
Automatic TLM Generation
for Early Validation
of Multicore Systems
Samar Abdi

Concordia University

Yonghyun Hwang

Qualcomm

Lochi Yu

Universidad de Costa Rica

Gunar Schirner

Northeastern University

Daniel D. Gajski

University of California, Irvine

�THE SHIFT TOWARD multicore platform architec-

tures for embedded systems is driven by the need

for higher performance without the cost of retooling

for a new technology. These benefits come at the

cost of higher design complexity, however, which

makes design with conventional cycle-accurate mod-

els impractical. Designers are using transaction-level

models (TLMs) as virtual platforms for early design

validation and software development, although TLM

development for multicore platforms can be time-

consuming and error-prone. The problem can be alle-

viated by automatic TLM generation, which can pro-

vide designers with early and accurate validation of

both functionality and performance.1

This article presents methods we have developed

for automatically generating TLMs that can be used

for early high-level validation of multicore systems.

The inputs to automatic TLM generation are applica-

tion C/C++ tasks mapped to processing units in the

platform. On the basis of the mapping, we generate

two types of TLMs: functional and timed TLMs. The

functional TLM is generated by instantiating the appli-

cation tasks inside a SystemC model of the platform.

For timed-TLM generation, the basic

blocks in the application tasks are ana-

lyzed and annotated with estimated

delays. The delay-annotated C code is

then linked with a SystemC model of

the hardware and software platform.

Both TLMs can be natively compiled

and executed on the host machine,

making them much faster than conventional cycle-

accurate models. As our results demonstrate, TLMs

of industrial-scale multicore designs��such as the

JPEG encoder, MP3 decoder, and H.264 decoder��
are generated and simulated in just a few seconds.

Estimation error was 15% less than that in board

measurements, making the TLMs ideal for the early

validation of multicore systems.

TLM-based validation approach
Figure 1 shows our TLM-based multicore design

validation methodology. The input to the TLM gener-

ation process is the system definition, which consists

of the application mapped to a multicore platform. As

Figure 1 shows, both functional and timed TLMs are

generated. The functional TLM, which does not in-

clude any timing, lets designers validate the task dis-

tribution on selected cores. The validation effort

determines whether or not the distribution preserves

the application execution semantics. The functional

TLM also serves as a functional debugging platform.

The timed TLM provides accurate performance

feedback that the designer can use to optimize the

Transaction-Level Validation of Multicore Architectures

Editor’s note:

This article suggests a methodology to validate software applications for a multi-

core platform by automatically generating transaction-level models from task-

level specification of the applications. Software vendors developing applications

for multicore platforms can leverage this methodology for early validation.

��Sandeep Shukla, Virginia Tech

0740-7475/11/$26.00 �c 2011 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers10

[3B2-11] mdt2011030010.3d 21/4/011 12:3 Page 10

application, platform, or the

mapping. The goals of automatic

TLM generation are to speed up

the generation and simulation

loop, as well as to accurately es-

timate multicore design perfor-

mance for an early and reliable

design space exploration. The

scientific challenges are to de-

fine TLM semantics and auto-

matic TLM generation methods

in order to meet these goals.

Multicore design validation

approaches can be evaluated

on the basis of speed, accuracy,

abstraction level, and retarget-

ability. In their research,2 Russell and Jacome pro-

posed a static estimation based on a designer-

specified evaluation scenario. However, the estima-

tion is not specific to input data and is not applicable

to custom-hardware processing elements (PEs). Soft-

ware performance estimation techniques claim to

provide estimation at the transaction level, but they

do not consider the processor data path structure.3,4

Unlike the aforementioned techniques, Lee and

Park’s method can take the data path structure into

account,5 but the generated models are slow. Fast

system models using binary translation compromise

on accuracy and retargetability6 (also see http://

www.vastsystems.com/solutions-architecture-systems.

html).

Multicore system definition
The key elements defining a multicore system are

the application model, the platform definition, and

the mapping.

