 on the initial objectives and slowly be-
comes more and more negative during justification and more and
more positive during propagation.

Once thetest environment is found for the addition operation, the
most negative time frame number is assigned to 0 and the other time
frame numbers are updated accordingly. Then a precomputed test
set for the operation is used to plug in each test vector into thetest
environment and get a system-level test set that tests the addition
operation. For example if (0, 5) is required in the (left, right) inputs
of the addition operation as a test vector, we assign 0 toA and 5 toB
and use thetest environment to justify these values to the PIs, thus
getting 0 atAPORT and 5 atBPORT. This system-level test vector
computation may require a series of arithmetic and logical trans-
formations which is explicitly given by thetest environment. PIs
which are not used are fed with random values. The test sequence
is as long as the largest time-frame number in thetest environment.
All test sequences obtained from all test vectors in the precomputed
test set are concatenated together to get a system-level test set for
the addition operation. All system-level test sets for all RTL ele-
ments are concatenated together to get the complete test set for the
RTL circuit.

The precomputed test set for each type of arithmetic opera-
tion is stored in the library for each possible bit-width. This
may look like a huge task but it is just a one time cost which
needs to be incurred to test all RTL circuits. Since, at the func-
tional RTL, it is impossible to know the structural implementation

of the operation (it depends on the
constraints placed during RTL syn-
thesis), we tried to obtain test sets
that do reasonably well for any im-
plementation of the operation. We
experimentally observed that using a
test set for a most serial implementa-
tion of the operation in conjunction
with a test set for the most paral-
lel implementation, results in above
90% fault coverage for all types
of implementation of the operation.
For example for the addition opera-
tion the test set obtained by the com-
bination of a ripple-carry adder test
set with a carry-look-ahead adder
test set results in good fault cover-
age for all types of adder implemen-
tation. As previously proposed it
would be useful to get implementa-

tion independent test sets for operations if they are available [9].

Testing logic arrays
After testing arithmetic operations the algorithm identifies multi-

bit logic operations or logic arrays and tests them. Logic array test
sets always fall within the constants defined in the RTL algebra.
Thus each test vector can be individually justified and propagated
without using the stringentCg objective. For example, for anOR
gate array with (left, right) input buses the test set isf(Ca1,C0),
(C0, Ca1), (C0, C0)g. Once these objectives are set, the rest of the
testing is the same as above.
Testing storage elements

Storage elements can be registers, latches and memories. From
the ADD point of view storage elements are write nodes that have
an ADN feeding it. If any of the condition inputs to the ADN has a
clock-edge testing subtree then it can be implemented as a register,
else it is a latch. To test all untested registers and latches, the pat-
tern “000..00” (C0) and the pattern “111..11” (Ca1) is loaded into
each of these elements and observed. For registers there are some
additional two-pattern tests needed to test faults on the load line.
However, these faults are detected when testing the ADN feeding
the write node corresponding to this register in the ADD. This is
discussed later.

Memories are usually formed by array declarations in the RTL.
To test memories thechecker board test is used. In this test atest
environment is found out withCg objective at the data and address
variables of the memory and aC1 objective on the write control port
(C0 if low active). This is used to write the checker board pattern
into the memory. Then atest environment is found out with aCg
objective at address variable of the memory, aC1 objective (C0 if
low active) on the read control port, and aO objective on the output
port. This is used to read the test response from the memory. More
complex memory tests can also be done in this manner.
Testing interconnect

The interconnect is in the form of either buses or multiplexers.
In the ADD a two input multiplexer is represented as an ADN with
two value inputs and complimentary condition inputs. Say the value
inputs to the ADN arev1 andv2 and the condition input iss such
that if s assumes the value 1,v1 is chosen andv2 otherwise. A
multiplexer requires four patterns for complete testability. They are
[Ca1(v1), C1(s)], [Ca1(v2), C0(s)], [C0(v1), Ca1(v2), C1(s)], and
[Ca1(v1), C0(v2), C0(s)]. The algorithm tries to generate the above
four test environments one after another. It tries to generate as many
as possible if all the tests are not possible.

In case of a register, the register load is represented as a two
input ADN on top of a write node representing the register variable
as shown in Figure 6(a). In that case testing the ADN as above
tests the register load line. In case of testing complex multi-input

Clock EventLoad 1 A B

B

(a)

&

&

!

