
TR-2017-353 1

Abstract—New processing models are being adopted in Big Data

Engineering to overcome the limitations of traditional technology.
Among them, MapReduce stands out by allowing for the
processing of large volumes of data over a distributed
infrastructure that can change during runtime. The developer

only designs the functionality of the program and its execution is
managed by a distributed system. As a consequence, a program
can behave differently at each execution because it is automatically
adapted to the resources available at each moment. Therefore,
when the program has a design fault, this could be revealed in

some executions and masked in others. However, during testing,
these faults are usually masked because the test infrastructure is
stable, and they are only revealed in production because the
environment is more aggressive with infrastructure failures,

among other reasons. This paper proposes new testing techniques
aimed to detect these design faults by simulating different
infrastructure configurations. The testing techniques generate a
representative set of infrastructure configurations that as whole

are more likely to reveal failures using Random testing, and
Partition testing together with Combinatorial testing. The
techniques are automated by using a test execution engine called
MRTest that is able to detect these faults using only the test input

data, regardless of the expected output. Our empirical evaluation
shows that MRTest can automatically detect these design faults
within a reasonable time.

Index Terms—Big Data, Combinatorial testing, MapReduce,

Metamorphic testing, Partition testing, Random testing, Software

testing.

I. INTRODUCTION

N recent years, the volume of data generated by companies

has grown exponentially and several challenges appear when

it comes to storing, transporting and analysing such

information. To overcome these challenges, new technologies

are being created under the Big Data paradigm [1]. Their rise

allows large scale analysis of data, from social web interactions

to industrial sensor data, that can improve social and business

performance.

There are several obstacles and challenges that affect this

paradigm, such as the lack of skills [2]–[4], poor data quality

Manuscript submitted August, 1, 2017; revised October, 2, 2017; accepted

January, 27, 2017. This work was supported in part by the Spanish Ministry of

Science and Technology under the PERTEST project (TIN2013-46928-C3-1-

R), the Spanish Ministry of Economy and Competitiveness under both

TestEAMoS (TIN2016-76956-C3-1-R) and POLOLAS (TIN2016-76956-C3-

2-R) projects, the Principality of Asturias (Spain) under both the GRUPIN14-

007 project and Severo Ochoa pre-doctoral grants (BP16215), the Italian MIUR

under GAUSS project (PRIN 2015, 2015KWREMX), and ERDF funds.

[5] and different technological issues [3], [6], [7]. According to

Gartner, it is expected that 60% of Big Data projects will fail to

go beyond piloting and will be abandoned during 2017 [8].

The MapReduce processing model [9] stands out among Big

Data applications. It is a key technology very broadly used by

organizations [10] and implemented in several mature

frameworks [11], [12], such as Hadoop [13], Flink [14], [15]

and Spark [16], [17], among others. Because it is so widely

adopted, the quality of MapReduce programs is important,

especially for those employed in critical sectors as such as

health (DNA alignment [18]) and security (image processing in

ballistics [19]). An analysis over several months at Yahoo!

indicates that around 3% of MapReduce programs are not

finished [20], whereas another broader study places this

percentage between 1.38% and 33.11% [21]. A study of 507

programs in production reveals at least 5 different kinds of

faults [22], and other works [23], [24] have identified and

classified more such faults that are caused by the incorrect

design of MapReduce programs. Therefore, in this paper we

propose new testing techniques to address these functional

faults that are caused by incorrect design.

These types of faults include, but are not limited to, race

conditions, computations with unavailable data because the

distributed system allocates them to another computer, or

automatic optimizations that remove data that are relevant to

calculating the output. These faults are difficult to detect

because they depend not only on the data, but also on how these

data are executed in the large distributed architecture

(infrastructure configuration): parallel executions, re-

executions of some part of the data and optimizations, among

others. In general, these non-deterministic faults are easy to

mask in development/testing environments and go on to fail in

more aggressive environments such as the production

environment, thereby generating incorrect outputs or causing

the program to crash.

In order to detect these kinds of faults in the early stages of

development, our previous work simulates, in a test

environment, the execution of the test cases in a thorough range

of infrastructure configurations that could occur in production

J. Morán, C. de la Riva, and J. Tuya are with the Computer Science

Department, University of Oviedo, Asturias, 33203, Spain (e-mail:

{moranjesus, claudio, tuya}@ uniovi.es).

Antonia Bertolino is with ISTI-CNR, Pisa, 56124, Italy (e-mail:

antonia.bertolino@isti.cnr.it).

Automatic Testing of Design Faults in
MapReduce Applications

Jesús Morán, Antonia Bertolino, Claudio de la Riva, and Javier Tuya, Member, IEEE

I

This paper is a post-print paper accepted in IEEE Transactions on Reliability. The final version is available through IEEE Xplore: https://ieeexplore.ieee.org/document/8318901/

Citation information: J. Morán, A. Bertolino, C. de la Riva and J. Tuya, "Automatic Testing of Design Faults in MapReduce Applications," in IEEE Transactions on Reliability, vol.

67, no. 3, pp. 717-732, Sept. 2018. doi: 10.1109/TR.2018.2802047

EEE copyright notice. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

TR-2017-353 2

(all potential configurations) [25], [26]. This paper extends the

previous approach by proposing a more efficient strategy that

automatically tests the program only under the relevant and

representative configurations. Whereas in the previous work the

selection of the configurations grows exponentially according

to the number of input data records, the approach proposed here

exploits combinatorial techniques that maintain a good number

of failures detected within an acceptable time. In this way, the

execution time and resource utilization of the test cases is

clearly improved, allowing test cases with no limitation in the

number of input data records, contrary to the previous work that

only allowed a very small number of records. More specifically,

the main differences between this paper and our previous work

are: (a) Combinatorial, Partition and Random testing test

strategies that instead of analysing all configurations

exhaustively, only analyse a representative subset of

configurations; (b) a metamorphic testing [27] approach to

guide both the generation of configurations and the checking of

failures, (c) whereas the previous work only supported a small

volume of test input data due to the number of configurations

growing exponentially, the current paper overcomes these

practical issues and supports more test input data in less time,

and (d) the paper includes a comprehensive validation through

empirical experiment using real world programs. The

contributions of this paper are:

1) Testing techniques based on combinatorial testing,

partition testing and random testing to select the

infrastructure configurations to be employed during the

execution of the test cases.

2) Detection of the MapReduce design faults through an

automatic partial oracle without any knowledge about

either the program specification or expected output.

3) Automation of the testing execution in a test engine called

MRTest that extends MRUnit [28] (XUnit for MapReduce

programs).

4) Experimentation with 16000 test cases executed against 8

real-world programs to analyse the effectiveness of

MRTest in detecting failures and its efficiency in executing

the test cases.

The remainder of the paper is organized as follows. Section

II introduces the MapReduce processing model. Related work

is then discussed in Section III. The testing techniques proposed

and the MRTest automatization are defined in Section IV. The

experiment is performed and discussed in Section V. Finally,

the conclusions and future work are detailed in Section VI.

II. BACKGROUND OF MAPREDUCE

MapReduce programs process large datasets distributed over

several computers using the "divide and conquer" principle. In

its simplest form, the MapReduce developer needs to

implement only two components: the Mapper that splits one

problem into several subproblems (Divide), and the Reducer

that solves these subproblems (Conquer). During the execution,

several instances of Mapper analyse the dataset in parallel and

send to each subproblem the data needed to be solved. After all

Mappers are executed, several instances of the Reducer are

executed in parallel to solve the subproblems. Internally, the

data are codified as <key, value> pairs, where the key is an

identifier of a subproblem, and the value contains all the

information that is needed to solve the subproblem. The

developer designs the business logic based on the <key, value>

pairs emitted from Mappers to Reducers. Finally, the output is

a series of <key, value> pairs obtained through the deployment

and execution of Mappers and Reducers over a distributed

infrastructure.

More generally, a MapReduce program can be designed with

more components. For example, a Combiner can be

implemented to improve the performance by reducing the data

exchanged between Mappers and Reducers. The Combiner is

executed right after the Mapper with the aim of removing the

<key, value> pairs that are irrelevant to solving the subproblem.

The MapReduce applications can also be designed with other

components such as, for example, the Partitioner that

determines which Reducer analyses which <key, value> pair,

the Sorter that controls the order of <key, value> pairs, and the

Grouper that aggregates the values of each key before they are

passed to the Reducer.

Distributed systems such as Hadoop execute the MapReduce

programs in a non-deterministic way based on runtime factors,

such as the resources available, observed infrastructure failures

and other dynamic optimizations. Nevertheless, the same

program with the same input data when executed in different

infrastructure configurations should obtain the correct output.

However, this is not always the case: in a prior work [23] we

identified and classified several design faults that are raised in

some infrastructure configurations but masked in others.

Despite the fact that some authors suggest that the parallel

programming must be deterministic by default (unless the

developer explicitly indicates non-determinism) [29], this is not

the case with these distributed systems.

To illustrate MapReduce and its executions, let us suppose

the computation of the average temperature per year given a

large dataset containing several years with their observed

temperatures. This program can be designed in different ways.

We suppose that the developer makes the following decisions.

The problem of average temperature per year is divided into

several subproblems where each subproblem calculates the

average temperature of one year only (Decision 1). Then each

subproblem is composed of one year with all temperatures of

this year (Decision 2), and it is solved with the temperature

average (Decision 3). The program includes a Combiner to

improve the performance (Decision 4). With the foregoing

decisions, the Mappers receive a subset of temperature data and

emit <year, temperature of this year> pairs. Then the distributed

system aggregates all values per key, that is, each subproblem

grouped with all the data that needs to be solved. Therefore, the

Reducers receive subproblems like <year, [all temperatures of

this year]> and calculate the average temperature. After the

Mapper, the Combiner can be executed, aimed at removing the

irrelevant temperatures, and emitting their average.

The distributed system can execute the previous program in

different ways, based on the runtime infrastructure

configuration. For example, Fig. 1 shows three different

executions with the following input: year 1999 with 4°, 2° and

TR-2017-353 3

3°; and year 2000 with 5°. Regardless of the infrastructure

configuration, the program must obtain the right output: 3° as

average in 1999, and 5° in 2000. The first configuration is the

simplest with one Mapper, one Combiner and one Reducer. The

Mapper analyses all temperatures and encodes them as <year,

temperature>. Then the temperatures are grouped per year and

sent to the Combiner that pre-calculates the average

temperatures, and finally to the Reducer that obtains the correct

output.

