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Abstract. In this paper we address the automatic summarization task. Recent
research works on extractive-summary generation employ some heuristics, but
few works indicate how to select the relevant features. We will present a
summarization procedure based on the application of trainable Machine
Learning algorithms which employs a set of features extracted directly from the
original text. These features are of two kinds: statistical – based on the
frequency of some elements in the text; and linguistic – extracted from a
simplified argumentative structure of the text. We also present some
computational results obtained with the application of our summarizer to some
well known text databases, and we compare these results to some baseline
summarization procedures.

1   Introduction

Automatic text processing is a research field that is currently extremely active. One
important task in this field is automatic summarization, which consists of reducing the
size of a text while preserving its information content [9], [21]. A summarizer is a
system that produces a condensed representation of its input’s for user consumption
[12].

Summary construction is, in general, a complex task which ideally would involve
deep natural language processing capacities [15]. In order to simplify the problem,
current research is focused on extractive-summary generation [21]. An extractive
summary is simply a subset of the sentences of the original text. These summaries do
not guarantee a good narrative coherence, but they can conveniently represent an
approximate content of the text for relevance judgement.

A summary can be employed in an indicative way – as a pointer to some parts of
the original document, or in an informative way – to cover all relevant information of
the text [12]. In both cases the most important advantage of using a summary is its
reduced reading time. Summary generation by an automatic procedure has also other
advantages: (i) the size of the summary can be controlled; (ii) its content is
determinist; and (iii) the link between a text element in the summary and its position
in the original text can be easily established.



In our work we deal with an automatic trainable summarization procedure based
on the application of machine learning techniques. Projects involving extractive
summary generation have shown that the success of this task depends strongly on the
use of heuristics [5], [7]; unfortunately few indicatives are given of how to choose the
relevant features for this task. We will employ here statistical and linguistic features,
extracted directly and automatically from the original text.

The rest of the paper is organized as follows: section 2 presents a brief review of
the text summarization task; in section 3 we describe in detail our proposal,
discussing the employed set of features and the general framework of trainable
summarizer; in section 4 we relate the computational results obtained with the
application of our proposal to a reference document collection; and finally, in section
5 we present some conclusions and outline some envisaged research work.

2   A review of text summarization

An automatic summarization process can be divided into three steps [21]: (1) in the
preprocessing step  a structured representation of the original text is obtained; (2) in
the processing step an algorithm must transform the text structure into a summary
structure; and (3) in the generation step the final summary is obtained from the
summary structure.

The methods of summarization can be classified, in terms of the level in the
linguistic space, in two broad groups [12]: (a) shallow approaches, which are
restricted to the syntactic level of representation and try to extract salient parts of the
text in a convenient way; and (b) deeper approaches, which assume a semantics level
of representation of the original text and involve linguistic processing at some level.

In the first approach the aim of the preprocessing step is to reduce the
dimensionality of the representation space, and it normally includes: (i) stop-word
elimination – common words with no semantics and which do not aggregate relevant
information to the task (e.g., “the”, “a”) are eliminated; (ii) case folding: consists of
converting all the characters to the same kind of letter case - either upper case or
lower case; (iii) stemming: syntactically-similar words, such as plurals, verbal
variations, etc. are considered similar; the purpose of this procedure is to obtain the
stem or radix of each word, which emphasize its semantics.

A frequently employed text model is the vectorial model [20]. After the
preprocessing step each text element – a sentence in the case of text summarization –
is considered as a N-dimensional vector. So it is possible to use some metric in this
space to measure similarity between text elements. The most employed metric is the
cosine measure, defined as cos θ = (<x.y>) / (|x| . |y|) for vectors x and y, where
(<,>) indicates the scalar product, and |x| indicates the module of x. Therefore
maximum similarity corresponds to cos θ = 1, whereas cos θ = 0 indicates total
discrepancy between the text elements.

The evaluation of the quality of a generated summary is a key point in
summarization research. A detailed evaluation of summarizers was made at the
TIPSTER Text Summarization Evaluation Conference (SUMMAC) [10], as part of an
effort to standardize summarization test procedures. In this case a reference summary
collection was provided by human judges, allowing a direct comparison of the
performance of the systems that participated in the conference. The human effort to



elaborate such summaries, however, is huge. Another reported problem is that even in
the case of human judges, there is low concordance: only 46 % according to Mitra
[15]; and more importantly: the summaries produced by the same human judge in
different dates have an agreement of only 55 % [19].

