
TR-2017-353 1 

  
Abstract—New processing models are being adopted in Big Data 

Engineering to overcome the limitations of traditional technology. 
Among them, MapReduce stands out by allowing for the 
processing of large volumes of data over a distributed 
infrastructure that can change during runtime. The developer 

only designs the functionality of the program and its execution is 
managed by a distributed system. As a consequence, a program 
can behave differently at each execution because it is automatically 
adapted to the resources available at each moment. Therefore, 
when the program has a design fault, this could be revealed in 

some executions and masked in others. However, during testing, 
these faults are usually masked because the test infrastructure is 
stable, and they are only revealed in production because the 
environment is more aggressive with infrastructure failures, 

among other reasons. This paper proposes new testing techniques 
aimed to detect these design faults by simulating different 
infrastructure configurations. The testing techniques generate a 
representative set of infrastructure configurations that as whole 

are more likely to reveal failures using Random testing, and 
Partition testing together with Combinatorial testing. The 
techniques are automated by using a test execution engine called 
MRTest that is able to detect these faults using only the test input 

data, regardless of the expected output. Our empirical evaluation 
shows that MRTest can automatically detect these design faults 
within a reasonable time. 

 
Index Terms—Big Data, Combinatorial testing, MapReduce, 

Metamorphic testing, Partition testing, Random testing, Software 

testing. 

 

I. INTRODUCTION 

N recent years, the volume of data generated by companies 

has grown exponentially and several challenges appear when 

it comes to storing, transporting and analysing such 

information. To overcome these challenges, new technologies 

are being created under the Big Data paradigm [1]. Their rise 

allows large scale analysis of data, from social web interactions 

to industrial sensor data, that can improve social and business 

performance.  

There are several obstacles and challenges that affect this 

paradigm, such as the lack of skills [2]–[4], poor data quality 
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[5] and different technological issues [3], [6], [7]. According to 

Gartner, it is expected that 60% of Big Data projects will fail to 

go beyond piloting and will be abandoned during 2017 [8]. 

The MapReduce processing model [9] stands out among Big 

Data applications. It is a key technology very broadly used by 

organizations [10] and implemented in several mature 

frameworks [11], [12], such as Hadoop [13], Flink [14], [15] 

and Spark [16], [17], among others. Because it is so widely 

adopted, the quality of MapReduce programs is important, 

especially for those employed in critical sectors as such as 

health (DNA alignment [18]) and security (image processing in 

ballistics [19]). An analysis over several months at Yahoo! 

indicates that around 3% of MapReduce programs are not 

finished [20], whereas another broader study places this 

percentage between 1.38% and 33.11% [21]. A study of 507 

programs in production reveals at least 5 different kinds of 

faults [22], and other works [23], [24] have identified and 

classified more such faults that are caused by the incorrect 

design of MapReduce programs. Therefore, in this paper we 

propose new testing techniques to address these functional 

faults that are caused by incorrect design. 

These types of faults include, but are not limited to, race 

conditions, computations with unavailable data because the 

distributed system allocates them to another computer, or 

automatic optimizations that remove data that are relevant to 

calculating the output. These faults are difficult to detect 

because they depend not only on the data, but also on how these 

data are executed in the large distributed architecture 

(infrastructure configuration): parallel executions, re-

executions of some part of the data and optimizations, among 

others. In general, these non-deterministic faults are easy to 

mask in development/testing environments and go on to fail in 

more aggressive environments such as the production 

environment, thereby generating incorrect outputs or causing 

the program to crash. 

In order to detect these kinds of faults in the early stages of 

development, our previous work simulates, in a test 

environment, the execution of the test cases in a thorough range 

of infrastructure configurations that could occur in production 
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(all potential configurations) [25], [26]. This paper extends the 

previous approach by proposing a more efficient strategy that 

automatically tests the program only under the relevant and 

representative configurations. Whereas in the previous work the 

selection of the configurations grows exponentially according 

to the number of input data records, the approach proposed here 

exploits combinatorial techniques that maintain a good number 

of failures detected within an acceptable time. In this way, the 

execution time and resource utilization of the test cases is 

clearly improved, allowing test cases with no limitation in the 

number of input data records, contrary to the previous work that 

only allowed a very small number of records. More specifically, 

the main differences between this paper and our previous work 

are: (a) Combinatorial, Partition and Random testing test 

strategies that instead of analysing all configurations 

exhaustively, only analyse a representative subset of 

configurations; (b) a metamorphic testing [27] approach to 

guide both the generation of configurations and the checking of 

failures, (c) whereas the previous work only supported a small 

volume of test input data due to the number of configurations 

growing exponentially, the current paper overcomes these 

practical issues and supports more test input data in less time,  

and (d) the paper includes a comprehensive validation through 

empirical experiment using real world programs. The 

contributions of this paper are: 

1) Testing techniques based on combinatorial testing, 

partition testing and random testing to select the 

infrastructure configurations to be employed during the 

execution of the test cases. 

2) Detection of the MapReduce design faults through an 

automatic partial oracle without any knowledge about 

either the program specification or expected output. 

3) Automation of the testing execution in a test engine called 

MRTest that extends MRUnit [28] (XUnit for MapReduce 

programs). 

4) Experimentation with 16000 test cases executed against 8 

real-world programs to analyse the effectiveness of 

MRTest in detecting failures and its efficiency in executing 

the test cases. 

The remainder of the paper is organized as follows. Section 

II introduces the MapReduce processing model. Related work 

is then discussed in Section III. The testing techniques proposed 

and the MRTest automatization are defined in Section IV. The 

experiment is performed and discussed in Section V. Finally, 

the conclusions and future work are detailed in Section VI. 

II. BACKGROUND OF MAPREDUCE 

MapReduce programs process large datasets distributed over 

several computers using the "divide and conquer" principle. In 

its simplest form, the MapReduce developer needs to 

implement only two components: the Mapper that splits one 

problem into several subproblems (Divide), and the Reducer 

that solves these subproblems (Conquer). During the execution, 

several instances of Mapper analyse the dataset in parallel and 

send to each subproblem the data needed to be solved. After all 

Mappers are executed, several instances of the Reducer are 

executed in parallel to solve the subproblems. Internally, the 

data are codified as <key, value> pairs, where the key is an 

identifier of a subproblem, and the value contains all the 

information that is needed to solve the subproblem. The 

developer designs the business logic based on the <key, value> 

pairs emitted from Mappers to Reducers. Finally, the output is 

a series of <key, value> pairs obtained through the deployment 

and execution of Mappers and Reducers over a distributed 

infrastructure. 

More generally, a MapReduce program can be designed with 

more components. For example, a Combiner can be 

implemented to improve the performance by reducing the data 

exchanged between Mappers and Reducers. The Combiner is 

executed right after the Mapper with the aim of removing the 

<key, value> pairs that are irrelevant to solving the subproblem. 

The MapReduce applications can also be designed with other 

components such as, for example, the Partitioner that 

determines which Reducer analyses which <key, value> pair, 

the Sorter that controls the order of <key, value> pairs, and the 

Grouper that aggregates the values of each key before they are 

passed to the Reducer. 