 Depending on the runtime resources, the distributed system

can execute the program automatically in more complex

configurations. As we detail in Section IV, the configurations

can have, among other things, a different number of Mappers

and other automatic optimizations. For example, the second

configuration of Fig. 1 is more complex than the first,

employing one Mapper, two Combiners and two Reducers, also

obtaining the correct output. We assume that the first Combiner

receives the temperatures 4° and 2° of the year 1999, and emits

their average, 3°. The second Combiner receives year 1999 with

3° and emits it, whereas the year 2000 with 5° is passed directly

from Mapper to Reducer. After the Mappers and Combiners are

executed, one Reducer analyses the temperatures of the year

1999 and another Reducer the year 2000. Eventually, this

configuration also obtains the correct output.

In contrast, the third configuration that executes two

Mappers, one Combiner per Mapper, and one Reducer does not

obtain the right output. This execution obtains 3.25° as the

average of 1999 rather than 3° due to a design fault. The

developer makes some incorrect design decisions, among them,

the use of <year, temperature> pairs and the Combiner to

optimize the program. Both decisions are incompatible in this

program because the Combiner replaces the temperatures

locally available in each computer with their average, and then

the Reducer cannot calculate the global average using only the

local averages.

Although this program has a simple business logic, several

developers make the previous incorrect design decisions to

obtain the average temperature per year, as in the programs

[30], [31]. The developer can fix the program by removing the

Combiner, but this solution is not optimised. A better program

design codifies the data as <year, {sum of temperatures, number

of temperatures}> and uses a Combiner to update both the sum

and number of temperatures [32].

A sample of a more subtle design fault is in the

recommendation system Open Ankus [33]. The users assign

points to a series of books, and then the system tries to forecast

the points assigned for new books. The design fault is triggered

during the calculation of the error between the user assignment

and the system prediction. Fig. 2 depicts the execution of the

program with the points assigned by Carol to the book Don

Quixote and correctly predicted by the system. The first

configuration with one Mapper for the predictions and one

Mapper for the assignments obtains the correct output (the

system predicts the result correctly). In contrast, when several

Mappers for assignment are executed in parallel, the output of

this program could potentially be faulty, depending on both the

order of execution and how the data is distributed in parallel.

For example, the program can be executed as in the second

configuration of Fig. 2 obtaining the incorrect result that the

system prediction is wrong.

When the business logic tends to be more complex, as in

machine learning programs, it can be difficult for the developer

to make the right design decisions, and the program may be

prone to side-effects. An incorrect design in the MapReduce

program may cause a failure in one of the different ways in

which the distributed systems can execute the program. These

design faults are difficult to detect during testing because they

may depend on dynamic execution contexts. Thus they can be

missed in the laboratory, but are then triggered in aggressive

environments, such as a production environment with a mix of

large data and infrastructure failures. When these aggressive

situations happen, the distributed systems manage the execution

with different mechanisms, such as re-executing part of the

program or performing some optimizations that can reveal

design faults. To avoid incorrect outputs in production, it is

desirable to detect these program faults in the early stages of the

development process.

III. RELATED WORK

Software testing is among the most commonly used software

quality-assurance techniques [34]. In recent years, this field has

seen great progress [35], but concerning the testing of Big Data

Fig. 1. Execution of MapReduce program that calculates the average

temperature per year.

Mapper

<1999, 4º>

<1999, 2º>

<1999, 3º>

<2000, 5º>

<1999, [4º, 2º, 3º]>

<2000, [5º]>

Combiner Reducer

<1999, [3º]>

<2000, [5º]>
<1999, 3º>

<2000, 5º>

Mapper

<1999, [2º,3º]>

<2000, [5º]>
Combiner

Reducer

<1999, [2.5º, 4º]>

<2000, [5º]>
<1999, 3.25º>

<2000, 5º>Mapper Combiner
<1999, [4º]>

Same input Different infrastructure configuration Different output

Mapper

<1999, 4º>

<1999, 2º>

<1999, 3º>

<2000, 5º>

<1999, [4º, 2º]>

<1999, [3º]>
Reducer

Reducer
<2000, 5º>

<1999, [3º,3º]>

<2000, [5º]>

<1999, 3º>

<2000, 5º>

<1999, 4º>

<1999, 2º>

<1999, 3º>

<2000, 5º>

x2

x2

Combiner

Combiner

Fig. 2. Execution of a recommendation system in MapReduce.

Mappper

prediction
Prediction: 0
Prediction: 10

Assignment: 0
Assignment: 10

Reducer

Carol -> Don Quixote

Prediction Assignment
0 0

10 10

Carol->Don Quixote

Mapper

assignment

<Carol-> Don Quixote, [

Prediction: 0,

Prediction: 10,

Assignment: 0,

Assignment: 10]>

Mapper

prediction
Prediction: 0
Prediction: 10

Assignment: 0

Assignment: 10

Reducer

Carol -> Don Quixote

Prediction Assignment
0 10

10 0

Carol->Don Quixote

Mapper

assignment
Mapper

assignment

<Carol -> Don Quixote, [

Prediction: 0,

Prediction: 10,

Assignment: 10,

Assignment: 0]>

Same input Different infrastructure configuration Different output

TR-2017-353 4

applications, there remain several challenges [36], [37]. In this

domain, most works focus on performance testing [38], [39],

but, as our previous example showed, functional testing is also

important to avoid incorrect outputs [40]. In this paper we

address functional testing.

As seen in the earlier examples, some faults depend on how

distributed systems execute the programs according to the

infrastructure configurations. If the program generates incorrect

outputs in some configurations and the expected output in

others, then the program has a design fault. A study of 507

MapReduce programs in production reveals at least 5 different

kinds of design faults [22]. To detect them, Csallner et al. [41]

and Chen et al. [42] use testing techniques based on symbolic

execution and model checking. Other authors [23], [24]

identified and classified other design faults that depend upon

the infrastructure configurations. In our previous work, we

proposed a test approach to detect such faults in the test

environment by using a simulation of the infrastructure

configurations [26]. In this paper we enhance on that work with

a more practical technique that improves efficiency while still

detecting the majority of faults by exploiting combinatorial

strategies.

The production environment is composed of a large

distributed infrastructure that over time exposes several failures

[43]. In order to test in the same conditions as production,

several research lines propose to inject infrastructure failures

[44], [45] during testing, and several tools have been

implemented to support their injection [46]–[48]. For example,

Marynowski et al. [49] propose creating the test cases by

specifying which computers fail and when. While some of the

design faults can be detected by injecting infrastructure failures,

others require a fine-grained control of the distributed system

and the underlying large infrastructure. In the production

environment it is difficult to control the execution of the test

cases because at the same time other programs consume the

resources of the computers and other infrastructure failures can

happen that are beyond the tester’s control. This paper does not

inject failures, but simulates the different infrastructure

configurations in a test environment, thereby obtaining fine-

grained control and reproducibility of the tests.

Several research lines propose generating the test input data

through different approaches: using data flow [50], based on a

bacteriological algorithm [51], or with input domain analysis

together with combinatorial testing [52]. Unlike these testing

techniques, this paper does not focus on the generation of the

test input data, but on simulating their execution in the

infrastructure configurations that are more likely to reveal the

faults. As such, this work is orthogonal to the above. The tester

can use the previous approaches to obtain the test input data and

then execute the test cases with the techniques proposed in this

paper. As we have shown, the same program and the same input

data executed in different configurations might produce

different results so, apart from deriving a good test suite, the

testing of MapReduce applications also requires the derivation

of the correct configuration.

Several tools have been proposed to design and execute test

cases for MapReduce applications. Herriot [53] allows the

execution of the tests in a distributed infrastructure and at the

same time supports the injection of infrastructure failures.

Another tool called MiniClusters [54] executes the test cases in

a distributed environment simulated in memory. For unit

testing, MRUnit [28] provides an adaptation of JUnit [55] to the

MapReduce processing model. All the above test tools only

execute the test case in one infrastructure configuration and

usually without parallelization. In this paper we devise a testing

technique to generate and execute a representative set of

infrastructure configurations that could occur in production and

as a whole is more likely to reveal design faults. It is automated

by means of an MRUnit extension, as described below.

IV. MRTEST: AUTOMATIC MAPREDUCE TESTING TECHNIQUE

In this section, we describe the test execution engine we

propose called MRTest. Given a test input data, MRTest

automatically generates the configurations aimed at revealing

design faults (Section IV.A), then executes the test case in these

configurations (Section IV.2), and finally checks if the program

is faulty or not (Section IV.3).

A. Generation of Infrastructure Configurations for Testing

In a prior work [26], we proposed an automatic technique

that, given test input data, generates a thorough number of

configurations (MRTest-Thorough). Then the faults are

revealed when a failure occurs in one of these configurations.

The previous technique has some limitations because it takes a

long time and only supports a small volume of test input data.

This paper proposes two new techniques that overcome these

problems by reducing the number of configurations generated

while maintaining the fault detection effectiveness: the two

techniques use Random Testing [56] (MRTest-Random) and

Partition Testing (Equivalence Partitioning [57] with

Combinatorial Testing [58], [59]) (MRTest-t-Wise).

The first technique, MRTest-Random, generates the

configurations randomly from all valid configurations. The

tester indicates the number of configurations wanted, and

MRTest-Random generates them randomly.

The second technique, MRTest-t-Wise, divides the set of all

valid configurations into several partitions with similar

behaviour and applies a combinatorial strategy to generate the

configurations under test. In software testing, depending on the

failure probability [60], Random testing can be as effective as

Partition testing [61] and can be a feasible option [62]. In other

circumstances, Partition Testing can be more effective than

Random Testing [63]. As we discuss in Section V, our

experiments show that both techniques MRTest-Random and

MRTest-t-Wise can be effective in revealing MapReduce faults,

but MRTest-t-Wise is significantly better. The latter testing

technique is schematically represented in Fig. 3 and described

below in three parts: (1) Division of the set of all valid

configurations, (2) Combination strategy, and (3) Generation of

the configurations.

Division of the set of all valid configurations: The set of all

valid configurations is divided based upon the following

parameters and constraints that are also represented at the top

of Fig. 3:

TR-2017-353 5

Mapper:

P1) Number of Mappers: 1 or >1. The program in production

can be executed with one Mapper (1) that analyses the

entire dataset, or alternatively with several Mappers that

analyse different parts of the dataset in parallel (>1).