The idea of a “reference summary” is important, because if we consider its
existence we can objectively evaluate the performance of automatic summary
generation procedures using the classical Information Retrieval (IR) precision and
recall measures. In this case a sentence will be called correct if it belongs to the
reference summary. As usual, precision is the ratio of the number of selected correct
sentences over the total number of selected sentences, and recall is the ratio of the
number of selected correct sentences over the total number of correct sentences. In the
case of  fixed-length summaries the two measures are identical, since the sizes of the
reference and the automatically obtained extractive summaries are identical.

Mani and Bloedorn [11] proposed an automatic procedure to generate reference
summaries: if each original text contains an author-provided summary, the
corresponding size-K reference extractive summary consists of the K most similar
sentences to the author-provided summary, according to the cosine measure. Using
this approach it is easy to obtain reference summaries, even for big document
collections.

A Machine Learning (ML) approach can be envisaged if we have a collection of
documents and their corresponding reference extractive summaries. A trainable
summarizer can be obtained by the  application of a classical (trainable) machine
learning algorithm in the collection of documents and its summaries. In this case the
sentences of each document are modeled as vectors of features extracted from the
text. The summarization task can be seen as a two-class classification problem, where
a sentence is labeled as “correct” if it belongs to the extractive reference summary, or
as “incorrect” otherwise. The trainable summarizer is expected to “learn” the patterns
which lead to the summaries, by identifying relevant feature values which are most
correlated with the classes “correct” or “incorrect”. When a new document is given to
the system, the “learned” patterns are used to classify each sentence of that document
into either a “correct” or “incorrect” sentence, producing an extractive summary. A
crucial issue in this framework is how to obtain the relevant set of features; the next
section treats this point in more detail.

3   A trainable summarizer using a ML approach

We concentrate our presentation in two main points: (1) the set of employed features;
and (2)  the framework defined for the trainable summarizer, including the employed
classifiers.

A large variety of features can be found in the text-summarization literature. In
our proposal we employ the following set of features:
(a) Mean-TF-ISF. Since the seminal work of Luhn [9], text processing tasks
frequently use features based on IR measures [5], [7], [23]. In the context of IR, some
very important measures are term frequency (TF) and term frequency × inverse
document frequency (TF-IDF) [20]. In text summarization we can employ the same
idea: in this case we have a single document d, and we have to select a set of relevant
sentences to be included in the extractive summary out of all sentences in d. Hence,



the notion of a collection of documents in IR can be replaced by the notion of a single
document in text summarization. Analogously the notion of document – an element of
a collection of documents – in IR, corresponds to the notion of sentence – an element
of a document – in summarization. This new measure will be called term frequency ×
inverse sentence frequency, and denoted TF-ISF(w,s) [8].The final used feature is
calculated as the mean value of the TF-ISF measure for all the words of each
sentence.
(b) Sentence Length. This feature is employed to penalize sentences that are too
short, since these sentences are not expected to belong to the summary [7]. We use the
normalized length of the sentence, which is the ratio of the number of words
occurring in the sentence over the number of words occurring in the longest sentence
of the document.
(c) Sentence Position. This feature can involve several items, such as the position of
a sentence in the document as a whole, its the position in a section, in a paragraph,
etc., and has presented good results in several research projects [5], [7], [8], [11], [23].
We use here the percentile of the sentence position in the document, as proposed by
Nevill-Manning [16]; the final value  is normalized to take on values between 0 and 1.
(d) Similarity to Title. According to the vectorial model, this feature is obtained by
using the title of the document as a “query” against all the sentences of the document;
then the similarity of the document’s title and each sentence is computed by the
cosine similarity measure [20].
(e) Similarity to Keywords. This feature is obtained analogously to the previous one,
considering the similarity between the set of keywords of the document and each
sentence which compose the document, according to the cosine similarity.