Distributed systems such as Hadoop execute the MapReduce 

programs in a non-deterministic way based on runtime factors, 

such as the resources available, observed infrastructure failures 

and other dynamic optimizations. Nevertheless, the same 

program with the same input data when executed in different 

infrastructure configurations should obtain the correct output. 

However, this is not always the case: in a prior work [23] we 

identified and classified several design faults that are raised in 

some infrastructure configurations but masked in others. 

Despite the fact that some authors suggest that the parallel 

programming must be deterministic by default (unless the 

developer explicitly indicates non-determinism) [29], this is not 

the case with these distributed systems. 

To illustrate MapReduce and its executions, let us suppose 

the computation of the average temperature per year given a 

large dataset containing several years with their observed 

temperatures. This program can be designed in different ways. 

We suppose that the developer makes the following decisions. 

The problem of average temperature per year is divided into 

several subproblems where each subproblem calculates the 

average temperature of one year only (Decision 1). Then each 

subproblem is composed of one year with all temperatures of 

this year (Decision 2), and it is solved with the temperature 

average (Decision 3). The program includes a Combiner to 

improve the performance (Decision 4). With the foregoing 

decisions, the Mappers receive a subset of temperature data and 

emit <year, temperature of this year> pairs. Then the distributed 

system aggregates all values per key, that is, each subproblem 

grouped with all the data that needs to be solved. Therefore, the 

Reducers receive subproblems like <year, [all temperatures of 

this year]> and calculate the average temperature. After the 

Mapper, the Combiner can be executed, aimed at removing the 

irrelevant temperatures, and emitting their average. 

The distributed system can execute the previous program in 

different ways, based on the runtime infrastructure 

configuration. For example, Fig. 1 shows three different 

executions with the following input: year 1999 with 4°, 2° and 
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3°; and year 2000 with 5°. Regardless of the infrastructure 

configuration, the program must obtain the right output: 3° as 

average in 1999, and 5° in 2000. The first configuration is the 

simplest with one Mapper, one Combiner and one Reducer. The 

Mapper analyses all temperatures and encodes them as <year, 

temperature>. Then the temperatures are grouped per year and 

sent to the Combiner that pre-calculates the average 

temperatures, and finally to the Reducer that obtains the correct 

output. 

 Depending on the runtime resources, the distributed system 

can execute the program automatically in more complex 

configurations. As we detail in Section IV, the configurations 

can have, among other things, a different number of Mappers 

and other automatic optimizations. For example, the second 

configuration of Fig. 1 is more complex than the first, 

employing one Mapper, two Combiners and two Reducers, also 

obtaining the correct output. We assume that the first Combiner 

receives the temperatures 4° and 2° of the year 1999, and emits 

their average, 3°. The second Combiner receives year 1999 with 

3° and emits it, whereas the year 2000 with 5° is passed directly 

from Mapper to Reducer. After the Mappers and Combiners are 

executed, one Reducer analyses the temperatures of the year 

1999 and another Reducer the year 2000. Eventually, this 

configuration also obtains the correct output. 

In contrast, the third configuration that executes two 

Mappers, one Combiner per Mapper, and one Reducer does not 

obtain the right output. This execution obtains 3.25° as the 

average of 1999 rather than 3° due to a design fault. The 

developer makes some incorrect design decisions, among them, 

the use of <year, temperature> pairs and the Combiner to 

optimize the program. Both decisions are incompatible in this 

program because the Combiner replaces the temperatures 

locally available in each computer with their average, and then 

the Reducer cannot calculate the global average using only the 

local averages. 

Although this program has a simple business logic, several 

developers make the previous incorrect design decisions to 

obtain the average temperature per year, as in the programs 

[30], [31]. The developer can fix the program by removing the 

Combiner, but this solution is not optimised. A better program 

design codifies the data as <year, {sum of temperatures, number 

of temperatures}> and uses a Combiner to update both the sum 

and number of temperatures [32]. 

A sample of a more subtle design fault is in the 

recommendation system Open Ankus [33]. The users assign 

points to a series of books, and then the system tries to forecast 

the points assigned for new books. The design fault is triggered 

during the calculation of the error between the user assignment 

and the system prediction. Fig. 2 depicts the execution of the 

program with the points assigned by Carol to the book Don 

Quixote and correctly predicted by the system. The first 

configuration with one Mapper for the predictions and one 

Mapper for the assignments obtains the correct output (the 

system predicts the result correctly). In contrast, when several 

Mappers for assignment are executed in parallel, the output of 

this program could potentially be faulty, depending on both the 

order of execution and how the data is distributed in parallel. 

For example, the program can be executed as in the second 

configuration of Fig. 2 obtaining the incorrect result that the 

system prediction is wrong. 

When the business logic tends to be more complex, as in 

machine learning programs, it can be difficult for the developer 

to make the right design decisions, and the program may be 

prone to side-effects. An incorrect design in the MapReduce 

program may cause a failure in one of the different ways in 

which the distributed systems can execute the program. These 

design faults are difficult to detect during testing because they 

may depend on dynamic execution contexts. Thus they can be 

missed in the laboratory, but are then triggered in aggressive 

environments, such as a production environment with a mix of 

large data and infrastructure failures. When these aggressive 

situations happen, the distributed systems manage the execution 

with different mechanisms, such as re-executing part of the 

program or performing some optimizations that can reveal 

design faults. To avoid incorrect outputs in production, it is 

desirable to detect these program faults in the early stages of the 

development process. 

III. RELATED WORK 

Software testing is among the most commonly used software 

quality-assurance techniques [34]. In recent years, this field has 

seen great progress [35], but concerning the testing of Big Data 

 
Fig. 1.  Execution of MapReduce program that calculates the average 

temperature per year. 
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Fig. 2.  Execution of a recommendation system in MapReduce. 
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applications, there remain several challenges [36], [37]. In this 

domain, most works focus on performance testing [38], [39], 

but, as our previous example showed, functional testing is also 

important to avoid incorrect outputs [40]. In this paper we 

address functional testing. 

As seen in the earlier examples, some faults depend on how 

distributed systems execute the programs according to the 

infrastructure configurations. If the program generates incorrect 

outputs in some configurations and the expected output in 

others, then the program has a design fault. A study of 507 

MapReduce programs in production reveals at least 5 different 

kinds of design faults [22]. To detect them, Csallner et al. [41] 

and Chen et al. [42] use testing techniques based on symbolic 

execution and model checking. Other authors [23], [24] 

identified and classified other design faults that depend upon 

the infrastructure configurations. In our previous work, we 

proposed a test approach to detect such faults in the test 

environment by using a simulation of the infrastructure 

configurations  [26]. In this paper we enhance on that work with 

a more practical technique that improves efficiency while still 

detecting the majority of faults by exploiting combinatorial 

strategies. 

The production environment is composed of a large 

distributed infrastructure that over time exposes several failures 

[43]. In order to test in the same conditions as production, 

several research lines propose to inject infrastructure failures 

[44], [45] during testing, and several tools have been 

implemented to support their injection [46]–[48]. For example, 

Marynowski et al.  [49] propose creating the test cases by 

specifying which computers fail and when. While some of the 

design faults can be detected by injecting infrastructure failures, 

others require a fine-grained control of the distributed system 

and the underlying large infrastructure. In the production 

environment it is difficult to control the execution of the test 

cases because at the same time other programs consume the 

resources of the computers and other infrastructure failures can 

happen that are beyond the tester’s control. This paper does not 

inject failures, but simulates the different infrastructure 

configurations in a test environment, thereby obtaining fine-

grained control and reproducibility of the tests. 