P2) Data processing order of the inputs: data are processed in

the same order as they are encountered in the input (same),

or in a different order (different). The MapReduce

processing model does not guarantee that the data will be

processed in the same order as they are stored in the input.

P3) Distribution of the input data in the Mappers: data equally

distributed in the Mappers (equal) or not equally

distributed (non equal). The Mappers process different

subsets of input data: there could be configurations with an

equal number of data in each Mapper, or with a different

number of data.

Combiner:

P4) Number of Combiners per Mapper: 0, 1 or >1. Each

Mapper can execute one Combiner (1), several Combiners

(>1) or can emit the data directly to Reducer (0).

P5) Distribution of Mapper output in Combiners: data equally

distributed in combiners (equal) or not equally distributed

(non equal).

P6) Data directly from Mapper to Reducer: 0 or >0. All data

emitted by Mappers can be pre-processed by the Combiner

functionality (0), or in contrast some data can pass directly

from Mapper to Reducer without executing the Combiner

functionality (>0).

P7) Iterative executions of Combiner: 1 or >1. The output of

the Combiner can be executed iteratively by the Combiner

several times (>1) or only once (1).

Reducer:

P8) Number of Reducers: 1 or >1. The program can be

executed in production with one Reducer that solves all

subproblems (1) or with several Reducers that solve the

subproblems in parallel (>1).

For example, the configuration at the bottom of Fig. 1 is

characterized by the following parameters:

• P1 is >1: There are two Mappers.

• P2 indicates a different order: The input data is executed in

a different order than they are stored in the input. The 4°

temperature is executed after 2°, but in the input the

temperature 4° is before 2°.

• P3 indicates a non-equal distribution of the data in

Mappers: Each Mapper has a different number of input

data. One Mapper has 1 register and the second has 3

registers.

• P4 is 1: Each Mapper only executes one Combiner.

• P5 indicates an equal distribution of the Mapper output in

its Combiners. Each Mapper only has one Combiner that

receives all its data, then the output of the Mapper is

equally distributed in its Combiner.

• P6 is 0: There are no data that pass directly from the

Mapper to the Reducer without the Combiner.

Fig. 3. MRTest-t-Wise testing technique.

P3: Distribution of the

input data in the Mappers

P8: Number

of Reducers

1 >1 Same Different Equal Non equal 1 >10 Equal Non equal 0 >0 1 >1 1 >1

P7: Iterative

executions of Combiner

P1: Number of Mappers

P2: Data processing order

of the inputs

P4: Number of Combiners

P5: Distribution of Mapper output in Combiners

P6: Data directly from Mapper to Reducer

Test coverage

items

1

2

3

Infrastructure configuration

Mapper

parameters

Combiner parameters

per Mapper

Reducer

parameters

1

2

Program

with

Combiner

Without

Combiner

1

2

3

4

5

6

7

8

9

10

11

Program

with

Combiner

1

2

3

4

5

6

Program

without

Combiner

Constraints

C1: IF P1 = 1 THEN P2 = same & P3 = equal

C2: IF P4 = 0 THEN P5 is NA & P6 >0 & P7 is NA

C3: IF P4 = 1 THEN P5 = equal

1
-W

is
e

2
-W

is
e

(NA = Not Applicable)

TR-2017-353 6

• P7 is 1: The Combiners are not executed iteratively several

times, they are executed only once.

• P8 is 1: There is only one Reducer.

The configurations under test are obtained by a combination

of the previous parameters. However not all combinations make

sense, and to prevent non-meaningful combinations, we have

derived the following constraints that descend from the

MapReduce processing model:

• When the number of Mappers (P1) is 1, then: (a) Data

processing order of the inputs (P2) is the same order as they

are in the input, and (b) Distribution of the input data in the

Mappers (P3) is equally distributed.

• When the number of Combiners (P4) is 0, then: (a) the

distribution of the data in the Combiners (P5) is not

applicable, (b) the Data directly from the Mapper to the

Reducer (P6) is >0, and (c) the iterative executions of the

Combiner (P7) is not applicable.

• When the number of Combiners (P4) is 1, then the data in

the Combiners (P5) are equally distributed.

Combination strategy: Deriving all possible combinations of

previous parameters is expensive and the t-Wise strategy (also

known as t-Way) is applied [58], [64]. Instead of combining all

the values of all parameters, t-Wise [65] combines only the

values of all subsets of t parameters. For example, 1-Wise (each

use) [66] requires that all values of each parameter appear in at

least one test case, whereas 2-Wise (pairwise) requires that the

combination of all values per pair of parameters appears in at

least one test case. 2-Wise has been shown to be almost as good

as all combinations of parameters [67] at detecting failures, but

employing much fewer resources in terms of time and cost [68].

The MRTest-t-Wise technique generates the configurations

covering the t-Wise combinations of the previous parameters

and constraints. Fig. 3 details the configurations that must be

covered (test coverage items) for 1-Wise and 2-Wise strategies.

Each row of the figure represents a test coverage item that

should be covered with a configuration that satisfies the

parameters indicated by dots. The 1-Wise technique requires

the generation of 3 configurations (test coverage items) when

the program implements a Combiner, and 2 configurations in

the other case. The 2-Wise is a more thorough combination,

requiring 11 configurations for programs with a Combiner, and

6 when the program does not implement a Combiner.

Generation of configurations: The configurations can be

created manually to cover each test coverage item of the t-Wise

selected, but the MRTest-t-Wise technique generates these

configurations automatically. The following pseudo-code

describes how the configurations are generated:

Input: t-Wise (testing technique selected, i.e. 2-Wise)
sut (software under test)

Output: Configurations that cover t-Wise in sut
(1) Configurations ← ∅
(2) tcis ← Get all test coverage items of the t-Wise
(3) ∀ tci ∈ tcis
(4) | Configuration ← ∅
(5) | ∀ parameterToCover ∈ tci
(6) | | value ← obtain randomly a value that covers

| | parameterToCover in sut
(7) | | IF value exists:
(8) | | Configuration ← Configuration ∪ value
(9) | | ELSE //When there is no value to cover

parameterToCover
(10) | | The actual configuration cannot cover the

| | test coverage item in sut, then backtracks
| | trying to generate again the configuration
| | with other values in previous parameters
| |_ [maximum τ times (threshold)]

(11) | IF Configuration covers the tci in sut:
(12) |_ Add Configuration to Configurations
(13) RETURN Configurations

In order to generate a configuration that covers each one of

the test coverage items (1, 2, 3), the MRTest-t-Wise covers the

first parameter with random values, then the second, and so on

(4, 5, 6, 7, 8). For example, if the first parameter should be P1:

>1, i.e., more Mappers, then a random value is selected greater

or equal to 2 to guarantee >1 Mappers, and so on with the

remainder of the parameters. Sometimes it can be impossible to

cover one parameter because the test input data add semantic

constraints unknown until the values selected in the previous

parameters are executed (9, 10). For example, sometimes it is

impossible to obtain a configuration with >1 Reducers because

the test input data always lead to one Reducer. In these cases

MRTest-t-Wise uses a backtracking approach. First it fulfils

randomly the first parameter (4, 5, 6), then it executes the part

of the program affected by this parameter (7, 8) and tries to

cover the second, and so on. When the generator discovers at

runtime that one parameter cannot be covered, then it

backtracks, changing the value of previous parameters (9, 10).

For example, a configuration can be created with 2 Mappers (P1

>1) but three input data cannot be equally distributed in them

(it is impossible to cover P3 with equal distribution), then the

generator backtracks changing the configuration to three

Mappers (it maintains P1 >1 but changes randomly its value),

and finally the three data items can be distributed equally in the

Mappers. A threshold is set to prevent the generator from

performing indefinitely or from backtracking for too long.

When the threshold is overcome, then the technique does not

create the configuration and the test coverage item is not

covered (11, 3). By default, the threshold is 15 backtracks

because we observed that usually when this number is exceeded

then it is infeasible to cover the test coverage item, regardless

of the set of valid configurations. Finally, those configurations

that cover the test coverage items are generated (11, 12, 13).

Fig. 4. MRTest test execution engine.

Input data

Are all

config.

tested?

base configuration

Run config.
base

output

Run config.

Output

 Are they

 equivalent?

No

Yes

No

Expected output
(optional)

Are equals?

Yes

NoTest

case

M
R

T
e

st
:

A
u

to
m

a
ti

c
T

e
st

 e
x

e
cu

ti
o

n

(1)
(2)

(4)

(5)(6)

(7)

(8)

(9)

Yes
(3)

Generation of

new config.

Testing technique
Thorough

T-Way
Random

Better technique
More expensive

TR-2017-353 7

B. Execution of Test Cases

In order to detect design faults, MRTest executes each test

case in different configurations using one of the techniques

described in the previous section (MRTest-Random and

MRTest-t-Wise) or in the previous work (MRTest-Thorough)

[26]. Then MRTest checks systematically that all

configurations lead to equivalent outputs.

Given a test case with input data and, optionally, the expected

output, the MRTest test execution engine is described in Fig. 4.

First, MRTest executes the test input data in the base

configuration (1), that is the simplest configuration with one

Mapper, one Combiner and one Reducer without

parallelization. Next, new configurations are iteratively

generated (2,3) and executed (4) for a given testing technique

selected by the tester: MRTest-Thorough, MRTest-t-Wise or

MRTest-Random. The output obtained executing each

configuration is checked against the output of the base

configuration (5), revealing a fault if these outputs are not

equivalent (6). Then MRTest can reveal faults with only the test

input data, but the tester can optionally declare the expected

output. In this case, the output of the base configuration is also

checked against the expected output (7), detecting a fault when

both are not equivalent (8, 9).

For example, let us revisit the program in Section 2 that

calculates the average temperature per year. Fig. 1 describes the

1-Wise execution of a test case with the following test input

data: year 1999 with 4°, 2° and 3°; and year 2000 with 5°.

Firstly, MRTest generates and executes the base configuration

(top of the figure) obtaining 3° as average in 1999, and 5° in

2000 (1, 2). Then MRTest generates and executes a

configuration to cover the first test coverage item of 1-Wise

(middle of figure), and again obtains the same output (3, 4, 5).