For the next two features we employ the concept of text cohesion. Its basic
principle is that sentences with higher degree of cohesion are more relevant and
should be selected to be included in the summary [1], [4], [11], [15].
(f) Sentence-to-Sentence Cohesion. This feature is obtained as follows: for each
sentence s we first compute the similarity between s and each other sentence s’ of the
document; then we add up those similarity values, obtaining the raw value of this
feature for s; the process is repeated for all sentences. The normalized value (in the
range [0, 1]) of this feature for a sentence s is obtained by computing the ratio of the
raw feature value for s over the largest raw feature value among all sentences in the
document. Values closer to 1.0 indicate sentences with larger cohesion.
(g) Sentence-to-Centroid Cohesion. This feature is obtained for a sentence s as
follows: first, we compute the vector representing the centroid of the document,
which is the arithmetic average over the corresponding coordinate values of all the
sentences of the document; then we compute the similarity between the centroid and
each sentence, obtaining the raw value of this feature for each sentence. The
normalized value in the range [0, 1] for s is obtained by computing the ratio of the
raw feature value over the largest raw feature value among all sentences in the
document.   Sentences with feature values closer to 1.0 have a larger degree of
cohesion with respect to the centroid of the document, and so are supposed to better
represent the basic ideas of the document.

For the next features an approximate argumentative structure of the text is
employed. It is a consensus that the generation and analysis of the complete rethorical
structure of a text would be impossible at the current state of the art in text processing.
In spite of this, some methods based on a surface structure of the text have been used



to obtain good-quality summaries [23], [24]. To obtain this approximate structure we
first apply to the text an agglomerative clustering algorithm. The basic idea of this
procedure is that similar sentences must be grouped together, in a bottom-up fashion,
based on their lexical similarity. As result a hierarchical tree is produced, whose root
represents the entire document. This tree is binary, since at each step two clusters are
grouped. Five features are extracted from this tree, as follows:
(h) Depth in the tree. This feature for a sentence s is the depth of s in the tree.
(i) Referring position in a given level of the tree (positions 1, 2, 3, and 4). We first
identify the path form the root of the tree to the node containing s, for the first four
depth levels. For each depth level, a feature is assigned, according to the direction to
be taken in order to follow the path from the root to s; since the argumentative tree is
binary, the possible values for each position are: left, right and none, the latter
indicates that s is in a tree node having a depth lower than four.
(j) Indicator of main concepts. This is a binary feature, indicating whether or not a
sentence captures the main concepts of the document. These main concepts are
obtained by assuming that most of relevant words are nouns. Hence, for each
sentence, we identify its nouns using a part-of-speech software [3]. For each noun we
then compute the number of sentences in which it occurs. The fifteen nouns with
largest occurrence are selected as being the main concepts of the text. Finally, for
each sentence the value of this feature is considered “true” if the sentence contains at
least one of those nouns, and “false” otherwise.
(k) Occurrence of proper names. The motivation for this feature is that the
occurrence of proper names, referring to people and places, are clues that a sentence
is relevant for the summary. This is considered here as a binary feature, indicating
whether a sentence s contains (value “true”) at least one proper name or not (value
“false”). Proper names were detected by a part-of-speech tagger [3].
(l) Occurrence of anaphors. We consider that anaphors indicate the presence of non-
essential information in a text: if a sentence contains an anaphor, its information
content is covered by the related sentence. The detection of anaphors was performed
in a way similar to the one proposed by Strzalkowski [22]: we determine whether or
not certain words, which characterize an anaphor, occur in the first six words of a
sentence. This is also a binary feature, taking on the value “true” if the sentence
contains at least one anaphor, and “false” otherwise.
(m) Occurrence of non-essential information. We consider that some words are
indicators of non-essential information. These words are speech markers such as
“because”, “furthermore”, and “additionally”, and typically occur in the beginning of
a sentence. This is also a binary feature, taking on the value “true” if the sentence
contains at least one of these discourse markers, and “false” otherwise.

The ML-based trainable summarization framework consists of the following steps:
1. We apply some standard preprocessing information retrieval methods to each
document, namely stop-word removal, case folding and stemming. We have
employed the stemming algorithm proposed by Porter [17].
2. All the sentences are converted to its vectorial representation [20].
3. We compute the set of features described in the previous subsection. Continuous
features are discretized: we adopt a simple “class-blind” method, which consists of
separating the original values into equal-width intervals. We did some experiments
with different discretization methods, but surprisingly the selected method, although
simple, has produced better results in our experiments.



4. A ML trainable algorithm is employed; we employ two classical algorithms,
namely C4.5 [18] and Naive Bayes [14]. As usual in the ML literature, we employ
these algorithms trained on a training set and evaluated on a separate test set.