Several research lines propose generating the test input data 

through different approaches: using data flow [50], based on a 

bacteriological algorithm [51], or with input domain analysis 

together with combinatorial testing [52]. Unlike these testing 

techniques, this paper does not focus on the generation of the 

test input data, but on simulating their execution in the 

infrastructure configurations that are more likely to reveal the 

faults. As such, this work is orthogonal to the above. The tester 

can use the previous approaches to obtain the test input data and 

then execute the test cases with the techniques proposed in this 

paper. As we have shown, the same program and the same input 

data executed in different configurations might produce 

different results so, apart from deriving a good test suite, the 

testing of MapReduce applications also requires the derivation 

of the correct configuration.  

Several tools have been proposed to design and execute test 

cases for MapReduce applications. Herriot [53] allows the 

execution of the tests in a distributed infrastructure and at the 

same time supports the injection of infrastructure failures. 

Another tool called MiniClusters [54] executes the test cases in 

a distributed environment simulated in memory. For unit 

testing, MRUnit [28] provides an adaptation of JUnit [55] to the 

MapReduce processing model. All the above test tools only 

execute the test case in one infrastructure configuration and 

usually without parallelization. In this paper we devise a testing 

technique to generate and execute a representative set of 

infrastructure configurations that could occur in production and 

as a whole is more likely to reveal design faults. It is automated 

by means of an MRUnit extension, as described below. 

IV. MRTEST: AUTOMATIC MAPREDUCE TESTING TECHNIQUE 

In this section, we describe the test execution engine we 

propose called MRTest. Given a test input data, MRTest 

automatically generates the configurations aimed at revealing 

design faults (Section IV.A), then executes the test case in these 

configurations (Section IV.2), and finally checks if the program 

is faulty or not (Section IV.3). 

A. Generation of Infrastructure Configurations for Testing 

In a prior work [26], we proposed an automatic technique 

that, given test input data, generates a thorough number of 

configurations (MRTest-Thorough). Then the faults are 

revealed when a failure occurs in one of these configurations. 

The previous technique has some limitations because it takes a 

long time and only supports a small volume of test input data. 

This paper proposes two new techniques that overcome these 

problems by reducing the number of configurations generated 

while maintaining the fault detection effectiveness: the two 

techniques use Random Testing [56] (MRTest-Random) and 

Partition Testing (Equivalence Partitioning [57] with 

Combinatorial Testing [58], [59]) (MRTest-t-Wise). 

The first technique, MRTest-Random, generates the 

configurations randomly from all valid configurations. The 

tester indicates the number of configurations wanted, and 

MRTest-Random generates them randomly. 

The second technique, MRTest-t-Wise, divides the set of all 

valid configurations into several partitions with similar 

behaviour and applies a combinatorial strategy to generate the 

configurations under test. In software testing, depending on the 

failure probability [60], Random testing can be as effective as 

Partition testing [61] and can be a feasible option [62]. In other 

circumstances, Partition Testing can be more effective than 

Random Testing [63]. As we discuss in Section V, our 

experiments show that both techniques MRTest-Random and 

MRTest-t-Wise can be effective in revealing MapReduce faults, 

but MRTest-t-Wise is significantly better. The latter testing 

technique is schematically represented in Fig. 3 and described 

below in three parts: (1) Division of the set of all valid 

configurations, (2) Combination strategy, and (3) Generation of 

the configurations. 

Division of the set of all valid configurations: The set of all 

valid configurations is divided based upon the following 

parameters and constraints that are also represented at the top 

of Fig. 3: 
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Mapper: 

P1)  Number of Mappers: 1 or >1. The program in production 

can be executed with one Mapper (1) that analyses the 

entire dataset, or alternatively with several Mappers that 

analyse different parts of the dataset in parallel (>1). 

P2) Data processing order of the inputs: data are processed in 

the same order as they are encountered in the input (same), 

or in a different order (different). The MapReduce 

processing model does not guarantee that the data will be 

processed in the same order as they are stored in the input. 

P3) Distribution of the input data in the Mappers: data equally 

distributed in the Mappers (equal) or not equally 

distributed (non equal). The Mappers process different 

subsets of input data: there could be configurations with an 

equal number of data in each Mapper, or with a different 

number of data. 

Combiner: 

P4)  Number of Combiners per Mapper: 0, 1 or >1. Each 

Mapper can execute one Combiner (1), several Combiners 

(>1) or can emit the data directly to Reducer (0). 

P5) Distribution of Mapper output in Combiners: data equally 

distributed in combiners (equal) or not equally distributed 

(non equal). 

P6) Data directly from Mapper to Reducer: 0 or >0. All data 

emitted by Mappers can be pre-processed by the Combiner 

functionality (0), or in contrast some data can pass directly 

from Mapper to Reducer without executing the Combiner 

functionality (>0). 

P7) Iterative executions of Combiner: 1 or >1. The output of 

the Combiner can be executed iteratively by the Combiner 

several times (>1) or only once (1). 

Reducer: 

P8)  Number of Reducers: 1 or >1. The program can be 

executed in production with one Reducer that solves all 

subproblems (1) or with several Reducers that solve the 

subproblems in parallel (>1). 

For example, the configuration at the bottom of Fig. 1 is 

characterized by the following parameters: 

• P1 is >1: There are two Mappers. 

• P2 indicates a different order: The input data is executed in 

a different order than they are stored in the input. The 4° 

temperature is executed after 2°, but in the input the 

temperature 4° is before 2°. 

• P3 indicates a non-equal distribution of the data in 

Mappers: Each Mapper has a different number of input 

data. One Mapper has 1 register and the second has 3 

registers. 

• P4 is 1: Each Mapper only executes one Combiner. 

• P5 indicates an equal distribution of the Mapper output in 

its Combiners. Each Mapper only has one Combiner that 

receives all its data, then the output of the Mapper is 

equally distributed in its Combiner. 

• P6 is 0: There are no data that pass directly from the 

Mapper to the Reducer without the Combiner. 

 

 
Fig. 3.  MRTest-t-Wise testing technique. 
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• P7 is 1: The Combiners are not executed iteratively several 

times, they are executed only once. 

• P8 is 1: There is only one Reducer. 

The configurations under test are obtained by a combination 

of the previous parameters. However not all combinations make 

sense, and to prevent non-meaningful combinations, we have 

derived the following constraints that descend from the 

MapReduce processing model: 

• When the number of Mappers (P1) is 1, then: (a) Data 

processing order of the inputs (P2) is the same order as they 

are in the input, and (b) Distribution of the input data in the 

Mappers (P3) is equally distributed. 

• When the number of Combiners (P4) is 0, then: (a) the 

distribution of the data in the Combiners (P5) is not 

applicable, (b) the Data directly from the Mapper to the 

Reducer (P6) is >0, and (c) the iterative executions of the 

Combiner (P7) is not applicable. 

• When the number of Combiners (P4) is 1, then the data in 

the Combiners (P5) are equally distributed. 