Application model

The application model is a platform-independent

specification of the system’s functionality. This

model consists of concurrent tasks (P1 to P4 in

Figure 2), communicating with one another using

shared variables (v1) and channels (C1 to C4).

Tasks are symbolic representations of functions

specified in C or C++. The C or C++ code for the

tasks must be free of any platform-specific services

to enable true orthogonality of the application and

platform. The shared variables and channels are

symbolic representations of the communication be-

tween concurrent tasks. The application model uses

three channel types with distinct communication

semantics:

� rendezvous synchronization (C1),

� blocking FIFO (C2), and

� nonblocking access to shared variables

(C3 and C4).

All channels are point-to-point connected and

lossless.

These modeling constructs enable development of

a wide variety of application specifications. The appli-

cation models can be modified independently of the

System definition

Component
models

TLM generation

Application Platform

Functional TLM

mapping

Timed TLM

Design
optimization

Design
debug

Figure 1. A transaction-level model (TLM)-based multicore design flow starting

from a mapping of the application model to the multicore platform.

v1P1 P2

CPU 1 Memory

HW IP

P3

CPU 2

P4

C2

Bus 1 Bus 2

C3

C4

C
1

RTOS

RTOS

Tr
an

sd
uc

er

Figure 2. Multicore system specification as an overlay of the

application model on the platform. The model consists of

concurrent tasks (P1 to P4), communicating with one another

using shared variables (v1) and channels (C1 to C4). Tasks are

symbolic representations of functions specified in C or C++.

11May/June 2011

[3B2-11] mdt2011030010.3d 21/4/011 12:3 Page 11

hardware or software platform, in accordance with

our platform-based design methodology. However,

such independence also requires the task code to

be completely free of any direct manipulation of

physical addresses. For instance, task code cannot di-

rectly modify memory-mapped registers in hardware

peripherals, because it would dictate a mapping to

PEs and addresses. By using shared variables and

channels instead, this register concept can be mod-

eled through the shared variables, which will eventu-

ally be mapped to hardware PEs. The task code then

manipulates the variables using the channels con-

nected to those variables.

Platform and mapping

Figure 2 shows a typical multicore platform

consisting of PEs, such as CPU cores (CPU 1 and

CPU 2), custom-hardware components (HW), and

IP blocks (IP). Shared memories may be instantiated

as standalone components (memory), or they can

be instantiated inside PEs. The communication archi-

tecture of the platform consists of two buses (bus 1

and bus 2) connected by a transducer component.

Buses are generic elements that can represent a

shared bus, point-to-point connection, or network

links.

Transducers can create routes between PEs that

are not directly connected with a bus. For example,

in Figure 2, the route from CPU 1 to CPU 2 can be

defined as Bus 1! Transducer! Bus 2. The software

platform is defined by a real-time operating system

(RTOS) instantiation inside the CPU cores. The plat-

form elements are instantiated from a library that con-

tains data models of the available hardware and

software components. The data models are used to

check the validity of the platform composition��for

instance, the compatibility of the core to the protocol

of the connected bus��and for generating the execut-

able TLMs.

The problem of mapping the application to the

platform has been widely studied and is related to

the TLM generation problem. Indeed, automatic

TLM generation provides early and accurate feedback

for making reliable mapping decisions.

Figure 2 shows a possible mapping as an overlay of

the application model on the platform. This mapping

assigns application tasks to CPU or hardware cores,

channels to buses or routes, and shared variables to

shared memories. Multiple concurrent tasks may be

mapped only to CPUs that host an RTOS. On each

bus, a unique address space is allocated for each

channel mapped to the bus. We do not explicitly

model the program or data accesses in our host-

compiled TLMs; therefore, the task address space is

not specified. The mapping must also be complete:

that is, all the application objects must be mapped.

Functional TLM
Figure 3 shows the semantic structure of the func-

tional TLM’s elements. We define the functional-TLM

semantics using SystemC.7 Application tasks are mod-

eled by sc_thread wrappers around the task

functions. PEs are modeled as instantiations of

sc_modules that wrap application tasks, a model of

the interprocess communication (IPC) part of the

RTOS, and a hardware abstraction layer (HAL).