The framework assumes, of course, that each document in the collection has a
reference extractive summary. The “correct” sentences belonging to the automatically
produced extractive summary are labeled as “positive” in classification/data mining
terminology, whereas the remaining sentences are labeled as “negative”. In our
experiments the extractive summaries for each document were automatically
obtained, by using an author-provided non-extractive summary, as explained in
section 2.

4   Computational results

As previously mentioned, we have used two very well-known ML classification
algorithms, namely Naive Bayes [14] and C4.5 [18]. The former is a Bayesian
classifier which assumes that the features are independent from each other. Despite
this unrealistic assumption, the method presents good results in many cases, and it has
been successfully used in many text mining projects. C4.5 is a decision-tree algorithm
that is frequently employed for comparison purposes with other classification
algorithms, particularly in the data mining and ML communities.

We did two series of experiments: in the first one, we employed automatically-
produced extractive summaries; in the second one, manually-produced summaries
were employed. In all the experiments we have used a document collection available
in the TIPSTER document base [6]. This collection consists of texts published in
several magazines about computers, hardware, software, etc., which have sizes
varying from 2 Kbytes to 64 Kbytes. Due to our framework, we used only documents
which have an author-provided summary, and a set of keywords. The whole
TIPSTER document base contained 33,658 documents with these characteristics. A
subset of these documents was randomly selected for the experiments to be reported
in this section.

In the first experiment, using automatically-generated reference extractive
summaries, we employed four text-summarization methods, as follows:

(a) Our proposal (features as described in section 3) using C4.5 as the classifier;
(b) Our proposal using Naive Bayes as the classifier.
(c) First Sentences (used as a baseline summarizer): this method selects the first n
sentences of the document, where n is determined by the desired compression rate,
defined as the ratio of summary length to source length [12], [21]. Although very
simple, this procedure provides a relatively strong baseline for the performance of
any text-summarization method [2].

(d) Word Summarizer (WS): Microsoft’s WS is a text summarizer which is part of
Microsoft Word, and it has been used for comparison with other summarization
methods by several authors [1], [13]. This method uses non-documented techniques
to perform an “almost extractive” summary from a text, with the summary size
specified by the user.

The WS has some characteristics that are different from the previous methods: the
specified summary size refers to the number of characters to be extracted, and some
sentences can be modified by WS. In our experiments due to these characteristics a



direct comparison between WS and the other methods is not completely fair: (i) the
summaries generated by WS can contain a few more or a few less sentences than the
summaries produced by the other methods; (ii) in some cases it will not be possible to
compute an exact match between a sentence selected by WS and an original sentence;
in these cases we ignore the corresponding sentences.

It is important to note that only our proposal is based on a ML trainable
summarizer; the two remaining methods are not trainable, and were used mainly as
baseline for result comparison.

The document collection used in this experiment consisted of 200 documents,
partitioned into disjoints training and test sets with 100 documents each. The training
set contained 25 documents of 11 Kbytes, 25 documents of 12 Kbytes, 25 documents
of 16 Kbytes, and 25 documents of 31 Kbytes. The average number of sentences per
document is 129.5, since there are in total 12,950 sentences in the training set. The
test set contained 25 documents of 10 Kbytes, 25 documents of 13 Kbytes, 25
documents of 15 Kbytes, and 25 documents of 28 Kbytes. The average number of
sentences per document is 118.6, since there are in total 11,860 sentences in the test
set.

Table 1 reports the results obtained by the four  summarizers. We consider
compression rates of 10 % and 20 %. The performance is expressed in terms of
precision / recall values, expressed in percentage (%), and the corresponding standard
deviations are indicated after the “±“ symbol. The best obtained results are shown in
boldface.

Table 1. Results for training and test sets composed by automatically-produced summaries

Summarizer Compression rate: 10% Compression rate: 20%
Precision Recall Precision Recall

Trainable-
C4.5

22.36 ± 1.48 34.68 ± 1.01

Trainable-
Bayes

40.47 ±±±± 1.99 51.43 ±±±± 1.47

First-
Sentences

23.95 ± 1.60 32.03 ± 1.36

Word-
Summarizer

26.13 ±
1.21

34.44 ±
1.56

38.80 ±
1.14

43.67 ±
1.30

We can draw the following conclusions from this experiment: (1) the values of
precision and recall for all the methods are significantly higher with the rate of 20%
than with the compression rate of  10%; this is a expected result, since the larger the
compression rate, the larger the number of sentences to be selected for the summary,
and then the larger the probability that a sentence selected by a summarizer matches
with a sentence belonging to the extractive summary; (2) the best results were
obtained by our trainable summarizer with Naive Bayes classifier for both
compression rates; using the same features, but with the C4.5 as classifier, the
obtained results were poor: the results are similar to the First-Sentences and Word
Summarizer baselines.