=
=

(b)

&

v1 v2 v3 v4 v5

O

s1
s2
s3
s4

s5

Figure 6: ADDs for register loads and
complex ADDs

ADN nodes
as shown
in Figure
6(b), a test
environment
found out
with Ca1
requirement
on each value
input and C1
requirement
for the cor-
responding
condition
input. This
type of ADN
will be syn-
thesized into
a multi-input
multiplexer,
a multi-input
multiplexer

tree or a bus. Since it is impossible to figure out at this level of
description, how the inputs will be ordered in the multiplexer tree,
a select line stuck-at test can only be done if while assertingC0 at
a value input andC1 at its corresponding condition input, all other
value inputs are controlled toCa1. This is usually too stringent

a requirement and the attempt to generate thistest environment
may fail. In that case in addition to the test of the form [Ca1(vi),
C1(si)] for each value input we also perform the test of the form
[C0(vi), C1(si)] for each value input and hope that the fault will be
caught by random values at the other value input ports during fault
simulation.
Testing random logic blocks

Random logic blocks are usually represented as logic control-
ling the condition ports of the ADNs. Also, if value inputs to an
ADN are constants it will be synthesized as a random logic block.
Random logic testing at the functional RTL level is quite difficult
as there is no notion of structure. Hence, we try to cover the func-
tionality of the circuit by doing observability enhanced statement
coverage. This translates to identifying all random-logic ADNs,
controlling each condition input signal of those ADNs to 1 and ob-
serving the write node at the output of the ADN.
Tackling bus splits and joins

There are various transformation rules that we use to tackle bus
splits and joins based on the RTL ATPG algebra. For example
during propagation, suppose busa[3:0] splits into four individ-
ual bit lines. ThenO(a[3:0]) will be transformed to [O(a[0:0])
& O(a[1:1]) & O(a[2:2]) & O(a[3:3])]. Similarly for justification
if two bit lines join to form a bus,C1(b[0:0]) andC1(b[1:1]) will
join to becomeCa1(b[1:0]). Such transformations take place at
split andjoin nodes which we identify from the ADD.

Note that while tackling single bit variables the combination of
C1, C0, O, andO’ makes the algorithm degenerate to a sequential
version of aD-like algorithm. Thus ideally speaking the algorithm
is versatile enough to tackle logic-level ATPG. However, in the ab-
sence of any modern-day heuristics its performance will be much
worse than state-of-the-art logic-level ATPG tools.

Also note that the RTL ATPG process is not exact since it han-
dles only a few constants for the sake of limiting the number of
transformation choices across modules. For example allO require-
ments on bus lines are transformed toO requirements on bit lines.
However, this may not be correct as all responses may not be of the
1/0 form. From the RTL algebra it is not possible to define the type
of test response on individual bit lines in a bus. Only the informa-
tion is stored that a fault response is present on the bus. Similarly
while combining bit lines to form a bus during justification, if a
constant is formed that is not represented by the RTL algebra, we
simply put aCg requirement on the bus. However, this can be an
overkill as now all 2n possible values need to be justified on the bus.
In practice we observe that the algorithm works well even with its
limited representation of the RTL constants. This is evident from
the experimental results.
Tackling hierarchical designs

The algorithm can handle hierarchical designs. This is done with
the help of the top level connectivity files that specify the connectiv-
ity among components. During justification when the justification
frontier has reached the inputs of a component, the connectivity is
used to transfer it to the output of another leaf component or to a PI.
This might require some hierarchy traversal. However, the testing
process occurs in all the leaf components and traversing hierarchy
according to the connectivity is straight forward. Similar steps are
taken during propagation where the aim is to finally reach a PO.
Tackling black boxes and IPs

Sometimes RTL circuits have components which are designated
as black boxes. This can happen if a predesigned module is used
whose logic-level representation is only present or while designing
with IP cores whose RTL design is not made public. In such cases
the justification and propagation will stop at the boundaries of these
components unless some additional information is made available.
We need two types of information for the RTL ATPG to succeed.
First for each input of the black box a way should be provided to
propagate its value to one or more outputs in a fixed number of
cycles. The RTL ATPG will use this information to just propagate
its O-frontier across the module. Similarly during justification for
each output of the black box a way should be provided to justify its
value from one input or combination of inputs in a fixed number of
cycles. It is better if a number choices are available for justification
and propagation which may be used in case of backtracks but at
least one justification (propagation) path for each output (input) is