Buses are modeled as sc_channels with well-defined

methods for synchronization, arbitration, and mem-

ory access. Shared memories are modeled as

sc_modules containing a memory buffer and a bus

interface thread. Multiple buses can be connected

to each other using transducer sc_modules that con-

tain a buffer for holding the communicated data, cor-

responding to each application-level channel, and an

sc_thread for interfacing to the buses and controlling

buffer access.

In the untimed functional TLM, only the IPC part of

the RTOS is modeled: it’s modeled as a channel that

wraps all local application-level channels between

tasks mapped to the CPU. The dynamic scheduling

of tasks is then handled by the SystemC kernel.

The HAL is modeled as an sc_channel that imple-

ments the abstract communication methods for the

application-level channels atop the platform-specific

bus channels. Therefore, the communication inter-

face remains unchanged for the application tasks.

Functional-TLM generation

Once the TLM semantics are defined, we generate

models of the application tasks, PEs, RTOS, and

shared-memory. The generation of the bus, trans-

ducer, and HAL models, however, requires several ad-

ditional steps.

Bus and transducer model generation. For each

bus in the platform, a unique bus channel implemen-

tation in SystemC is generated according to a well-

defined template.8 The high-level bus channel pro-

vides methods for blocking transactions (send/

receive) between two PEs and nonblocking memory

Transaction-Level Validation of Multicore Architectures

12 IEEE Design & Test of Computers

[3B2-11] mdt2011030010.3d 21/4/011 12:3 Page 12

access (read/write) from PEs. Shared-memory mod-

ules expose their local buffers by calling the memory

service function provided by the bus channel.

The memory access methods are generated as

follows. For a shared bus, arbitration is modeled

via an sc_mutex channel within the bus channel.

A bus-accessing task on the master PE acquires

the mutex and sets an address variable in the bus

channel. The task then notifies all slaves with an

address-set event eaddr. The memory service

method, sensitive to this event, wakes up and

loads or stores the data addressed by the address

variable into or from the bus data pointer for a

read/write operation.

Blocking transaction methods are built on mem-

ory access methods by adding a synchronization

step. Synchronization is modeled using a flag-

and-event pair for each blocking application chan-

nel mapped to the bus. Synchronization semantics

require that the task on the slave PE indicate its

readiness by setting the synchronization flag

and notifying the synchronization event. When

the task on the master side enters the transaction

and the flag is not set, the task waits for

the event and subsequently resets the flag.

The aforementioned functional-TLM semantics en-

sure that tasks are synchronized before the transfer

is initiated.

A transducer module translates between two or

more protocol-incompatible buses. A transducer

model consists of a controller task for each bus inter-

face and FIFO buffers��one buffer for each channel

routed over this transducer. Each controller task

waits for a data request on its own bus and forwards

any incoming request to the corresponding FIFO

buffer for transmission. The controller tasks behave

like any other application task for the purposes of syn-

chronization, arbitration, and data transfer on the bus

channel.

HAL model generation. The bus channels and

transducer modules are sufficient for providing an

end-to-end communication service for any two tasks

in the multicore system. However, the application

channel methods must be implemented atop the

bus channels and transducers in the TLM. Specifically,

the HAL handles the routing and packetization of ap-

plication channel data. The HAL is modeled using

sc_channels and is instantiated inside the PE

modules.

Send/Recv/Rd/Wr

P1 P2

IPC

Processing
elements

Bus

Packetize

Transfer(d_ptr, addr, eaddr)

Arbitration(sc_mutex)

f1
e1

f2
e2

fn
en

Sync.

Send/Recv/Rd/Wr/MemSrv

Bus I/F

Tx

Send/Recv

c1
c2

cn

Memory

Bus I/F

MemSrv

HAL

FI
FO

 B
uf

fe
r

Figure 3. Semantic structure of a functional TLM. (HAL: hardware abstraction layer; IPC: interprocess

communication; P: concurrent task.)