In contrast, when it generates and executes the configuration of

the third test coverage item (bottom of the figure), it obtains

3.25° as average of 1999 instead of the 3° obtained in the base

configuration (3, 4, 5). Then MRTest automatically reveals a

fault because the two outputs are different (6). We discuss

further the oracle used in MRTest in the following section.

The test execution engine MRTest was implemented based

on MRUnit library [28] maintaining its API and including new

functions to indicate the testing technique to be used. This

library is used to execute each configuration. In MRUnit, the

test cases are executed with the base configuration, but this

library is extended to generate other configurations and enable

parallelism supporting the execution of several Mapper,

Combiner and Reducer tasks. This test execution engine

employs randomness to generate the configurations, but also

supports pseudorandom numbers, also called seeds, to

guarantee that the execution of the test case is reproducible in a

deterministic way.

C. Test Oracle

In software testing, the mechanisms that determine if the test

reveals a fault or not are called test oracles [69]. There are some

properties that characterize the efficacy of the test oracles [70],

[71]. As discussed, if a design fault is present, the same program

executed under different configurations can lead to different

outputs. Based on this observation, the MRTest execution

engine can reveal faults automatically even without knowing

the expected output. It employs an automatic partial-oracle [69]

that is derived from the program executions [72] using

metamorphic testing [27]. Given a test case (original test case),

metamorphic testing generates new test cases varying the

original test case (follow-up test cases) to detect faults in a

relationship amongst them (metamorphic relationship).

According to the software testing standard [73], a test case

not only uses the test input, but also other test data that specify

requirements for the test, such as databases, or configuration in

the case of MapReduce programs. MRTest intends to detect

those design faults that not only depend on specific test input,

but also on specific configurations. For these faults, the test case

must be designed with both the test input and the configuration

in mind. MRTest receives the test input and then the

metamorphic testing is focused in the relationships between the

potential configurations. Given the test input, MRTest executes

these test input data on the base configuration (original test

case). Then MRTest generates the follow-up test cases

maintaining the original test input but, but providing each one

with different configurations. Finally, MRTest checks that both

original and follow-up test cases lead to an equivalent output

(metamorphic relationship). Whereas the metamorphic testing

techniques usually generate the follow-up test cases by varying

the test input, our approach generates the follow-up test cases

by maintaining the test input but varying the configuration of

the system under test.

MRTest can also be employed when the expected output is

previously unknown or costly to obtain, as occurs in several

machine learning programs [74]. Fig. 5 describes how the

MRTest oracle can detect faults when given only the input data.

The original test case is the test input data executed in the base

configuration (1 mapper, 1 combiner, 1 reducer). Then MRTest

generates and executes several configurations using the testing

techniques described in the previous sections (follow-up test

cases). Finally, it checks if their outputs are equivalent

(metamorphic relationship), and if they are not then a potential

fault is automatically detected.

 According to the study of Segura et al. [75] the number of

metamorphic papers will increase in years to come, but to date

49% employ the metamorphic testing capabilities in different

problem domains, and only 2% present a tool. In our case, this

paper not only defines and automatizes the metamorphic

relationship to the MapReduce domain, but it also develops a

tool that detects faults easily with only the test input data.

Fig. 5. Metamorphic oracle of MRTest.

Are

they equivalent?

Test input data

Config. 1

Config. 2
...

Output 1

Output 2
... Yes

No

Generator Execution
Automatic

oracle
Input Output

Original and follow-up test cases Metamorphic relationship

TR-2017-353 8

V. EXPERIMENTS

The goal of these experiments is the evaluation of how, using

different configurations in the execution of the test cases, the

effectiveness in failure detection could be improved without

significantly decreasing efficiency. The approach proposed in

this paper, MRTest, executes the MapReduce test cases under

several configurations, whereas the usual test execution

engines, for example MRUnit, only execute them under a

simple configuration. In the experiments, MRTest and MRUnit

are compared in order to answer the following research

questions:

RQ1) Do the test execution engines detect more failures when

the MapReduce test cases are executed in different

configurations?

RQ2) How expensive is the execution of the test cases in

several different configurations?

The research questions are focused respectively on the

effectiveness and efficiency during testing of the MapReduce

programs. Depending on the field, the aptness of a technique

can be referred to using different terms, for example:

“effectiveness” for software testing techniques [76],

“performance” for localization techniques [77], or “accuracy”
for the classification techniques of machine learning [78]. In

this paper, we use the term “effectiveness” regarding the

quantity of failures detected, and “efficiency” regarding the

execution time employed by the techniques. The planning and

the results of the related experiments are presented in the next

two subsections, and the discussion of the experiments together

with the limitations in Subsection V.C.

A. Effectiveness Experiments

The goal of the effectiveness experiments is the assessment

of how many failures are detected. Following the Basili et al.

[79] template, the goal is: Analyze the test case execution

engines (MRUnit and MRTest) for the purpose of evaluation

with respect to their respective effectiveness in detecting

failures due to a program design fault against the MapReduce

processing model from the point of view of the tester and

developer in the context of Big Data applications. The planning

of the experiments is described in Subsection V.A.1 and their

results are reported in Subsection V.A.2.

1) Effectiveness: Setup

In this experiment, 8000 different test cases from 4 real world

programs are executed in MRUnit and MRTest in order to

analyse their capability to detect failures. Each one of the 4

programs has a known design fault that is only revealed in some

of the potential configurations and masked in others. The

programs used, including a summary of the functionality and

the cause of the faults, are:

1) Open Ankus [33]: A recommendation system that predicts

for each user the items that could be of interest to them

(films, books, cities, and so on), based on choices of other

users and their similarities to the user in question. This

program could fail when the data of each user-item is split

and parallelized.

2) Data quality analysis [80]: Measure of the quality of data

interchanged between companies, based on international

standards. This program did not correctly track the

measurements and they could be incorrectly assigned due

the parallel execution. The production version of this

program has removed the fault.

3) Movie analysis [81]: Statistics analysis of movies, based

on the ratings of users. This program is implemented with

an incorrect Combiner.

4) Data cleaner Knn analysis [82]: Knn machine learning

algorithm to clean text data, based on the number of

transformations, insertions and removals of incorrect

letters in the words of the text. This program fails when one

Mapper needs data that are not locally available because it

is assigned to another Mapper.

For each program, 2000 test cases that contain data able to

trigger the faults are executed in MRUnit and MRTest with

different modes. The test cases are generated iteratively with

random data until we have 2000 test cases that are able to trigger

the fault. Because the program faults are known, all of the

potential test cases are automatically analysed in order to check

if the data can generate incorrect outputs under at least one

configuration of the MapReduce configurations. For example,

the program described in Section 2 that calculates the average

temperature of each year, has a design fault that is not revealed

by all inputs. We can automatically check if an input data is able

to trigger the fault because the failure is only raised when the

average of temperatures is different to the global average of

local averages.

The population of the experiment is composed of all test

cases with data able to trigger these faults in some

configurations. Each of these test cases is then taken as the

experimentation unit, and the observation is whether the test

execution engines detect a failure or mask the fault. The

dependent variable or response variable is the rate of failures

detected by the different execution engines, which are the

independent variable. The baseline is MRUnit and the

treatments are MRTest executed in the following modes:

• 1-Wise: Based on the test coverage items proposed in

MRTest-1-Wise algorithm, executes 3 or 2 configurations

depending on whether the program has a Combiner or not,

respectively.

• 2-Wise: Based on the test coverage items proposed in

MRTest-2-Wise algorithm, executes 11 or 6 configurations

depending on whether the program has a Combiner or not,

respectively.

• 0-Random that executes randomly one configuration

(MRTest-Random), in order to compare fairly with

MRUnit that also executes one configuration (one Mapper,

one Combiner and one Reducer).

• 1-Random in order compare fairly with 1-Wise. Executes

3 or 2 configurations depending if the program has a

Combiner or not, respectively.

• 2-Random in order to compare fairly with 2-Wise.

Executes 11 or 6 configurations depending if the program

has a Combiner or not, respectively.

MRTest-thorough is not analysed in the experiments due to

its limitations, such as only supporting a small amount of test

TR-2017-353 9

input data or taking a long time to execute a test case. There are

other elements that could affect the experiment and are treated

as blocking factors:

• The size of the test input data could affect the rate of

failures detected, so two sizes of data are considered: a

small size (between 1 and 10 <key, value> pairs) and a

larger size for functional testing purposes (between 11 and

35 <key, value> pairs).

• The generation of the configurations in MRTest is based

on some pseudorandom functionality that could introduce

noise in the failure rate. During the experiments, the

different test engines employ the same pseudorandom

number generated also in a pseudorandom way.

In the experiments two sampling methods are used:

consecutive sampling to select the MapReduce programs and

random sampling to select the test cases. Ideally the subject

programs should be selected randomly, but as in the case in

many software engineering experiments, this is not viable [83].

As such 4 real world programs that contain a known fault are

selected instead.

As stated above, for each one of these programs, 2000 test

cases that contain data able to trigger the fault are generated

randomly. We grouped them in trials of 100 test suites with 20

test cases each: 50 test suites contain test cases with input data

between 1 and 10 <key, value> pairs, and the other 50 test suites

between 11 and 35 <key, value> pairs due to a pre-established

blocking factor. All of these test suites are executed in the

baseline (MRUnit) and the five treatments (MRTest), and then

the rate of the failures detected is observed1.

1 This type of experiment design is called “within subject design with post-

test”

In these experiments, the effectiveness is measured by the

percentage of failures detected per test suite. Then the

effectiveness of the execution engines is compared via the

statistic test Wilcoxon Sign Rank Test. This non-parametric

statistic test analyses if there are significant differences based

on the medians, then the null hypothesis is defined as H0:

median(Effectiveness)MRUnit = median(Effectiveness)MRTest

2) Effectiveness: Results and Discussion

Table I summarizes the number of test cases which detect a

failure by each test execution engine (MRUnit and MRTest)

during the experiments. This table shows that design faults

against the MapReduce processing model are not detected in

general by MRUnit, whereas MRTest approaches are able to

detect them. The number of test executions that detect a failure

by MRUnit is almost 0% whereas even considering the weakest

MRTest approach, 0-Random, more than 15% of the test cases

detect a failure; the strongest MRTest approach, 2-Wise,

catches a failure in more than 60% of test cases. In general

terms, 1-Wise and 1-Random detect more failures than

MRUnit, and finally 2-Wise and 2-Random detect the majority

of failures, regardless of the number of <key, value> pairs in

the input data. In all approaches, the execution time of each test

case is reasonable, being in the order of a few

milliseconds/seconds. As we explain in detail in the following

subsections, the majority of the test cases take less than 1

second to be executed in MRTest, regardless of the approach

employed.