Table 1: Circuit size statistics for the example circuits
Circuit RTL Logic level

VHDL lines Design type #Gates #Flip-flops
Paulin 130 flat 39558 227
Tseng 121 flat 22650 195
Dct 336 flat 13869 389
GCD 113 flat 1467 98
Barcode 156 flat 714 84
X25 122 flat 2250 227
Am2910 543 hierarchical 2109 140
GPIO 1002 hierarchical 1720 148
ALM 3504 hierarchical 8265 1490
EXE 8075 hierarchical 12327 939

a minimum.
If the black box is combinational in nature and a test bench is

available, then the RTL ATPG algorithm can attempt to test the
component like any other arithmetic operation. However, if the
black box is a sequential design, then the clock for that compo-
nent needs to be frozen for the cycles in which test data is being
propagated from the PIs to the component inputs and component
outputs to POs. This cannot be done without some additional DFT
hardware.
5. Experimental Results
The RTL ATPG algorithm has been implemented implemented us-

Table 2: Test Generation Results

HITEC STRATEGATE RTL ATPG
Circuit FC TGen TApp FC TGen TApp FC TGen TApp

(%) (sec) (cycles) (%) (sec) (cycles) (%) (sec) (cycles)
Paulin 97.92 147002 752 99.71 101071 4499 99.72 138 4124
Tseng 98.43 52139 366 99.63 18481 2689 99.68 216 3429
Dct 90.01 74805 1696 89.83 106056 2528 96.50 739 3965
GCD 49.16 43964 258 85.73 192384 55823 94.31 498 4568
Barcode 63.41 9799 759 57.58 232336 24764 88.78 876 4080
X25 36.31 93592 151 57.27 131897 20817 85.35 1046 3561
Am2910 73.86 18723 1317 94.48 15125 4742 95.32 2765 3952
GPIO 99.41 57 1396 98.30 11078 5292 93.56 5543 690
ALM 22.53 58600 589 29.53 67854 1563 36.52 85654 1430
EXE 21.32 27300 992 44.12 399333 26722 40.83 585700 5689

ing the VHDL front end of the XE synthesis tool from YXI Inc.
[10]. We have tested the RTL ATPG algorithm on ten example
VHDL RTL circuits obtained from academia and industry. Out of
thesePaulin, Tseng andDct are data-flow intensive filter type cir-
cuits extensively used in the literature [7], [5].GCD (a circuit that
calculates the GCD of two 32-bit integers),Barcode (a circuit used
to scan barcodes from objects), andX25 (a memory protocol han-
dler) are control-flow intensive circuits.Am2910 is a description
of the microcontroller designed by AMD and is taken from [11].
GPIO (a general purpose input/output bus controller),ALM (a part
of an ATM switch), andEXE (a memory controller) are industrial
circuits..

The RTL designs were synthesized from VHDL by the Synop-
sys Design Compiler to gate-level netlists. Different scripts using
different types of area, delay and map efforts were used to get vari-
ous types of logic-level circuits with different types of optimization.
This was done to ensure that the test vectors generated at the RTL
are valid for different types of structural implementations of cir-
cuits. Table 1 shows the circuit statistics for the various examples
used both at the RTL and logic level (one particular synthesis script
was used for each circuit).

In Table 2 we compare our test generation results with two logic-
level test generation tools. First we use the latest version of HITEC
[12] which is a deterministic logic-level ATPG tool. HITEC has
been run with a backtrack limit of 100,000. Then we use STRATE-
GATE a state-of-the-art genetic algorithm based logic-level test
generation tool [13]. The fault coverage numbers for the RTL
ATPG method are obtained by fault simulating the logic-level im-
plementation of the circuits using PROOFS [12]. The CPU times
are for an UltaSparc 60, 360 MHz machine with 512 MB mem-
ory. In the tableFC means fault coverage,TGen is the test gen-
eration time andTapp is the test application time or test sequence
length in cycles. From the first line in the table it can be seen that
over 1,000 times reduction in test generation time can be achieved

by RTL ATPG over logic-level ATPG without any compromise in
fault coverage. In fact the fault coverage for RTL ATPG is better
than logic-level ATPG for 8 of the 10 circuits. However, the per-
formance of the RTL ATPG algorithm degenerates as the circuit
description at the RTL becomes more and more logic type.