13May/June 2011

[3B2-11] mdt2011030010.3d 21/4/011 12:3 Page 13

For each application channel to be implemented

in the HAL, we first identify the route to which the

channel is mapped. If the route contains transducers,

we assign the packet size to be the lowest buffer size

allocated for the route among all the transducers. A

loop is then generated inside that HAL to slice the ap-

plication data into packets. Each packet is sent to the

receiver PE or the first transducer, as the case may be,

using the address of the channel on the first bus seg-

ment. For rendezvous channels, a separate acknowl-

edgment packet is sent from the receiver to the

sender to preserve the application execution

semantics.

Functional-TLM results

Here, we present results we obtained for functional-

TLM generation using three industrial benchmark

applications: JPEG encoder, MP3 decoder, and

H.264 decoder, as Table 1 shows. The reference C

model sizes, in lines of code, were 2,000 for the

JPEG encoder, 12,000 for the MP3 decoder, and

7,000 for the H.264 decoder. The JPEG encoder

had six tasks that could be pipelined and therefore

executed on as many as six cores. We used a Xilinx

MicroBlaze soft-processor core as the software PE.

The MP3 decoder has two concurrent streams of

decoding, with each stream having computationally

intensive functions for discrete cosine transform

(DCT) and inverse modified DCT (IMDCT). In the

two-core MP3 design, we mapped the DCT function

from one stream to a custom-hardware core, with

the rest executing on the MicroBlaze. In the three-

core design, DCT and IMDCT functions from one

stream were mapped to hardware cores. Finally, in

the five-core design, DCT and IMDCT functions from

both streams were mapped to hardware cores.

The H.264 is a dataflow model, similar to the JPEG,

with six tasks, although with high computational

complexity and larger inputs. Similar to the JPEG,

the H.264 application could be mapped to as many

as six MicroBlaze cores.

TLM quality. The functional TLM is primarily in-

tended for early software development and debug.

Therefore, it must compile and execute natively on

the host machine at speeds similar to execution

speed of the application’s reference C model. We vali-

dated the TLM’s functional correctness by comparing

the TLM simulation results with the application refer-

ence code execution. The execution speeds of JPEG,

MP3, and H.264 reference C models were 0.01 sec-

onds, 0.01 seconds, and 2.534 seconds, respectively.

Table 1 shows that the multicore TLMs’ simulation

speed was close to these numbers. Since the TLMs

can be generated on the order of a few seconds,

the modify-generate-execute cycle of design develop-

ment was extremely fast, even for complex multicore

platforms.

Productivity gains. The obvious advantage of auto-

matic TLM generation is the savings in manual model

development time. As Table 1 shows, the size of the

SystemC TLMs (excluding the application C code)

for multicore designs could be well over a thousand

lines of code. This code may take several days, if

not weeks, to develop and debug. With our automatic

TLM generation, the code was generated in under a

minute, and any modifications to the design were

reflected in the TLM almost immediately. We con-

clude that this can lead to significant savings in multi-

core design and validation time.

Timed TLM
The top-level structure of the timed TLM is similar

to that of the functional TLM that Figure 3 shows.

In the timed TLM, however, timing delays are anno-

tated to the application tasks and the bus channel

methods. The C or C++ code for the application

tasks is cross-compiled for the low-level virtual

machine (LLVM), which is an open-source compiler

Transaction-Level Validation of Multicore Architectures

Table 1. Functional-TLM generation results.

Design Cores

TLM code

size (lines of

code)

Generation

time (s)

Simulation

time (s)

JPEG 2 897 3.23 0.010

3 1,170 3.48 0.012

4 1,443 3.98 0.015

5 1,716 4.14 0.023

6 1,989 4.26 0.029

MP3 2 2,894 6.60 0.03

3 3,148 6.68 0.12

5 3,653 7.42 0.55

H.264 2 868 4.87 2.601

3 994 5.39 3.261

4 1,120 6.59 3.429

6 1,408 7.55 3.605

14 IEEE Design & Test of Computers

[3B2-11] mdt2011030010.3d 21/4/011 12:3 Page 14

infrastructure.9 SystemC wait calls are added to the

basic blocks of the LLVM assembly to incorporate

the basic-block delays into the TLM. The timing-

annotated code is then disassembled and compiled

for the host machine.10 Consequently, the application

tasks in the timed TLM could lose their internal struc-

ture, although the functionality stays the same. As

such, our timed TLMs are well-suited for performance

estimation but not for source-level debug.