Combination strategy: Deriving all possible combinations of 

previous parameters is expensive and the t-Wise strategy (also 

known as t-Way) is applied [58], [64]. Instead of combining all 

the values of all parameters, t-Wise [65] combines only the 

values of all subsets of t parameters. For example, 1-Wise (each 

use) [66] requires that all values of each parameter appear in at 

least one test case, whereas 2-Wise (pairwise) requires that the 

combination of all values per pair of parameters appears in at 

least one test case. 2-Wise has been shown to be almost as good 

as all combinations of parameters [67] at detecting failures, but 

employing much fewer resources in terms of time and cost [68]. 

The MRTest-t-Wise technique generates the configurations 

covering the t-Wise combinations of the previous parameters 

and constraints. Fig. 3 details the configurations that must be 

covered (test coverage items) for 1-Wise and 2-Wise strategies. 

Each row of the figure represents a test coverage item that 

should be covered with a configuration that satisfies the 

parameters indicated by dots. The 1-Wise technique requires 

the generation of 3 configurations (test coverage items) when 

the program implements a Combiner, and 2 configurations in 

the other case. The 2-Wise is a more thorough combination, 

requiring 11 configurations for programs with a Combiner, and 

6 when the program does not implement a Combiner. 

Generation of configurations: The configurations can be 

created manually to cover each test coverage item of the t-Wise 

selected, but the MRTest-t-Wise technique generates these 

configurations automatically. The following pseudo-code 

describes how the configurations are generated: 

Input: t-Wise (testing technique selected, i.e. 2-Wise) 
sut (software under test) 

Output: Configurations that cover t-Wise in sut 
(1) Configurations ← ∅   
(2) tcis ← Get all test coverage items of the t-Wise 
(3) ∀ tci ∈ tcis 
(4) | Configuration ← ∅ 
(5) | ∀ parameterToCover ∈ tci 
(6) | | value ← obtain randomly a value that covers  

| |           parameterToCover in sut 
(7) | | IF value exists: 
(8) | |  Configuration ← Configuration ∪ value 
(9) | | ELSE  //When there is no value to cover  

parameterToCover 
(10) | |  The actual configuration cannot cover the  

| |  test coverage item in sut, then backtracks  
| |  trying to generate again the configuration 
| |  with other values in previous parameters  
| |_  [maximum τ times (threshold)] 

(11) |  IF Configuration covers the tci in sut: 
(12) |_  Add Configuration to Configurations 
(13) RETURN Configurations 

In order to generate a configuration that covers each one of 

the test coverage items (1, 2, 3), the MRTest-t-Wise covers the 

first parameter with random values, then the second, and so on 

(4, 5, 6, 7, 8). For example, if the first parameter should be P1: 

>1, i.e., more Mappers, then a random value is selected greater 

or equal to 2 to guarantee >1 Mappers, and so on with the 

remainder of the parameters. Sometimes it can be impossible to 

cover one parameter because the test input data add semantic 

constraints unknown until the values selected in the previous 

parameters are executed (9, 10). For example, sometimes it is 

impossible to obtain a configuration with >1 Reducers because 

the test input data always lead to one Reducer. In these cases 

MRTest-t-Wise uses a backtracking approach. First it fulfils 

randomly the first parameter (4, 5, 6), then it executes the part 

of the program affected by this parameter (7, 8) and tries to 

cover the second, and so on. When the generator discovers at 

runtime that one parameter cannot be covered, then it 

backtracks, changing the value of previous parameters (9, 10). 

For example, a configuration can be created with 2 Mappers (P1 

>1) but three input data cannot be equally distributed in them 

(it is impossible to cover P3 with equal distribution), then the 

generator backtracks changing the configuration to three 

Mappers (it maintains P1 >1 but changes randomly its value), 

and finally the three data items can be distributed equally in the 

Mappers. A threshold is set to prevent the generator from 

performing indefinitely or from backtracking for too long. 

When the threshold is overcome, then the technique does not 

create the configuration and the test coverage item is not 

covered (11, 3). By default, the threshold is 15 backtracks 

because we observed that usually when this number is exceeded 

then it is infeasible to cover the test coverage item, regardless 

of the set of valid configurations. Finally, those configurations 

that cover the test coverage items are generated (11, 12, 13). 

 
Fig. 4.  MRTest test execution engine. 
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B. Execution of Test Cases 

In order to detect design faults, MRTest executes each test 

case in different configurations using one of the techniques 

described in the previous section (MRTest-Random and 

MRTest-t-Wise) or in the previous work (MRTest-Thorough) 

[26]. Then MRTest checks systematically that all 

configurations lead to equivalent outputs. 

Given a test case with input data and, optionally, the expected 

output, the MRTest test execution engine is described in Fig. 4. 

First, MRTest executes the test input data in the base 

configuration (1), that is the simplest configuration with one 

Mapper, one Combiner and one Reducer without 

parallelization. Next, new configurations are iteratively 

generated (2,3) and executed (4) for a given testing technique 

selected by the tester: MRTest-Thorough, MRTest-t-Wise or 

MRTest-Random. The output obtained executing each 

configuration is checked against the output of the base 

configuration (5), revealing a fault if these outputs are not 

equivalent (6). Then MRTest can reveal faults with only the test 

input data, but the tester can optionally declare the expected 

output. In this case, the output of the base configuration is also 

checked against the expected output (7), detecting a fault when 

both are not equivalent (8, 9). 

For example, let us revisit the program in Section 2 that 

calculates the average temperature per year. Fig. 1 describes the 

1-Wise execution of a test case with the following test input 

data:  year 1999 with 4°, 2° and 3°; and year 2000 with 5°. 

Firstly, MRTest generates and executes the base configuration 

(top of the figure) obtaining 3° as average in 1999, and 5° in 

2000 (1, 2). Then MRTest generates and executes a 

configuration to cover the first test coverage item of 1-Wise 

(middle of figure), and again obtains the same output (3, 4, 5). 

In contrast, when it generates and executes the configuration of 

the third test coverage item (bottom of the figure), it obtains 

3.25° as average of 1999 instead of the 3° obtained in the base 

configuration (3, 4, 5). Then MRTest automatically reveals a 

fault because the two outputs are different (6). We discuss 

further the oracle used in MRTest in the following section. 

The test execution engine MRTest was implemented based 

on MRUnit library [28] maintaining its API and including new 

functions to indicate the testing technique to be used. This 

library is used to execute each configuration. In MRUnit, the 

test cases are executed with the base configuration, but this 

library is extended to generate other configurations and enable 

parallelism supporting the execution of several Mapper, 

Combiner and Reducer tasks. This test execution engine 

employs randomness to generate the configurations, but also 

supports pseudorandom numbers, also called seeds, to 

guarantee that the execution of the test case is reproducible in a 

deterministic way. 

C. Test Oracle 

In software testing, the mechanisms that determine if the test 

reveals a fault or not are called test oracles [69]. There are some 

properties that characterize the efficacy of the test oracles [70], 

[71]. As discussed, if a design fault is present, the same program 

executed under different configurations can lead to different 

outputs. Based on this observation, the MRTest execution 

engine can reveal faults automatically even without knowing 

the expected output. It employs an automatic partial-oracle [69] 

that is derived from the program executions [72] using 

metamorphic testing [27]. Given a test case (original test case), 

metamorphic testing generates new test cases varying the 

original test case (follow-up test cases) to detect faults in a 

relationship amongst them (metamorphic relationship).  