During the experiments, MRUnit only detects 4 faults out of

8000, having an effectiveness of 0 in Table I due to rounding to

TABLE I

EFFECTIVENESS OF FAILURE DETECTION OF 100 TEST SUITES OF 20 TEST CASES FOR EACH ONE OF THE 4 REAL WORLD PROGRAMS WITH FAULT

Program Treatment

[1-10] <key, value> pairs [11-35] <key, value> pairs Total

Number of test

cases that detect

a failure

Effectiveness

Number of test

cases that detect

a failure

Effectiveness

Number of test

cases that detect

a failure

Effectiveness

Open Ankus

MRUnit baseline 0 0.00 0 0.00 0 0.00

0-Random 307 0.30 293 0.30 600 0.30

1-Wise 490 0.50 302 0.30 792 0.40

1-Random 513 0.50 479 0.50 992 0.50

2-Wise 754 0.75 620 0.60 1374 0.70

2-Random 898 0.90 861 0.85 1759 0.90

Data quality

analysis

MRUnit baseline 1 0.00 3 0.00 4 0.00

0-Random 773 0.75 900 0.90 1673 0.85

1-Wise 816 0.80 954 0.95 1770 0.90

1-Random 925 0.95 984 1.00 1909 0.95

2-Wise 994 1.00 1000 1.00 1994 1.00

2-Random 992 1.00 1000 1.00 1992 1.00

Movie analysis

MRUnit baseline 0 0.00 0 0.00 0 0.00

0-Random 169 0.15 183 0.20 352 0.15

1-Wise 562 0.55 395 0.40 957 0.48

1-Random 378 0.35 328 0.30 706 0.35

2-Wise 952 0.95 861 0.85 1813 0.90

2-Random 694 0.70 534 0.53 1228 0.63

Data cleaner

Knn analysis

MRUnit baseline 0 0.00 0 0.00 0 0.00

0-Random 876 0.75 946 0.95 1822 0.90

1-Wise 983 0.80 1000 1.00 1983 1.00

1-Random 978 0.95 997 1.00 1975 1.00

2-Wise 1000 1.00 1000 1.00 2000 1.00

2-Random 1000 1.00 1000 1.00 2000 1.00

Effectiveness = Median of percentage of failures detected per test suite (measured between 0 and 1).

TR-2017-353 10

two decimal places. These faults are detected because MRUnit

sorts the <key, value> pairs when the base configuration is

executed and sometimes this change is enough to detect the

faults. The execution of the test cases under different

configurations can reveal design faults whereas the execution

under one configuration could mask them, as occurs in MRUnit.

Fig. 6 shows for each program the differences between the tests

execution engines in terms of the effectiveness (percentage of

failures detected per test suite). This figure uses a violin plot

that shows the probability density function and gives a

reference with a boxplot. The best testing techniques at

detecting failures are 2-Wise and 2-Random, followed by 1-

Random and 1-Wise, then 0-Random, and finally MRUnit,

which hardly detects any design failures. According to the

Wilcoxon Sign Rank Test, all MRtest approaches are

significantly better at detecting failures than MRUnit.

In order to compare the best approaches, the Wilcoxon Sign

Rank Test is also applied in each program between 2-Wise and

2-Random. Considering the Data Quality Analysis and Data

Cleaner Knn Analysis programs, there is no significant

difference between 2-Wise and 2-Random (p-value[1-10]=0.69,

p-value[11-35]=1, p-value[1-10]=1 and p-value[11-35]=1,

respectively), for the Open Ankus program 2-Random is better

(p-value[1-10]=2.7e-09 and p-value[11-35]=2.8e-09) and for the

Movies Analysis program 2-Wise is better (p-value[1-10]=3.7e-

10 and p-value[11-35]=3.8e-10).

Fig. 7 shows the aggregation of the data for the 4 programs,

2-Wise being the best approach in detecting failures with a

significant difference compared with 2-Random (p-

value=0.0043).

In terms of failure detection effectiveness, all MRTest

approaches are better than MRUnit, with 2-Wise and 2-Random

standing out, followed by 1-Random and 1-Wise, and finally 0-

Random.

B. Efficiency Experiments

The goal of the efficiency experiment is the assessment of

how much time is spent during the execution of the test cases.

Following the Basili et al. [79] template the goal is: Analyze the

test case execution engines (MRUnit and MRTest) for the

purpose of evaluation with respect to their efficiency in

executing the test cases of the MapReduce programs from the

point of view of the tester and developer in the context of Big

Data applications. The planning of the experiments is

described in Subsection V.B.1 and their results in Subsection

V.B.2.

1) Efficiency: Setup

In this experiment, 16000 different test cases from 8 real

world programs are executed in MRUnit and MRTest in order

to analyse the execution time expense per test case. Half of

these programs have design faults and their test cases are re-

used from the previous experiment, the other 4 programs have

no known faults and their functionality is summarized below:

5) Graph clustering [84]: Algorithm to cluster the connected

nodes in graphs.

6) Phonetic analysis [82]: Algorithm to clean text data based

on the similarities and differences between the phonetic

pronunciation.

7) Goldstein analysis [85]: Measure of the conflicts and

cooperation between countries based on the Goldstein

Fig. 6. Distribution of percentage of failures detected per test suite in each program.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MRUnit

baseline
0-Random 1-Wise 1-Random 2-Wise 2-Random

Treatment

E
ff

e
c
tiv

e
n

e
s
s
 d

e
te

c
ti
o

n
 o

f
fa

ilu
re

s

Effectiveness in Open Ankus program

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MRUnit

baseline
0-Random 1-Wise 1-Random 2-Wise 2-Random

Treatment

E
ff

e
c
tiv

e
n

e
s
s
 d

e
te

c
ti
o

n
 o

f
fa

ilu
re

s

Effectiveness in Data quality analysis program

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MRUnit

baseline
0-Random 1-Wise 1-Random 2-Wise 2-Random

Treatment

E
ff

e
c
tiv

e
n

e
s
s
 d

e
te

c
ti
o

n
 o

f
fa

ilu
re

s

Effectiveness in Movie analysis program

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MRUnit

baseline
0-Random 1-Wise 1-Random 2-Wise 2-Random

Treatment

E
ff

e
c
tiv

e
n

e
s
s
 d

e
te

c
ti
o

n
 o

f
fa

ilu
re

s

Effectiveness in Data cleaner knn analysis program

TR-2017-353 11

code.

8) Restaurant analysis [86]: Finds restaurants by cuisine

located in safe/unsafe zones in New York.

For each of these programs, 2000 test cases are generated

randomly and executed in MRUnit and MRTest with different

modes. The population is composed by all possible test cases

of the MapReduce programs, and each one is the

experimentation unit. All test cases are executed in order to

analyse the execution time (observation). As in the previous

experiment, sets of 20 test cases constitute the test suites that

are executed in 6 test engines.

The dependent variable or response variable is the

execution time of the test case by the different execution

engines (independent variable). The baseline is MRUnit and

the treatments are MRTest executed in the same way as the

previous experiment: {0,1,2}-Random, {1,2}-Wise.

In this experiment, there are other variables that could affect

the results and they are treated as blocking factors (note that

the first two factors were also considered in the previous

experiments):

• The size of the input data affects the execution time. The

following number of <key, value> pairs are considered

2 This type of experiment design is called “within subject design with post-

test”

during the experiments: between 1 and 10, and between 11

and 35.

• The pseudorandom functionality of the MRTest could

introduce noise. To avoid it, the same pseudorandom

numbers are used in the MRTest and are generated in a

pseudorandom way.

• MRTest executes the test cases with different

configurations until a failure is detected or the maximum

number of configurations of the approach is reached.

Therefore, the execution time can be different whether the

program has a fault or not. In this experiment two types of

programs are considered: 4 programs with faults reused

from the previous experiment and 4 programs without

known faults described in this section.

• The execution time could depend on the resources of the

computer. All test cases are executed in a commodity

computer with a CPU Intel Core i5, 3.20GHz Windows 10

x64, and Java 1.8 with memory generated dynamically up

to 250MB.

In order to detail the differences in the execution time, this

experiment analyses descriptive statistics: a regression model

of the execution time in terms of the number of input <key,

value> pairs.

As in the previous experiment, the sampling methods are

consecutive sampling of 8 real world programs and random

sampling for the test cases. The number of trials per program

is again 100 test suites of 20 test cases divided in two sizes of

input data: from 1 to 10 <key, value> pairs, and from 11 to 35

<key, value> pairs. Each of these test suites is executed in the

MRUnit (baseline) and MRTest with different parameters

(treatments)2.