Timed-TLM generation

During timed-TLM generation, the cycle-

approximate execution delay of basic blocks in

the application tasks is estimated. This computation

estimation is made on the basis of the PE’s data

path, memory hierarchy, and branch prediction.

Communication estimation is done using the bus

protocol specification.

Platform data modeling. Our PE model is generic

enough to model most embedded CPU cores and

custom-hardware components. The PE data model

contains

� the PE data path definition, including pipelining;

� stochastic hit rates of the caches and memory

access delays; and

� the stochastic branch misprediction rate.

In the PE data path definition, we define a mapping

from the LLVM instructions to the PE data path

components. For example, in the MicroBlaze data

model, the LLVM add instruction is mapped to three

pipeline stages: instruction fetch (IF), instruction

decode (ID), and execute (EX). In the EX stage, the

function unit used is the arithmetic logic unit (ALU)

and the execution mode is addition. Furthermore,

the delays (in cycles) are defined for all modes of

each data path unit.

Custom-hardware PEs can be modeled if the data

path is known a priori. The basic-block dataflow

graphs of the task implemented in hardware are

scheduled statically for the given data path to deter-

mine the basic-block execution cycles. This approach

allows our technique to be retargetable for both CPU

and custom hardware PEs. However, a mapping from

the LLVM instructions to the PE data path must exist.

In the stochastic-memory model, we define param-

eters instruction-cache miss rate (IMR) and data-cache

miss rate (DMR) for all possible cache sizes and

configurations allowed by the CPU. We also define

the cache delay and main memory access delays

(MMDs). The stochastic branch model of the PE

stores the branch penalty (BP) and the branch mispre-

diction rate (BMR).

Basic-block delay calculation. We calculate the

execution delay of basic blocks by adding the

results of basic-block operation delay, memory ac-

cess overhead, and branch misprediction over-

head, as Figure 4 shows. The top half of Figure 4

shows the result of scheduling a given basic block

on a pipelined PE core.

We make some basic assumptions for scheduling.

The PEs are assumed to be in-order, single-issue pro-

cessors. Therefore, the operations are issued one

per cycle, in the same order they are specified in

the basic block code. Another important assumption

during operation scheduling is that all memory

accesses are completed in one cycle. The operation

Operation
delay

1: a = $i – 1
2: t1 = a + 2
3: t2 = $n * $m
4: t3 = t1 – t2
5: load b
6: t4 = b / 10
7: jmp

8: wait X * CT
Memory + branching

overhead

+

IF

1

3

4

5

6

7

ID

2

1

2

3

4

5

6

67

4

5

7 7

EX

1

2

3

4

5

6 6 6

3

Stall

1 2 3 4 5 6 10 11 12 13 42
Cycle

7

41...

...

...

...

...

...

...

Figure 4. The computation timing estimate

consists of the operation delay obtained via

pipeline scheduling and the memory or branching

overheads obtained from the stochastic models.

Timing estimates are annotated to the basic

block. Instructions shown in the basic block are

LLVM instructions. (EX: execute; ID: instruction

decode; IF: instruction fetch; X: basic-block

cycles; CT: cycle time.)

15May/June 2011

[3B2-11] mdt2011030010.3d 21/4/011 12:3 Page 15

labels (1 through 7) identify the operation’s progress

in the PE pipeline.

The legend at the top left of Figure 4 indicates each

respective pipeline stage: fetch, decode, and execute.

If some operations take longer than one cycle, the sub-

sequent operation will be stalled in the pipeline.

For example, the multiplier takes 5 cycles, so opera-

tion 3, which is a multiplication, causes subsequent

operation 4 to be stalled until the execution of opera-

tion 3 is completed in cycle 9. Similarly, operation 6,

which is division, takes 30 cycles, therefore stalling

the execution of operation 7 until cycle 42.