According to the software testing standard [73], a test case 

not only uses the test input, but also other test data that specify 

requirements for the test, such as databases, or configuration in 

the case of MapReduce programs. MRTest intends to detect 

those design faults that not only depend on specific test input, 

but also on specific configurations. For these faults, the test case 

must be designed with both the test input and the configuration 

in mind. MRTest receives the test input and then the 

metamorphic testing is focused in the relationships between the 

potential configurations. Given the test input, MRTest executes 

these test input data on the base configuration (original test 

case). Then MRTest generates the follow-up test cases 

maintaining the original test input but, but providing each one 

with different configurations. Finally, MRTest checks that both 

original and follow-up test cases lead to an equivalent output 

(metamorphic relationship). Whereas the metamorphic testing 

techniques usually generate the follow-up test cases by varying 

the test input, our approach generates the follow-up test cases 

by maintaining the test input but varying the configuration of 

the system under test. 

MRTest can also be employed when the expected output is 

previously unknown or costly to obtain, as occurs in several 

machine learning programs [74]. Fig. 5 describes how the 

MRTest oracle can detect faults when given only the input data. 

The original test case is the test input data executed in the base 

configuration (1 mapper, 1 combiner, 1 reducer). Then MRTest 

generates and executes several configurations using the testing 

techniques described in the previous sections (follow-up test 

cases). Finally, it checks if their outputs are equivalent 

(metamorphic relationship), and if they are not then a potential 

fault is automatically detected. 

 According to the study of Segura et al. [75] the number of 

metamorphic papers will increase in years to come, but to date 

49% employ the metamorphic testing capabilities in different 

problem domains, and only 2% present a tool. In our case, this 

paper not only defines and automatizes the metamorphic 

relationship to the MapReduce domain, but it also develops a 

tool that detects faults easily with only the test input data. 

 
Fig. 5.  Metamorphic oracle of MRTest. 
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V. EXPERIMENTS 

The goal of these experiments is the evaluation of how, using 

different configurations in the execution of the test cases, the 

effectiveness in failure detection could be improved without 

significantly decreasing efficiency. The approach proposed in 

this paper, MRTest, executes the MapReduce test cases under 

several configurations, whereas the usual test execution 

engines, for example MRUnit, only execute them under a 

simple configuration. In the experiments, MRTest and MRUnit 

are compared in order to answer the following research 

questions: 

RQ1) Do the test execution engines detect more failures when 

the MapReduce test cases are executed in different 

configurations? 

RQ2) How expensive is the execution of the test cases in 

several different configurations? 

The research questions are focused respectively on the 

effectiveness and efficiency during testing of the MapReduce 

programs. Depending on the field, the aptness of a technique 

can be referred to using different terms, for example: 

“effectiveness” for software testing techniques [76], 

“performance” for localization techniques [77], or “accuracy” 
for the classification techniques of machine learning [78]. In 

this paper, we use the term “effectiveness” regarding the 

quantity of failures detected, and “efficiency” regarding the 

execution time employed by the techniques. The planning and 

the results of the related experiments are presented in the next 

two subsections, and the discussion of the experiments together 

with the limitations in Subsection V.C. 

A. Effectiveness Experiments 

The goal of the effectiveness experiments is the assessment 

of how many failures are detected. Following the Basili et al. 

[79] template, the goal is: Analyze the test case execution 

engines (MRUnit and MRTest) for the purpose of evaluation 

with respect to their respective effectiveness in detecting 

failures due to a program design fault against the MapReduce 

processing model from the point of view of the tester and 

developer in the context of Big Data applications. The planning 

of the experiments is described in Subsection V.A.1 and their 

results are reported in Subsection V.A.2. 

1) Effectiveness: Setup 

In this experiment, 8000 different test cases from 4 real world 

programs are executed in MRUnit and MRTest in order to 

analyse their capability to detect failures. Each one of the 4 

programs has a known design fault that is only revealed in some 

of the potential configurations and masked in others. The 

programs used, including a summary of the functionality and 

the cause of the faults, are: 

1) Open Ankus [33]: A recommendation system that predicts 

for each user the items that could be of interest to them 

(films, books, cities, and so on), based on choices of other 

users and their similarities to the user in question. This 

program could fail when the data of each user-item is split 

and parallelized. 

2) Data quality analysis [80]: Measure of the quality of data 

interchanged between companies, based on international 

standards. This program did not correctly track the 

measurements and they could be incorrectly assigned due 

the parallel execution. The production version of this 

program has removed the fault. 

3) Movie analysis [81]: Statistics analysis of movies, based 

on the ratings of users. This program is implemented with 

an incorrect Combiner. 

4) Data cleaner Knn analysis [82]: Knn machine learning 

algorithm to clean text data, based on the number of 

transformations, insertions and removals of incorrect 

letters in the words of the text. This program fails when one 

Mapper needs data that are not locally available because it 

is assigned to another Mapper. 

For each program, 2000 test cases that contain data able to 

trigger the faults are executed in MRUnit and MRTest with 

different modes. The test cases are generated iteratively with 

random data until we have 2000 test cases that are able to trigger 

the fault. Because the program faults are known, all of the 

potential test cases are automatically analysed in order to check 

if the data can generate incorrect outputs under at least one 

configuration of the MapReduce configurations. For example, 

the program described in Section 2 that calculates the average 

temperature of each year, has a design fault that is not revealed 

by all inputs. We can automatically check if an input data is able 

to trigger the fault because the failure is only raised when the 

average of temperatures is different to the global average of 

local averages. 

The population of the experiment is composed of all test 

cases with data able to trigger these faults in some 

configurations. Each of these test cases is then taken as the 

experimentation unit, and the observation is whether the test 

execution engines detect a failure or mask the fault. The 

dependent variable or response variable is the rate of failures 

detected by the different execution engines, which are the 

independent variable. The baseline is MRUnit and the 

treatments are MRTest executed in the following modes: 

• 1-Wise: Based on the test coverage items proposed in 

MRTest-1-Wise algorithm, executes 3 or 2 configurations 

depending on whether the program has a Combiner or not, 

respectively. 

• 2-Wise: Based on the test coverage items proposed in 

MRTest-2-Wise algorithm, executes 11 or 6 configurations 

depending on whether the program has a Combiner or not, 

respectively. 

• 0-Random that executes randomly one configuration 

(MRTest-Random), in order to compare fairly with 

MRUnit that also executes one configuration (one Mapper, 

one Combiner and one Reducer). 

• 1-Random in order compare fairly with 1-Wise. Executes 

3 or 2 configurations depending if the program has a 

Combiner or not, respectively. 

• 2-Random in order to compare fairly with 2-Wise. 

Executes 11 or 6 configurations depending if the program 

has a Combiner or not, respectively. 

MRTest-thorough is not analysed in the experiments due to 

its limitations, such as only supporting a small amount of test 
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input data or taking a long time to execute a test case. There are 

other elements that could affect the experiment and are treated 

as blocking factors: 

• The size of the test input data could affect the rate of 

failures detected, so two sizes of data are considered: a 

small size (between 1 and 10 <key, value> pairs) and a 

larger size for functional testing purposes (between 11 and 

35 <key, value> pairs). 