2) Efficiency: Results and Discussion

MRUnit is the most efficient approach because it only

executes one Mapper, one Combiner and one Reducer, whereas

MRTest executes several of these configurations in order to

reveal more faults simulating a production environment. Table

II summarizes the average execution time of test cases in

programs with and without known design faults. MRTest

executed in 2-Wise mode is a better approach for detecting

Fig. 7. Distribution of percentage of failures detected per test suite

(effectiveness) in all programs.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Treatment

E
ff

e
c
ti
v
e
n

e
s
s
 d

e
te

c
ti
o

n
 o

f
fa

ilu
re

s
Effectiveness for all programs

2-Random1-Random0-RandomMRUnit

baseline
2-Wise1-Wise

TABLE II

AVERAGE EXECUTION TIME OF TEST CASE THROUGH 100 TEST SUITES OF 20 TEST CASES FOR EACH ONE OF THE 8 REAL WORLD PROGRAMS, IN

MILLISECONDS

Input size Treatment

Programs with known faults Programs without known faults

Open

Ankus

Data quality

analysis

Movie

Analysis

Data cleaner

Knn analysis

Graph

clustering

Phonetic

analysis

Goldstein

analysis

Restaurant

analysis

[1-10]

<key, value>

pairs

MRUnit baseline 51.0 50.9 53.0 54.4 4.9 3.7 3.3 3.8

0-Random 69.0 69.2 75.1 64.4 193.4 44.1 8.7 7.5

1-Wise 84.2 94.3 1780.7 80.2 769.9 131.6 21.4 33.3

1-Random 72.2 72.4 89.2 65.0 501.7 73.2 13.3 11.5

2-Wise 149.9 145.0 2248.9 70.6 5140.7 384.3 74.8 563.1

2-Random 77.4 73.5 140.0 64.7 1855.1 195.0 33.9 27.1

[11-35]

<key, value>

 pairs

MRUnit baseline 51.8 50.6 55.3 78.8 7.7 4.8 5.4 5.3

0-Random 76.0 75.3 93.2 115.0 1183.7 283.7 19.4 16.6

1-Wise 85.5 104.8 139.4 152.2 3141.6 431.6 29.8 49.9

1-Random 84.0 78.9 157.7 117.4 3445.0 539.6 36.5 28.6

2-Wise 128.6 117.3 468.3 123.5 15013.0 1357.9 118.2 2282.4

2-Random 104.0 78.8 575.7 117.2 13161.2 1606.6 153.5 105.2

TR-2017-353 12

failures than Random, but it usually takes longer. In the test

cases executed during the experiments, MRUnit takes, on

average, a few milliseconds to execute a test case, whereas

MRTest usually takes a few milliseconds-seconds, depending

on the program and the data that are received. When the

program has a fault and MRTest detects it, the execution time

is quite similar to MRUnit (x2 or x3) because MRTest finishes

after the execution of few configurations. In the case that

MRTest does not detect a fault, the execution time on average

increases by x200 or x400 from MRUnit, but it remains in the

order of milliseconds-seconds per test case.

Given a program, there are several test cases that take more

time than others, especially when {1,2}-Wise does not cover

the test coverage items after trying to generate several

configurations. The most expensive test case takes 4.5 minutes

for the previous reasons, but in general the test cases are

executed in milliseconds or a few seconds, depending on the

program functionality and the input received. As Fig. 8 depicts,

75% of the test cases are executed in less than 1 second and

90% in less than 4 seconds.

The execution time depends on several factors, but it

increases according to the number of <key, value> pairs in the

test case. In Fig. 9 the trend of the execution time based on the

number of <key, value> pairs is described for the 4 programs

with faults, and in Fig. 10 for the other 4 programs without

known faults. This trend in general has more slope in 2-Wise,

1-Wise and 2-Random because these approaches generate and

execute more configurations. In these approaches the execution

time is more dispersed because it does not only depend on the

number of <key, value> pairs, but also on the program and on

the data processed. In the case of {1,2}-Wise, the execution

time also depends on the non-covered test coverage items,

because, for example, in the most expensive test cases, MRTest

takes a long time trying to generate values that cover the

configurations that cannot be covered. For this reason, the

execution time of 2-Wise in the Open Ankus and Data Quality

analysis programs decreases according to the input size. When

these two programs receive a small amount of input data, the 2-

Wise takes time trying to cover the test coverage items. In some

cases, 1-Wise is more expensive than 2-Wise because the test

coverage items are different. For example, in the Data cleaner

Fig. 9. Execution time of the test cases of programs with known faults according to the number of <key, value> pairs.

Treatments 0-Random 1-Random1-Wise 2-Random2-WiseMRUnit baselineTreatments 0-Random 1-Random1-Wise 2-Random2-WiseMRUnit baseline

0

50

100

150

200

10 20 30
Number of input <key, value> pairs

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Data quality analysis

0

50

100

150

10 20 30
Number of input <key, value> pairs

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Data cleaner Knn analysis

0

250

500

750

1000

10 20 30
Number of input <key, value> pairs

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Movie analysis

0

100

200

10 20 30
Number of input <key, value> pairs

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Open Ankus

Fig. 8. Accumulated distribution of the test cases execution time.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1000 2000 3000 4000 5000

Execution time (ms)

P
e

rc
e

n
ta

g
e

 o
f

te
st

 c
a

se
s

Execution time per percentage of test cases

Treatment
MRUnit baseline
0-Random
1-Wise
1-Random
2-Wise
2-Random

TR-2017-353 13

Knn analysis program, the second test coverage item of 1-Wise

cannot be covered (it requires only one Reducer and the

program guarantees several) but the approach wastes time

trying to cover it.

While MRUnit is not intended to detect these design faults,

all approaches of the MRTest are effective enough detecting

them, particularly 2-Wise mode. These approaches take a few

milliseconds-seconds to execute the test cases and could be a

reasonable alternative to detect design failures before they are

encountered in production.

C. Discussion of Results

The experiments indicate that both test execution engines

proposed in this paper, MRTest-Random and MRTest-t-Wise,

are able to detect within an acceptable time a broad number of

failures that are caused by the non-deterministic executions of

MapReduce programs. Of the two, the MRTest-2-Wise is

significantly better at failure detection, and takes an acceptable

amount of time to complete the tests as well. In contrast, the

MRUnit test execution engine employs less time but it hardly

detects any of these types of failures. The remainder of this

subsection discusses the limitations of these experiments,

including the internal, external and construct threats of validity

and their subcategories [83], [87], [88].

The internal threats are those issues regarding the causal

relationship between independent variables and dependent

variables. One part of the experiments analyses the execution

time, but some noise can be introduced into the measurements

by other operative system tasks (Confounding effects of

variables). To mitigate this problem, the experiments are

executed in the same computer without any other programs

operating in the background.

The tool that automates the research, MRTest, can contain

faults and other limitations. To mitigate the potential faults of

the tool, manual/automatic testing was performed mainly from

the functional and performance point of view. This tool may

cause side-effects in the programs that perform some

communications with external services that are outside the

testing context. For example, when the program under test

inserts data in an external database, MRTest can perform the

insertions for each of the configurations executed. When the

external service is fully controllable, then the tester can handle

the side-effects inside the test cases.

The external threats are those issues that can affect the

generalization of the results. The subjects of this experiment are

16000 test cases randomly selected from 8 MapReduce

programs selected by consecutive sampling. Ideally, the

programs should also be selected randomly, but often this is not

feasible in software engineering (Interaction of selection and

treatment). For Big Data programs, there is no benchmark of

faults and industrial programs are not usually available. This

problem is mitigated by using some real-world applications,

instead of using programs with seeded faults (hand-seeded

faults or mutation faults) that are prone to other external threats

[89], [90]. Therefore, there are other issues regarding seeded

faults when they are used to evaluate testing techniques. The

hand-seeded faults are injected by the expert and they are

subjective, decrease the reproducibility of the experiments and

Fig. 10. Execution time of the test cases of programs without known faults according to the number of <key, value> pairs.

Treatments 0-Random 1-Random1-Wise 2-Random2-WiseMRUnit baselineTreatments 0-Random 1-Random1-Wise 2-Random2-WiseMRUnit baseline

0

50

100

150

200

0 10 20 30
Number of input <key, value> pairs

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Goldstein analysis

0

5000

10000

15000

20000

0 10 20
Number of input <key, value> pairs

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Graph clustering

0

1000

2000

0 10 20 30
Number of input <key, value> pairs

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Phonetic analysis

0

1000

2000

3000

0 10 20 30
Number of input <key, value> pairs

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Restaurant analysis

TR-2017-353 14

are not representative of real faults in terms of easy detection

[91]. In contrast, mutation faults are representative of the

majority of faults, but this is not the case when the developer

implements an incorrect algorithm [92]. The faults pursued by

this paper fall into the previous category of faults that are not

possible to substitute with mutations. The faults that are the

target of this paper are caused by incorrect design decisions that

lead to the implementation of faulty algorithms, completely

different from those of the correct implementation. As such, the

injection of mutation faults is not a feasible way to evaluate the

testing techniques of this paper.

The tool that automates the research, MRTest, does not fully

support the testing of non-deterministic programs (Applicability

of results across different samples). This research proposes the

execution of the test case in different configurations and finally

a metamorphic relationship checks if their outputs are

equivalent. The tool only checks if the outputs are equals or not,

but this is not enough for non-deterministic programs. To avoid

this problem, the tester can implement a function to check if

two non-equal outputs are equivalent or not in the non-

deterministic program. There are also metamorphic

relationships for non-deterministic programs [93], [94].

Other results can be obtained if MRTest generates the

configurations in a different way (Applicability of results when

technique is varied). The configurations are generated based on

the combination of different parameters, but there could be

more parameters not considered or better ways to generate the

configurations such as, for example, using a search-based

approach.

The construct threats are those issues between the

experiment and its underlying theoretical concepts. The test

execution engines proposed are only compared against MRUnit

despite the fact that there are other ways to automate the testing

execution. In general, MRUnit is more standardized and

controllable when performing tests in the MapReduce

applications.

One part of the experiment analyses the efficiency of the test

execution engine based only on the execution time measure, but

there could be more measures not considered, such as memory

(Mono-operation bias). To mitigate this problem, the

experiments were executed in a commodity computer with few

resources. The memory does not appear relevant because its

usage was low during the experiments. Furthermore, the tool

that automates the research was tested to avoid memory

bottlenecks, and some memory leaks of MRUnit were removed.

VI. CONCLUSIONS AND FUTURE WORK

The detection of design faults in MapReduce depends on the

test input data and on the test configurations, i.e. how the test

data are executed in parallel. These design faults can be

revealed in some executions and masked in others. Thus,

although the application may appear to work correctly in the

test environment, this might not be the case when it is passed to

production because usually these faults are only revealed in

aggressive environments. In this paper, we presented two black-

box testing techniques that automatically detect these faults.

Given a set of test input data, the testing techniques simulate the

execution in infrastructure configurations aimed at revealing

the faults, and check that all executions lead to equivalent

outputs. These testing techniques are automated in a test

execution engine called MRTest.

We performed an empirical study to evaluate the

effectiveness and efficiency of the testing techniques proposed

(MRTest-Random and MRTest-t-Wise) compared to the XUnit

tool of MapReduce programs (MRUnit). The results showed

that our approaches are more effective in detecting faults while

still employing reasonable time. The results also showed that

MRTest-t-Wise based on Partition testing detects faults with a

significantly lower fraction of tests than MRTest-Random that

is based on Random testing.