Assuming cache access delay to be one cycle, we

can say that each instruction cache miss results in

(1 þ MMD) cycles of overhead. This is because the

instruction must be fetched from the main memory

and then read from the cache. Therefore, according

to the stochastic model, each instruction, on average,

has an overhead of IMR(1 þ MMD). Similarly, the data

access overhead depends on the number of loads

and is #Loads[DMR(1 þ MMD)]. The branch mispre-

diction overhead is calculated as BMR(BP). Finally,

the basic-block cycles are computed by adding the

operation delay and the overheads. The real delay

can be obtained by multiplying the number of cycles

to the PE cycle time.

Timed-TLM results

Here, we present results obtained for timed-TLM

generation and simulation time using the benchmark

JPEG and MP3 designs that we used (and described

earlier) for functional-TLM generation.

We compared the timed TLMs to corresponding

implementations on a Xilinx Virtex-II FPGA board

for speed and accuracy. The H.264 design had to be

excluded because of onboard memory limitations.

The JPEG designs fit completely on the FPGA chip be-

cause their memory requirement is sufficiently small.

We had to use off-chip memory for the MP3 decoder

designs, and we used an instruction cache of

32 Kbytes and a data cache of 16 Kbytes. When

multiple tasks were mapped to the same core, we

statically scheduled the tasks on the core to avoid

the need for an RTOS.

Speed. Table 2 shows the results for timed-TLM gen-

eration and simulation time. Clearly, the generation

time for timed TLM exceeded that for functional

TLM because of the additional basic-block analysis

step. The timed-TLM simulation was also slower

than the functional-TLM simulation by a multiple of

three to five due to the additional SystemC wait exe-

cutions at the basic-block level. However, the timed-

TLM simulations were still several orders of magni-

tude faster than full-system RTL simulation, which

took between 15 and 18 hours, and instruction-set

simulation, which took more than 3 hours.

Accuracy. In Table 2, we show the estimated execu-

tion cycles, in millions, for JPEG encoding of a bitmap

image and the MP3 decoding of a 136-Kbyte MP3 file.

The estimation error is shown with respect to the ref-

erence board designs, where a negative error indi-

cates an overestimation by the TLM.

Transaction-Level Validation of Multicore Architectures

Table 2. Timed-TLM generation, simulation, and estimation results.

Design Cores

Generation

time (s)

Simulation

time (s)

Estimated

cycles

(millions)

Estimation

error (%)

JPEG 1 4.53 0.034 1.029 �7.63

2 5.77 0.039 0.566 �1.98

3 5.90 0.049 0.493 10.85

4 5.95 0.055 0.413 2.59

5 5.99 0.059 0.474 �2.38

6 6.16 0.066 0.557 �1.27

MP3 1 31 11 4.99 �13.89

2 50 22 4.74 �8.29

3 47 25 4.17 1.57

5 71 36 4.05 2.29

16 IEEE Design & Test of Computers

[3B2-11] mdt2011030010.3d 21/4/011 12:3 Page 16

For the JPEG designs, the average accuracy of

TLM estimation was 4.5%, with the worst-case

error being less than 11%. For the MP3 decoder

designs, the average error was less than 7%, with

the worst-case error being less than 14%. The esti-

mation errors were due to the fact that the LLVM

bytecode does not incorporate processor-specific

compiler optimizations. This fact, on the other

hand, allows our technique to be retargetable.

Therefore, the results indicate that our automati-

cally generated timed TLMs are both fast and

accurate.

Timed TLM with timed RTOS
To explore dynamic-scheduling effects, we inte-

grated an abstract RTOS into the timed TLM.

Each mapped application task becomes a virtual

process on the abstract RTOS. The RTOS model and

the virtual processes are configurable in their

scheduling parameters, letting us validate the soft-

ware configuration (e.g., scheduling-policy selec-

tion, and priority distribution). Our RTOS model

supports multicore architectures, where each core

executes its own RTOS instance with statically

mapped application tasks.