• The generation of the configurations in MRTest is based 

on some pseudorandom functionality that could introduce 

noise in the failure rate. During the experiments, the 

different test engines employ the same pseudorandom 

number generated also in a pseudorandom way. 

In the experiments two sampling methods are used: 

consecutive sampling to select the MapReduce programs and 

random sampling to select the test cases. Ideally the subject 

programs should be selected randomly, but as in the case in 

many software engineering experiments, this is not viable [83]. 

As such 4 real world programs that contain a known fault are 

selected instead. 

As stated above, for each one of these programs, 2000 test 

cases that contain data able to trigger the fault are generated 

randomly. We grouped them in trials of 100 test suites with 20 

test cases each: 50 test suites contain test cases with input data 

between 1 and 10 <key, value> pairs, and the other 50 test suites 

between 11 and 35 <key, value> pairs due to a pre-established 

blocking factor. All of these test suites are executed in the 

baseline (MRUnit) and the five treatments (MRTest), and then 

the rate of the failures detected is observed1. 

 
1 This type of experiment design is called “within subject design with post-

test” 

In these experiments, the effectiveness is measured by the 

percentage of failures detected per test suite. Then the 

effectiveness of the execution engines is compared via the 

statistic test Wilcoxon Sign Rank Test. This non-parametric 

statistic test analyses if there are significant differences based 

on the medians, then the null hypothesis is defined as H0: 

median(Effectiveness)MRUnit = median(Effectiveness)MRTest 

2) Effectiveness: Results and Discussion 

Table I summarizes the number of test cases which detect a 

failure by each test execution engine (MRUnit and MRTest) 

during the experiments. This table shows that design faults 

against the MapReduce processing model are not detected in 

general by MRUnit, whereas MRTest approaches are able to 

detect them. The number of test executions that detect a failure 

by MRUnit is almost 0% whereas even considering the weakest 

MRTest approach, 0-Random, more than 15% of the test cases 

detect a failure; the strongest MRTest approach, 2-Wise, 

catches a failure in more than 60% of test cases. In general 

terms, 1-Wise and 1-Random detect more failures than 

MRUnit, and finally 2-Wise and 2-Random detect the majority 

of failures, regardless of the number of <key, value> pairs in 

the input data. In all approaches, the execution time of each test 

case is reasonable, being in the order of a few 

milliseconds/seconds. As we explain in detail in the following 

subsections, the majority of the test cases take less than 1 

second to be executed in MRTest, regardless of the approach 

employed. 

During the experiments, MRUnit only detects 4 faults out of 

8000, having an effectiveness of 0 in Table I due to rounding to 

TABLE I 

EFFECTIVENESS OF FAILURE DETECTION OF 100 TEST SUITES OF 20 TEST CASES FOR EACH ONE OF THE 4 REAL WORLD PROGRAMS WITH FAULT 

Program Treatment 

[1-10] <key, value> pairs [11-35] <key, value> pairs Total 

Number of test 

cases that detect 

a failure 

Effectiveness 

Number of test 

cases that detect 

a failure 

Effectiveness 

Number of test 

cases that detect 

a failure 

Effectiveness 

Open Ankus 

MRUnit baseline 0 0.00 0 0.00 0 0.00 

0-Random 307 0.30 293 0.30 600 0.30 

1-Wise 490 0.50 302 0.30 792 0.40 

1-Random 513 0.50 479 0.50 992 0.50 

2-Wise 754 0.75 620 0.60 1374 0.70 

2-Random 898 0.90 861 0.85 1759 0.90 

Data quality 

analysis 

MRUnit baseline 1 0.00 3 0.00 4 0.00 

0-Random 773 0.75 900 0.90 1673 0.85 

1-Wise 816 0.80 954 0.95 1770 0.90 

1-Random 925 0.95 984 1.00 1909 0.95 

2-Wise 994 1.00 1000 1.00 1994 1.00 

2-Random 992 1.00 1000 1.00 1992 1.00 

Movie analysis 

MRUnit baseline 0 0.00 0 0.00 0 0.00 

0-Random 169 0.15 183 0.20 352 0.15 

1-Wise 562 0.55 395 0.40 957 0.48 

1-Random 378 0.35 328 0.30 706 0.35 

2-Wise 952 0.95 861 0.85 1813 0.90 

2-Random 694 0.70 534 0.53 1228 0.63 

Data cleaner 

Knn analysis 

MRUnit baseline 0 0.00 0 0.00 0 0.00 

0-Random 876 0.75 946 0.95 1822 0.90 

1-Wise 983 0.80 1000 1.00 1983 1.00 

1-Random 978 0.95 997 1.00 1975 1.00 

2-Wise 1000 1.00 1000 1.00 2000 1.00 

2-Random 1000 1.00 1000 1.00 2000 1.00 

Effectiveness = Median of percentage of failures detected per test suite (measured between 0 and 1). 
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two decimal places. These faults are detected because MRUnit 

sorts the <key, value> pairs when the base configuration is 

executed and sometimes this change is enough to detect the 

faults. The execution of the test cases under different 

configurations can reveal design faults whereas the execution 

under one configuration could mask them, as occurs in MRUnit. 

Fig. 6 shows for each program the differences between the tests 

execution engines in terms of the effectiveness (percentage of 

failures detected per test suite). This figure uses a violin plot 

that shows the probability density function and gives a 

reference with a boxplot. The best testing techniques at 

detecting failures are 2-Wise and 2-Random, followed by 1-

Random and 1-Wise, then 0-Random, and finally MRUnit, 

which hardly detects any design failures. According to the 

Wilcoxon Sign Rank Test, all MRtest approaches are 

significantly better at detecting failures than MRUnit. 

In order to compare the best approaches, the Wilcoxon Sign 

Rank Test is also applied in each program between 2-Wise and 

2-Random. Considering the Data Quality Analysis and Data 

Cleaner Knn Analysis programs, there is no significant 

difference between 2-Wise and 2-Random (p-value[1-10]=0.69, 

p-value[11-35]=1, p-value[1-10]=1 and p-value[11-35]=1, 

respectively), for the Open Ankus program 2-Random is better 

(p-value[1-10]=2.7e-09 and p-value[11-35]=2.8e-09) and for the 

Movies Analysis program 2-Wise is better (p-value[1-10]=3.7e-

10 and p-value[11-35]=3.8e-10). 

Fig. 7 shows the aggregation of the data for the 4 programs, 

2-Wise being the best approach in detecting failures with a 

significant difference compared with 2-Random (p-

value=0.0043). 

In terms of failure detection effectiveness, all MRTest 

approaches are better than MRUnit, with 2-Wise and 2-Random 

standing out, followed by 1-Random and 1-Wise, and finally 0-

Random. 

B. Efficiency Experiments 

The goal of the efficiency experiment is the assessment of 

how much time is spent during the execution of the test cases. 

Following the Basili et al. [79] template the goal is: Analyze the 

test case execution engines (MRUnit and MRTest) for the 

purpose of evaluation with respect to their efficiency in 

executing the test cases of the MapReduce programs from the 

point of view of the tester and developer in the context of Big 

Data applications. The planning of the experiments is 

described in Subsection V.B.1 and their results in Subsection 

V.B.2. 