The latter result offers us an interesting lesson: most research projects on trainable
summarizers focus on the proposal of new features for classification, trying to
produce more and more elaborate statistics-based or linguistics-based features, but



they usually employ a single classifier in the experiments. Normally “conventional”
classifiers are used. Our results indicate that researchers should concentrate their
attention in the study of more elaborate classifiers, tailored for the text-summarization
task, or at least evaluate and select the best classifier among the conventional ones
already available.

In the second experiment we employ in the test step summaries manually
produced by a human judge. We emphasize that in the training phase of our proposal
we have used the same database of automatically-generated summaries employed in
the previous experiment.

The test database was composed of 30 documents, selected at random from the
original document base. The manual reference summaries were produced by a human
judge – a professional English teacher with many years of experience –specially hired
for this task. For the compression rates of 10 % and 20% the same four summarizers
of the first experiment were compared. The obtained results are presented in Table 2.

 Table 2. Results for training set composed by automatically-produced summaries and test set
composed by manually-produced summaries

Summarizer Compression rate: 10% Compression rate: 20%
Precision Recall Precision Recall

Trainable-
C4.5

24.38 ± 2.84 31.73 ± 2.41

Trainable-
Bayes

26.14 ±±±± 3.32 37.50 ±±±± 2.29

First-
Sentences

18.78 ± 2.54 28.01 ± 2.08

Word-
Summarizer

14.23 ±
2.17

17.24 ±
2.56

24.79 ±
2.22

27.56 ±
2.41

Here again the best results were obtained by our proposal using the Naive Bayes
algorithm as classifier.  Similar to the previous experiment, results for 20% of
compression were superior to the results produced with 10% of compression.

In order to verify the consistency between the two experiments we have compared
the manually-produced summaries and the automatically-produced ones. We
considered here the manually-produced summaries as a reference, and we calculated
the precision and recall for the automatically produced summaries of the same
documents. Obtained results are presented in Table 3. These results are consistent
with the ones presented by Mitra [15], and indicate that the degree of dissimilarity
between a manually-produced summary and an automatically-produced summary in
our experiments is comparable to the dissimilarity between two summaries produced
by different human judges.

Table 3. Comparison between automatically-produced and manually-produced summaries

Precision / Recall
Compression rate: 10% 30.79 ± 3.96
Compression rate: 20% 42.98 ± 2.42



5   Conclusions and future research

In this work we have explored the framework of using a ML approach to produce
trainable text summarizers, in a way which was proposed a few years ago by Kupiec
[7]. We have chosen this research direction because it allows us to measure the results
of a text summarization algorithm in an objective way, similar  to the standard
evaluation of classification algorithms found in the ML literature. This avoids the
problem of subjective evaluation of the quality of a summary, which is a central issue
in the text summarization research.

We have  performed an extensive investigation of that framework. In our proposal
we employ a trainable summarizer that uses a large variety of features, some of them
employing statistics-oriented procedures and others using linguistics-oriented ones.
For the classification task we have used two different well known classification
algorithms, namely the Naive Bayes algorithm and the C4.5 decision tree algorithm.
Hence, it was possible to analyze the performance of two different text-
summarization procedures. The performance of these procedures was compared with
the performance of two non-trainable, baseline methods.

We did basically two kind of experiments: in the first one we considered
automatically-produced summaries for both the training and test phases; in the second
experiment we used automatically-produced summaries for training and manually-
produced summaries for testing.  In general the trainable method using Naive Bayes
classifier significantly outperformed all the baseline methods.

An interesting finding of our experiments was that the choice of the classifier
(Naive Bayes versus C4.5) strongly influenced the performance of the trainable
summarizer. We intend to focus mainly on the development of a new or extended
classification algorithm tailored for text summarization in our future research work.
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