MRTest enables fine-grained control of the test case

execution at the same time as it guarantees its reproducibility in

the same circumstances. The simulation of the test case in

different production environments can be carried out in a non-

intrusive way and with few resources, deploying MRTest on a

commodity computer in the laboratory. Furthermore, the testing

techniques of this paper are easy to use because they do not need

the expected output to reveal the faults, only the test input data.

Big Data programs have large quantities of data that can be

used as test input data. As part of our future work, we plan to

complete test automation by taking advantage of the production

data at runtime (online) or before runtime (offline). Another

research line pursues the automatic diagnosis and localization

of these faults. We also plan as future work to adapt the testing

techniques of this paper beyond MapReduce, such as in the

Lambda architecture, in Big Data streaming frameworks or in

data-flow paradigms considering their similarities to

MapReduce.

REFERENCES

[1] ISO/IEC JTC 1 - Big Data, preliminary report. 2014.

[2] Xerox, “Big Data in Western Europe Today,” 2015.
[3] Capgemini Consulting, “Big Data survey,” 2014.
[4] B. Marr, “Where Big Data Projects Fail,” 2015. [Online]. Available:

http://www.forbes.com/sites/bernardmarr/2015/03/17/where-big-

data-projects-fail/. [Accessed: 31-Jan-2018].

[5] N. Laranjeiro, S. N. Soydemir, and J. Bernardino, “A Survey on Data
Quality: Classifying Poor Data,” in Proceedings - 2015 IEEE 21st

Pacific Rim International Symposium on Dependable Computing,

PRDC 2015, 2016, pp. 179–188.

[6] V. Marx, “Biology: The big challenges of big data,” Nature, vol. 498,

no. 7453, pp. 255–260, Jun. 2013.

[7] D. Bachlechner and T. Leimbach, “Big data challenges: Impact,
potential responses and research needs,” in 2016 IEEE International

Conference on Emerging Technologies and Innovative Business

Practices for the Transformation of Societies (EmergiTech), 2016, pp.

257–264.

[8] Gartner, “How to Take a First Step to Advanced Analytics,” 2015.
[9] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing

on Large Clusters,” Proc. OSDI - Symp. Oper. Syst. Des. Implement.,

pp. 137–149, 2004.

[10] Institutions that are using Apache Hadoop for educational or

production uses. [Online]. Available:

https://wiki.apache.org/hadoop/PoweredBy. [Accessed: 31-Jan-2018].

[11] S. Agarwal and Z. Khanam, “Map Reduce: A Survey Paper on Recent
Expansion,” Int. J. Adv. Comput. Sci. Appl., vol. 6, no. 8, 2015.

[12] Z. Khanam and S. Agarwal, “Map-Reduce Implementations: Survey

and Performance Comparison,” Int. J. Comput. Sci. Inf. Technol., vol.

7, no. 4, pp. 119–126, 2015.

[13] Apache Hadoop: open-source software for reliable, scalable,

distributed computing. [Online]. Available:

TR-2017-353 15

https://hadoop.apache.org/. [Accessed: 31-Jan-2018].

[14] Apache Flink: Scalable batch and stream data processing. [Online].

Available: https://flink.apache.org. [Accessed: 31-Jan-2018].

[15] A. Alexandrov et al., “The Stratosphere platform for big data
analytics,” VLDB J., vol. 23, no. 6, pp. 939–964, 2014.

[16] Apache Spark: a fast and general engine for large-scale data

processing. [Online]. Available: https://spark.apache.org. [Accessed:

31-Jan-2018].

[17] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark : Cluster Computing with Working Sets,” HotCloud’10 Proc.
2nd USENIX Conf. Hot Top. cloud Comput., p. 10, 2010.

[18] M. C. Schatz, “CloudBurst: highly sensitive read mapping with

MapReduce,” Bioinformatics, vol. 25, no. 11, pp. 1363–1369, Jun.

2009.

[19] H. Kocakulak and T. T. Temizel, “A Hadoop solution for ballistic
image analysis and recognition,” in 2011 International Conference on

High Performance Computing & Simulation, 2011, pp. 836–842.

[20] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An Analysis of

Traces from a Production MapReduce Cluster,” in 2010 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing, 2010, pp. 94–103.

[21] K. Ren, Y. Kwon, M. Balazinska, and B. Howe, “Hadoop’s
adolescence,” Proc. VLDB Endow., vol. 6, no. 10, pp. 853–864, 2013.

[22] T. Xiao et al., “Nondeterminism in MapReduce considered harmful?
an empirical study on non-commutative aggregators in MapReduce

programs,” in Companion Proceedings of the 36th International

Conference on Software Engineering - ICSE Companion 2014, 2014,

pp. 44–53.

[23] J. Moran, C. de la Riva, and J. Tuya, “MRTree: Functional Testing
Based on MapReduce’s Execution Behaviour,” in 2014 International

Conference on Future Internet of Things and Cloud, 2014, pp. 379–
384.

[24] L. C. Camargo and S. R. Vergilio, “Classifica{ç} ao de Defeitos para
Programas MapReduce: Resultados de um Estudo Emp{\i}rico,”
2013.

[25] J. Moran, B. Rivas, C. De La Riva, J. Tuya, I. Caballero, and M.

Serrano, “Infrastructure-Aware Functional Testing of MapReduce

Programs,” in 2016 IEEE 4th International Conference on Future

Internet of Things and Cloud Workshops (FiCloudW), 2016, pp. 171–
176.

[26] J. Morán, B. Rivas, C. De Riva, J. Tuya, I. Caballero, and M. Serrano,

“Configuration / Infrastructure-aware testing of MapReduce

programs,” Adv. Sci. Technol. Eng. Syst. J., vol. 2, no. 1, pp. 90–96,

2017.

[27] T. Chen, S. Cheung, and S. Yiu, “Metamorphic testing: a new

approach for generating next test cases,” Tech. Rep. HKUST-CS98-01,

Dep. Comput. Sci. Hong Kong Univ. Sci. Technol. Hong Kon, pp. 1–
11, 1998.

[28] Apache MRUnit: Java library that helps developers unit test Apache

Hadoop map reduce job. [Online]. Available: http://mrunit.apache.org.

[Accessed: 31-Jan-2018].

[29] R. L. Bocchino, V. S. Adve, S. V Adve, M. Snir, and R. L. B. Jr.,

“Parallel Programming Must Be Deterministic by Default,” Proc. First

USENIX Conf. Hot Top. parallelism, vol. 22, no. 1, p. 4, 2009.

[30] Average temperature per year. [Online]. Available:

https://github.com/t2013anurag/Hadoop-Map-Reduce-Avg-Temp.

[Accessed: 31-Jan-2018].

[31] Average temperature per year. [Online]. Available:

https://github.com/hanasu/ClimateData. [Accessed: 31-Jan-2018].

[32] J. Lin and C. Dyer, “Data-Intensive Text Processing with

MapReduce,” Synth. Lect. Hum. Lang. Technol., vol. 3, no. 1, pp. 1–
177, 2010.

[33] Open Ankus: Data mining and machine learning based on MapReduce.

[Online]. Available: http://www.openankus.org/.

[34] A. Orso and G. Rothermel, “Software testing: a research travelogue
(2000–2014),” Proc. Futur. Softw. Eng. - FOSE 2014, pp. 117–132,

2014.

[35] A. Bertolino, “Software Testing Research : Achievements , Challenges

, Dreams,” in Future of Software Engineering. FOSE ’07, 2007, pp.

85–103.

[36] S. Nachiyappan and S. Justus, “Getting ready for BigData testing: A
practitioner’s perception,” in 2013 4th International Conference on

Computing, Communications and Networking Technologies, ICCCNT

2013, 2013.

[37] A. Mittal, “Trustworthiness of Big Data,” Int. J. Comput. Appl., vol.

80, no. 9, pp. 35–40, Oct. 2013.

[38] Z. Liu, “Research of performance test technology for big data

applications,” 2014 IEEE Int. Conf. Inf. Autom. ICIA 2014, no. July,

pp. 53–58, 2014.

[39] A. S. Nagdive, R. M. Tugnayat, P. Shri, S. Agnihotri, and M. P.

Tembhurkar, “Overview on Performance Testing Approach in Big
Data,” Int. J. Adv. Res. Comput. Sci., vol. 5, no. 8.

[40] M. Gudipati, S. Rao, N. D. Mohan, and N. Kumar Gajja, “Big Data:
Testing Approach to Overcome Quality Challenges,” vol. 11, no. 1.
Big Data: Challenges and Opportunities, pp. 65–72, 2013.

[41] C. Csallner, L. Fegaras, and C. Li, “New Ideas Track: Testing
Mapreduce-style Programs,” Proc. 19th ACM SIGSOFT Symp. 13th

Eur. Conf. Found. Softw. Eng., pp. 504–507, 2011.

[42] Y.-F. Chen, C.-D. Hong, N. Sinha, and B.-Y. Wang, “Commutativity
of Reducers,” Springer Berlin Heidelberg, 2015, pp. 131–146.

[43] K. V. Vishwanath and N. Nagappan, “Characterizing Cloud
Computing Hardware Reliability,” Proc. 1st ACM Symp. Cloud

Comput. - SoCC ’10, p. 193, 2010.

[44] F. Faghri, S. Bazarbayev, M. Overholt, R. Farivar, R. H. Campbell,

and W. H. Sanders, “Failure scenario as a service (FSaaS) for Hadoop
clusters,” Proc. Work. Secur. Dependable Middlew. Cloud Monit.

Manag. - SDMCMM ’12, pp. 1–6, 2012.

[45] P. Joshi, H. S. Gunawi, and K. Sen, “PREFAIL: A Programmable Tool
for Multiple-Failure Injection,” ACM SIGPLAN Not., vol. 46, no. 10,

p. 171, 2011.

[46] Anarchy Ape: Fault injection tool for Hadoop cluster from Yahoo

anarchyape. [Online]. Available:

https://github.com/david78k/anarchyape. [Accessed: 31-Jan-2018].

[47] Chaosmonkey: Fault injector. [Online]. Available:

https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey.

[Accessed: 31-Jan-2018].

[48] Hadoop Injection Framework. [Online]. Available:

https://wiki.apache.org/hadoop/HowToUseInjectionFramework.

[Accessed: 31-Jan-2018].

[49] J. E. Marynowski, A. O. Santin, and A. R. Pimentel, “Method for
testing the fault tolerance of MapReduce frameworks,” Comput.

Networks, vol. 86, pp. 1–13, 2015.