1) Efficiency: Setup 

In this experiment, 16000 different test cases from 8 real 

world programs are executed in MRUnit and MRTest in order 

to analyse the execution time expense per test case. Half of 

these programs have design faults and their test cases are re-

used from the previous experiment, the other 4 programs have 

no known faults and their functionality is summarized below: 

5) Graph clustering [84]: Algorithm to cluster the connected 

nodes in graphs. 

6) Phonetic analysis [82]: Algorithm to clean text data based 

on the similarities and differences between the phonetic 

pronunciation. 

7) Goldstein analysis [85]: Measure of the conflicts and 

cooperation between countries based on the Goldstein 

 

 
Fig. 6.  Distribution of percentage of failures detected per test suite in each program. 
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code. 

8) Restaurant analysis [86]: Finds restaurants by cuisine 

located in safe/unsafe zones in New York. 

For each of these programs, 2000 test cases are generated 

randomly and executed in MRUnit and MRTest with different 

modes. The population is composed by all possible test cases 

of the MapReduce programs, and each one is the 

experimentation unit. All test cases are executed in order to 

analyse the execution time (observation). As in the previous 

experiment, sets of 20 test cases constitute the test suites that 

are executed in 6 test engines. 

The dependent variable or response variable is the 

execution time of the test case by the different execution 

engines (independent variable). The baseline is MRUnit and 

the treatments are MRTest executed in the same way as the 

previous experiment: {0,1,2}-Random, {1,2}-Wise. 

In this experiment, there are other variables that could affect 

the results and they are treated as blocking factors (note that 

the first two factors were also considered in the previous 

experiments): 

• The size of the input data affects the execution time. The 

following number of <key, value> pairs are considered 

 
2 This type of experiment design is called “within subject design with post-

test” 

during the experiments: between 1 and 10, and between 11 

and 35. 

• The pseudorandom functionality of the MRTest could 

introduce noise. To avoid it, the same pseudorandom 

numbers are used in the MRTest and are generated in a 

pseudorandom way. 

• MRTest executes the test cases with different 

configurations until a failure is detected or the maximum 

number of configurations of the approach is reached. 

Therefore, the execution time can be different whether the 

program has a fault or not. In this experiment two types of 

programs are considered: 4 programs with faults reused 

from the previous experiment and 4 programs without 

known faults described in this section. 

• The execution time could depend on the resources of the 

computer. All test cases are executed in a commodity 

computer with a CPU Intel Core i5, 3.20GHz Windows 10 

x64, and Java 1.8 with memory generated dynamically up 

to 250MB. 

In order to detail the differences in the execution time, this 

experiment analyses descriptive statistics: a regression model 

of the execution time in terms of the number of input <key, 

value> pairs. 

As in the previous experiment, the sampling methods are 

consecutive sampling of 8 real world programs and random 

sampling for the test cases. The number of trials per program 

is again 100 test suites of 20 test cases divided in two sizes of 

input data: from 1 to 10 <key, value> pairs, and from 11 to 35 

<key, value> pairs. Each of these test suites is executed in the 

MRUnit (baseline) and MRTest with different parameters 

(treatments)2. 

2) Efficiency: Results and Discussion 

MRUnit is the most efficient approach because it only 

executes one Mapper, one Combiner and one Reducer, whereas 

MRTest executes several of these configurations in order to 

reveal more faults simulating a production environment. Table 

II summarizes the average execution time of test cases in 

programs with and without known design faults. MRTest 

executed in 2-Wise mode is a better approach for detecting 

 
Fig. 7.  Distribution of percentage of failures detected per test suite 

(effectiveness) in all programs. 
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TABLE II 

AVERAGE EXECUTION TIME OF TEST CASE THROUGH 100 TEST SUITES OF 20 TEST CASES FOR EACH ONE OF THE 8 REAL WORLD PROGRAMS, IN 

MILLISECONDS 

Input size Treatment 

Programs with known faults Programs without known faults 

Open 

Ankus 

Data quality 

analysis 

Movie 

Analysis 

Data cleaner 

Knn analysis 

Graph 

clustering 

Phonetic 

analysis 

Goldstein 

analysis 

Restaurant 

analysis 

[1-10]  

<key, value> 

pairs 

MRUnit baseline 51.0 50.9 53.0 54.4 4.9 3.7 3.3 3.8 

0-Random 69.0 69.2 75.1 64.4 193.4 44.1 8.7 7.5 

1-Wise 84.2 94.3 1780.7 80.2 769.9 131.6 21.4 33.3 

1-Random 72.2 72.4 89.2 65.0 501.7 73.2 13.3 11.5 

2-Wise 149.9 145.0 2248.9 70.6 5140.7 384.3 74.8 563.1 

2-Random 77.4 73.5 140.0 64.7 1855.1 195.0 33.9 27.1 

[11-35]  

<key, value> 

 pairs 

MRUnit baseline 51.8 50.6 55.3 78.8 7.7 4.8 5.4 5.3 

0-Random 76.0 75.3 93.2 115.0 1183.7 283.7 19.4 16.6 

1-Wise 85.5 104.8 139.4 152.2 3141.6 431.6 29.8 49.9 

1-Random 84.0 78.9 157.7 117.4 3445.0 539.6 36.5 28.6 

2-Wise 128.6 117.3 468.3 123.5 15013.0 1357.9 118.2 2282.4 

2-Random 104.0 78.8 575.7 117.2 13161.2 1606.6 153.5 105.2 
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failures than Random, but it usually takes longer. In the test 

cases executed during the experiments, MRUnit takes, on 

average, a few milliseconds to execute a test case, whereas 

MRTest usually takes a few milliseconds-seconds, depending 

on the program and the data that are received. When the 

program has a fault and MRTest detects it, the execution time 

is quite similar to MRUnit (x2 or x3) because MRTest finishes 

after the execution of few configurations. In the case that 

MRTest does not detect a fault, the execution time on average 

increases by x200 or x400 from MRUnit, but it remains in the 

order of milliseconds-seconds per test case. 

Given a program, there are several test cases that take more 

time than others, especially when {1,2}-Wise does not cover 

the test coverage items after trying to generate several 

configurations. The most expensive test case takes 4.5 minutes 

for the previous reasons, but in general the test cases are 

executed in milliseconds or a few seconds, depending on the 

program functionality and the input received. As Fig. 8 depicts, 

75% of the test cases are executed in less than 1 second and 

90% in less than 4 seconds. 

The execution time depends on several factors, but it 

increases according to the number of <key, value> pairs in the 

test case. In Fig. 9 the trend of the execution time based on the 

number of <key, value> pairs is described for the 4 programs 

with faults, and in Fig. 10 for the other 4 programs without 

known faults. This trend in general has more slope in 2-Wise, 

1-Wise and 2-Random because these approaches generate and 

execute more configurations. In these approaches the execution 

time is more dispersed because it does not only depend on the 

number of <key, value> pairs, but also on the program and on 

the data processed. In the case of {1,2}-Wise, the execution 

time also depends on the non-covered test coverage items, 

because, for example, in the most expensive test cases, MRTest 

takes a long time trying to generate values that cover the 

configurations that cannot be covered. For this reason, the 

execution time of 2-Wise in the Open Ankus and Data Quality 

analysis programs decreases according to the input size. When 

these two programs receive a small amount of input data, the 2-

Wise takes time trying to cover the test coverage items. In some 

cases, 1-Wise is more expensive than 2-Wise because the test 

coverage items are different. For example, in the Data cleaner 

 

 
Fig. 9.  Execution time of the test cases of programs with known faults according to the number of <key, value> pairs. 
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Fig. 8.  Accumulated distribution of the test cases execution time. 
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Knn analysis program, the second test coverage item of 1-Wise 

cannot be covered (it requires only one Reducer and the 

program guarantees several) but the approach wastes time 

trying to cover it. 