Note that the test application time for RTL ATPG is on the higher
side though a fair comparison cannot be made unless fault cover-
ages for the two systems are comparable. Anyway, the reason be-
hind this is that there is no RTL fault simulation. This results in
many redundant vectors generated at the later stages of the algo-
rithm.

We also did some experiments to confirm that the test vectors
work well for different implementations of the same circuit by gen-
erating four or five versions of the same RTL circuit using different
Design Compiler scripts and then obtaining fault coverage numbers
on them with the same test set generated at the RTL. We observed
that the fault coverage for the different versions varied by a maxi-
mum of 2%.
6. Conclusion
In this paper we have described a new and versatile RTL
ATPG algorithm that can generate test vectors for almost any
type of single-clock functional RTL design. The algorithm
uses a data structure called assignment decision diagram that
helps it to tackle control and data flow in an unified fash-
ion and a nine-valued algebra that helps it to do justifica-
tion and propagation at the RTL. The algorithm degenerates

to an inefficient logic-level ATPG algo-
rithm if it is fed a Boolean network.
Currently the algorithm can provide a
speed up of over 1,000 times over logic-
level ATPG on certain types of designs.
Moreover the patterns thus generated at
the RTL can be used for RTL-RTL or
RTL-logic validation. The performance
of the algorithm degenerates as the cir-
cuit description becomes more and more
logic type. Efforts are on to map ef-
fective logic-level ATPG heuristics into
the algorithm so that the performance is

comparable to logic-level ATPG even for logic type designs.

References
[1] M. Abramovici, M.A. Breuer, and A.D. Friedman,Digital Systems

Testing and Testable Design, IEEE Press, New York, 1990.
[2] V. Chaiyakul, D.D. Gajski, and L. Ramachandran, “High-level trans-

formations for minimizing syntatic variances,” inProc. Design Au-
tomation Conf., pp. 413-418, June 1993.

[3] S. Bhatia and N.K. Jha, “Integration of hierarchical test generation
with behavioral synthesis of controller and data path circuits,”IEEE
Trans. on VLSI Systems, vol. 6, pp. 1789-1893, Dec. 1998.

[4] J.E. Carletta and C. Papachristou, “Testability analysis and insertion
of RTL circuits based on pseudorandom BIST,”Proc. Int. Conf. Com-
puter Design, pp. 162-167, Nov. 1995.

[5] I. Ghosh, N.K. Jha, and S. Bhawmik, “A BIST scheme for RTL con-
troller/data paths based on symbolic testability analysis,”Proc. De-
sign Automation Conf., pp. 554-559, June 1998.

[6] S. Bhattacharya and S. Dey “H-Scan: A high level alternative to
full-scan testing with reduced area and test application overheads,”
in Proc. VLSI Test Symp., pp. 74-80, Apr. 1996.

[7] I. Ghosh, A. Raghunathan, and N.K. Jha, “A design for testability
technique for RTL circuits using control/data flow extraction,”IEEE
Trans. Computer-Aided Design, vol. 17, pp. 706-723, Aug. 1998.

[8] F. Fallah, P. Ashar, and S. Devadas, “Simulation vector generation
from HDL descriptions for observability-enhanced statement cover-
age,” inProc. Design Automation Conf., pp. 666-671, June 1999.

[9] H. Kim and J.P. Hayes, “High-Coverage ATPG for datapath circuits
with unimplemented blocks,” inProc. Int. Test Conf., pp. 577-586,
Oct. 1998.

[10] Y. Explorations, Inc.Exploration Environment Tutorial, Irvine, CA,
1999.

[11] S. Carlson,Introduction to HDL-Based Design using VHDL, Synop-
sys Inc., Mountain View, CA, 1990.

[12] T.M. Niermann and J.H. Patel. “HITEC: A test generation package
for sequential circuits,” inProc. European Design Automation Conf.,
pp. 214-218, Feb. 1991.

[13] M.S. Hsiao, E.M. Rudnick, and J.H. Patel, “Sequential circuit test
generation using dynamic state traversal,” inProc. European Design
and Test Conf., Mar. 1997.