[50] J. Morán, C. de la Riva, and J. Tuya, “Testing data transformations in
MapReduce programs,” in Proceedings of the 6th International

Workshop on Automating Test Case Design, Selection and Evaluation

- A-TEST 2015, 2015, pp. 20–25.

[51] A. J. de Mattos, “Test data generation for testing mapreduce systems,”
Federal University of Paraná, 2011.

[52] N. Li, Y. Lei, H. R. Khan, J. Liu, and Y. Guo, “Applying combinatorial
test data generation to big data applications,” in Proceedings of the

31st IEEE/ACM International Conference on Automated Software

Engineering - ASE 2016, 2016, pp. 637–647.

[53] Herriot: Large-scale automated test framework. [Online]. Available:

https://wiki.apache.org/hadoop/HowToUseSystemTestFramework.

[Accessed: 31-Jan-2018].

[54] Minicluster: Apache hadoop cluster in memory for testing. [Online].

Available: https://hadoop.apache.org/docs/stable/hadoop-project-

dist/hadoop-common/CLIMiniCluster.html. [Accessed: 31-Jan-2018].

[55] JUnit: a simple framework to write repeatable tests. [Online].

Available: http://junit.org. [Accessed: 31-Feb-2018].

[56] R. Hamlet, Random testing, no. 1. Wiley, 1994.

[57] J. M. Glenford, The art of software testing. 1979.

[58] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing
strategies: A survey,” Softw. Test. Verif. Reliab., vol. 15, no. 3, pp.

167–199, 2005.

[59] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM

Comput. Surv., vol. 43, no. 2, pp. 1–29, 2011.

[60] D. Hamlet and R. Taylor, “Partition Testing Does Not Inspire
Confidence,” IEEE Trans. Softw. Eng., vol. 16, no. 12, pp. 1402–1411,

1990.

[61] J. W. Duran and S. C. Ntafos, “An Evaluation of Random Testing,”
IEEE Trans. Softw. Eng., vol. SE-10, no. 4, pp. 438–444, 1984.

[62] A. Arcuri, M. Z. Iqbal, and L. Briand, “Random testing: Theoretical
results and practical implications,” IEEE Trans. Softw. Eng., vol. 38,

no. 2, pp. 258–277, 2012.

[63] W. J. Gutjahr, “Partition testing vs. random testing: The influence of

uncertainty,” IEEE Trans. Softw. Eng., vol. 25, no. 5, pp. 661–674,

1999.

[64] ISO/IEC/IEEE, “29119-4:2015 - ISO/IEC/IEEE International

Standard for Software and systems engineering — Software testing —

TR-2017-353 16

Part 4: Test techniques,” ISO/IEC/IEEE 29119-4:2015, pp. 1–149,

2015.

[65] A. W. Williams and R. L. Probert, “A measure for component

interaction test coverage,” in Proceedings of IEEE/ACS International

Conference on Computer Systems and Applications, AICCSA, 2001,

vol. 2001–Janua, pp. 304–311.

[66] P. Ammann and J. Offutt, “Using formal methods to derive test frames
in category-partition testing,” Comput. Assur. 1994. COMPASS ’94
Safety, Reliab. Fault Toler. Concurr. Real Time, Secur. Proc. Ninth

Annu. Conf., pp. 69–79, 1994.

[67] D. R. Kuhn and M. J. Reilly, “An investigation of the applicability of
design of experiments to software testing,” in Proceedings - 27th

Annual NASA Goddard / IEEE Software Engineering Workshop, SEW

2002, 2003, pp. 91–95.

[68] J. Huller, “Reducing time to market with combinatorial design method
testing,” in IN PROCEEDINGS OF THE 2000 INTERNATIONAL

COUNCIL ON SYSTEMS ENGINEERING (INCOSE)

CONFERENCE, 2000, pp. 16--20.

[69] E. J. Weyuker, “On testing non-testable programs,” Comput. J., vol.

25, no. 4, pp. 465–470, 1982.

[70] M. Staats, M. W. Whalen, and M. P. E. Heimdahl, “Programs, tests,
and oracles: the foundations of testing revisited,” in Proceeding of the

33rd international conference on Software engineering - ICSE ’11,

2011, p. 391.

[71] R. A. P. Oliveira, U. Kanewala, and P. A. Nardi, “Automated test
oracles: State of the art, taxonomies, and trends,” Adv. Comput., vol.

95, pp. 113–199, 2015.

[72] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Trans. Softw.

Eng., vol. 41, no. 5, pp. 507–525, 2015.

[73] ISO/IEC/IEEE, “29119-1:2013 - ISO/IEC/IEEE International

Standard for Software and systems engineering — Software testing —

Part 1: Concepts and definitions,” ISO/IEC/IEEE 29119-1:2013(E),

vol. 2013, pp. 1–64, 2013.

[74] X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen,

“Testing and validating machine learning classifiers by metamorphic

testing,” in Journal of Systems and Software, 2011, vol. 84, no. 4, pp.

544–558.

[75] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortes, “A Survey
on Metamorphic Testing,” IEEE Trans. Softw. Eng., vol. 42, no. 9, pp.

805–824, Sep. 2016.

[76] R. W. Selby and V. R. Basili, “Comparing the Effectiveness of

Software Testing Strategies,” IEEE Trans. Softw. Eng., vol. SE-13, no.

12, pp. 1278–1296, 1987.

[77] H. A. De Souza, M. L. Chaim, and F. Kon, “Spectrum-based Software

Fault Localization: A Survey of Techniques, Advances, and

Challenges,” arxiv16, pp. 1–40, 2016.

[78] S. B. Kotsiantis, “Supervised Machine Learning: A Review of
Classification Techniques,” Informatica, vol. 31, pp. 249–268, 2007.

[79] V. R. Basili and H. Dieter Rombach, “The TAME Project: Towards
Improvement-Oriented Software Environments,” IEEE Trans. Softw.

Eng., vol. 14, no. 6, pp. 758–773, 1988.

[80] B. Rivas, J. Merino, M. Serrano, I. Caballero, and M. Piattini,

“I8K|DQ-BigData: I8K architecture extension for data quality in big

data,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2015, vol. 9382, pp. 164–172.

[81] “Movies analysis implemented in MapReduce.” [Online]. Available:
https://github.com/adityaundirwadkar/mapreduce-

programming/tree/master/example_1. [Accessed: 31-Jan-2018].

[82] Treelogic S.L. [Online]. Available: www.treelogic.com. [Accessed:

31-Jan-2018].

[83] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.

Wesslén, Experimentation in software engineering, vol. 9783642290.

2012.

[84] MapReduce algorithm of Connected components in graphs. [Online].

Available: https://github.com/Draxent/ConnectedComponents.

[Accessed: 31-Jan-2018].

[85] Goldstein analysis implemented in MapReduce. [Online]. Available:

https://github.com/tchira/MapReduce/tree/master/src/main/java/hado

op/gratio. [Accessed: 31-Jan-2018].

[86] Analysis of the New York restaurants based on MapReduce. [Online].

Available: https://github.com/Shubham617/MapReduce-

Project/tree/master/NYC Restaurant Data. [Accessed: 31-Jan-2018].

[87] T. D. Cook and D. T. (Donald T. Campbell, Quasi-experimentation :

design & analysis issues for field settings. Houghton Mifflin,

1979.

[88] R. Malhotra, Empirical research in software engineering : concepts,
analysis, and applications. .

[89] A. S. Namin and S. Kakarla, “The use of mutation in testing

experiments and its sensitivity to external threats,” Proc. 2011 Int.

Symp. Softw. Test. Anal. - ISSTA ’11, p. 342, 2011.

[90] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. Le Traon,

“Threats to the validity of mutation-based test assessment,” in
Proceedings of the 25th International Symposium on Software Testing

and Analysis - ISSTA 2016, 2016, pp. 354–365.

[91] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?,” in Proceedings of the 27th

international conference on Software engineering - ICSE ’05, 2005,

p. 402.

[92] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G.

Fraser, “Are mutants a valid substitute for real faults in software
testing?,” in Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering - FSE 2014,

2014, pp. 654–665.

[93] R. Guderlei and J. Mayer, “Statistical Metamorphic Testing - Testing

programs with random output by means of statistical hypothesis tests

and Metamorphic Testing,” in Proceedings - International Conference

on Quality Software, 2007, pp. 404–409.

[94] C. Murphy and G. Kaiser, “Empirical evaluation of approaches to
testing applications without test oracles,” Dep. Comput. Sci. Columbia

Univ. Tech. Rep. CUCS-039-09, 2010.

Jesús Morán received his B.Sc. degree in

Computer Engineering in 2012 and an

M.Sc. in Computer Engineering in 2014

from the University of Oviedo, Spain. He

is currently a PhD candidate at the

University of Oviedo. His research

interests include software testing, Big Data

technologies and distributed programming.

Antonia Bertolino is a research director at

CNR-ISTI (Italian National Research

Council—Institute of Information Science

and Technology), Pisa, Italy. Her research

focuses on software and service testing.

Bertolino received an MS in Electronic

Engineering from the University of Pisa.

She is an associate editor of ACM

Transactions on Software Engineering and

Methodology and of Springer Empirical Software Engineering

Journal, and serves as the Software Testing area editor of the

Elsevier Journal of Systems and Software. She has been the

General Chair of the 2015 International Conference on

Software Engineering held in Florence (Italy).

TR-2017-353 17

Claudio de la Riva is an Assistant

Professor at the University of Oviedo. He

is a member of the Software Engineering

Research Group (GIIS, giis.uniovi.es). He

obtained his PhD in Computing from the

University of Oviedo. His research

interests include software verification and

validation and software testing, mainly

focused on testing database applications

and services. He is a member of ACM.

Javier Tuya is a Professor at the

University of Oviedo, Spain, where he is

the research leader of the Software

Engineering Research Group. He received

his PhD in Engineering from the

University of Oviedo in 1995. He is the

Director of the Indra-Uniovi Chair,

member of the ISO/IEC JTC1/SC7/WG26

working group for the recent

ISO/IEC/IEEE 29119 Software Testing

standard and convener of the corresponding UNE National

Body working group. His research interests in software

engineering include verification & validation and software

testing for database applications and services. He is a member

of the IEEE, IEEE Computer Society, ACM and the

Association for Software Testing (AST).