While MRUnit is not intended to detect these design faults, 

all approaches of the MRTest are effective enough detecting 

them, particularly 2-Wise mode. These approaches take a few 

milliseconds-seconds to execute the test cases and could be a 

reasonable alternative to detect design failures before they are 

encountered in production. 

C. Discussion of Results 

The experiments indicate that both test execution engines 

proposed in this paper, MRTest-Random and MRTest-t-Wise, 

are able to detect within an acceptable time a broad number of 

failures that are caused by the non-deterministic executions of 

MapReduce programs. Of the two, the MRTest-2-Wise is 

significantly better at failure detection, and takes an acceptable 

amount of time to complete the tests as well. In contrast, the 

MRUnit test execution engine employs less time but it hardly 

detects any of these types of failures. The remainder of this 

subsection discusses the limitations of these experiments, 

including the internal, external and construct threats of validity 

and their subcategories [83], [87], [88]. 

The internal threats are those issues regarding the causal 

relationship between independent variables and dependent 

variables. One part of the experiments analyses the execution 

time, but some noise can be introduced into the measurements 

by other operative system tasks (Confounding effects of 

variables). To mitigate this problem, the experiments are 

executed in the same computer without any other programs 

operating in the background. 

The tool that automates the research, MRTest, can contain 

faults and other limitations. To mitigate the potential faults of 

the tool, manual/automatic testing was performed mainly from 

the functional and performance point of view. This tool may 

cause side-effects in the programs that perform some 

communications with external services that are outside the 

testing context. For example, when the program under test 

inserts data in an external database, MRTest can perform the 

insertions for each of the configurations executed. When the 

external service is fully controllable, then the tester can handle 

the side-effects inside the test cases. 

The external threats are those issues that can affect the 

generalization of the results. The subjects of this experiment are 

16000 test cases randomly selected from 8 MapReduce 

programs selected by consecutive sampling. Ideally, the 

programs should also be selected randomly, but often this is not 

feasible in software engineering (Interaction of selection and 

treatment). For Big Data programs, there is no benchmark of 

faults and industrial programs are not usually available. This 

problem is mitigated by using some real-world applications, 

instead of using programs with seeded faults (hand-seeded 

faults or mutation faults) that are prone to other external threats 

[89], [90]. Therefore, there are other issues regarding seeded 

faults when they are used to evaluate testing techniques. The 

hand-seeded faults are injected by the expert and they are 

subjective, decrease the reproducibility of the experiments and 

 

 
Fig. 10.  Execution time of the test cases of programs without known faults according to the number of <key, value> pairs. 
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are not representative of real faults in terms of easy detection 

[91]. In contrast, mutation faults are representative of the 

majority of faults, but this is not the case when the developer 

implements an incorrect algorithm [92]. The faults pursued by 

this paper fall into the previous category of faults that are not 

possible to substitute with mutations. The faults that are the 

target of this paper are caused by incorrect design decisions that 

lead to the implementation of faulty algorithms, completely 

different from those of the correct implementation. As such, the 

injection of mutation faults is not a feasible way to evaluate the 

testing techniques of this paper. 

The tool that automates the research, MRTest, does not fully 

support the testing of non-deterministic programs (Applicability 

of results across different samples). This research proposes the 

execution of the test case in different configurations and finally 

a metamorphic relationship checks if their outputs are 

equivalent. The tool only checks if the outputs are equals or not, 

but this is not enough for non-deterministic programs. To avoid 

this problem, the tester can implement a function to check if 

two non-equal outputs are equivalent or not in the non-

deterministic program. There are also metamorphic 

relationships for non-deterministic programs [93], [94]. 

Other results can be obtained if MRTest generates the 

configurations in a different way (Applicability of results when 

technique is varied). The configurations are generated based on 

the combination of different parameters, but there could be 

more parameters not considered or better ways to generate the 

configurations such as, for example, using a search-based 

approach. 

The construct threats are those issues between the 

experiment and its underlying theoretical concepts. The test 

execution engines proposed are only compared against MRUnit 

despite the fact that there are other ways to automate the testing 

execution. In general, MRUnit is more standardized and 

controllable when performing tests in the MapReduce 

applications. 

One part of the experiment analyses the efficiency of the test 

execution engine based only on the execution time measure, but 

there could be more measures not considered, such as memory 

(Mono-operation bias). To mitigate this problem, the 

experiments were executed in a commodity computer with few 

resources. The memory does not appear relevant because its 

usage was low during the experiments. Furthermore, the tool 

that automates the research was tested to avoid memory 

bottlenecks, and some memory leaks of MRUnit were removed. 

VI. CONCLUSIONS AND FUTURE WORK 

The detection of design faults in MapReduce depends on the 

test input data and on the test configurations, i.e. how the test 

data are executed in parallel. These design faults can be 

revealed in some executions and masked in others. Thus, 

although the application may appear to work correctly in the 

test environment, this might not be the case when it is passed to 

production because usually these faults are only revealed in 

aggressive environments. In this paper, we presented two black-

box testing techniques that automatically detect these faults. 

Given a set of test input data, the testing techniques simulate the 

execution in infrastructure configurations aimed at revealing 

the faults, and check that all executions lead to equivalent 

outputs. These testing techniques are automated in a test 

execution engine called MRTest. 

We performed an empirical study to evaluate the 

effectiveness and efficiency of the testing techniques proposed 

(MRTest-Random and MRTest-t-Wise) compared to the XUnit 

tool of MapReduce programs (MRUnit). The results showed 

that our approaches are more effective in detecting faults while 

still employing reasonable time. The results also showed that 

MRTest-t-Wise based on Partition testing detects faults with a 

significantly lower fraction of tests than MRTest-Random that 

is based on Random testing. 

MRTest enables fine-grained control of the test case 

execution at the same time as it guarantees its reproducibility in 

the same circumstances. The simulation of the test case in 

different production environments can be carried out in a non-

intrusive way and with few resources, deploying MRTest on a 

commodity computer in the laboratory. Furthermore, the testing 

techniques of this paper are easy to use because they do not need 

the expected output to reveal the faults, only the test input data. 

Big Data programs have large quantities of data that can be 

used as test input data. As part of our future work, we plan to 

complete test automation by taking advantage of the production 

data at runtime (online) or before runtime (offline). Another 

research line pursues the automatic diagnosis and localization 

of these faults. We also plan as future work to adapt the testing 

techniques of this paper beyond MapReduce, such as in the 

Lambda architecture, in Big Data streaming frameworks or in 

data-flow paradigms considering their similarities to 

MapReduce. 
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