RTOS model semantics

The abstract RTOS executes as an sc_thread in-

side a PE. The RTOS provides services to start, stop,

and control virtual processes inside its context. It

communicates with other PEs through the bus

channel. The RTOS model uses pthreads, native

to the host operating system. Each virtual timed

process is executed in its own pthread. The execu-

tion of each pthread is controlled by the RTOS

model through condition variables to emulate the

selected scheduling policy. At any given point,

only one pthread for each PE is released through

the condition variable, thereby overwriting the

host’s scheduling policy with that of the target

RTOS.

The abstract RTOS maintains a task control block

for each virtual process. Each virtual process is sched-

uled according to a task state machine, with states

such as running, ready, pending, and suspended.

Each primitive in the TLM, which could potentially

trigger a context switch, is executed under RTOS con-

trol. These primitives include task control and inter-

process transactions.

RTOS timing-overhead model

An RTOS overhead delay model is needed to pro-

vide feedback about the overhead in a multitasking

application, capturing the delays due to IPC, context

switching, and preemption. Modeling such overheads

is essential to guide the developer in partitioning the

code (e.g., for deciding data granularity and commu-

nication handling).

We have developed a time-stamping approach to

analyze RTOS overheads on the RTOS API level with-

out source code analysis.11 We characterize an RTOS

on the actual processor in supported configurations,

and the determined overhead characteristics are

stored in an RTOS library. The TLM generator reads

the library to instantiate an abstract RTOS inside a

PE model with specific delay parameters.

In our experiments with timed RTOS, we devel-

oped a special test application that captured time

stamps and invoked RTOS primitives in a controlled

environment in which we knew the scheduling out-

come beforehand. We used an external timer to mea-

sure time. The time stamp code and its data were

exclusively placed in a noncached fast local memory

to minimize impact on caching and execution time.

We disabled timer interrupts while analyzing timing

unrelated RTOS primitives to eliminate the impact

of unexpected interrupts.

Although our analysis and modeling approach

abstracted away many influences on RTOS overhead

(e.g., the number of total, waiting, and manipulated

tasks; and scheduler implementation) and therefore

was not cycle-accurate, it has already yielded valu-

able feedback for estimating system performance.

Timed-RTOS model results

We applied our timed RTOS modeling approach to

three benchmark designs based on the JPEG encoder,

the MP3 decoder, and a combined design (MP3 þ
JPEG) running both applications. The MP3 decoder

was modeled with three concurrent tasks, and the

JPEG encoder with five concurrent tasks. All tasks

were mapped to a MicroBlaze processor running at

100 MHz, and scheduled by the RTOS Xilkernel.

To fit the design on the board, we reduced the

MP3 decoder test data to a single frame. Three

kinds of TLM were generated:

� TLM with no RTOS instantiated concurrent

SystemC threads and relied on the SystemC sched-

uler to perform dynamic scheduling.

17May/June 2011

[3B2-11] mdt2011030010.3d 21/4/011 12:3 Page 17

� TLM with an untimed RTOS used an RTOS model

without the overheads incorporated.

� TLM with timed RTOS incorporated all the RTOS

overhead delays.

We used the Xilinx Virtual Platform (XVP) as an

industrial model to provide comparison points for

the speed and accuracy of the TLMs.

Speed. Table 3 shows the results of model simula-

tion for the benchmarks just discussed. The TLM gen-

eration time is not noted here, because it was only a

marginal increase over the timed-TLM generation.

Clearly, increasing the model complexity increases

simulation time. The timed TLM with no RTOS exe-

cuted the fastest (a few milliseconds) for all designs

because the task switching is handled by the SystemC

simulation kernel.

The timed TLM with an integrated, untimed RTOS

model (‘‘With RTOS’’ in Table 3), which modeled the

virtual threads, executed in fractions of a second. No

significant increase in simulation time was measured

for timed TLM with timed RTOS (‘‘With T-RTOS’’ in the

table). Note that the timed TLM with timed RTOS exe-

cuted about three times faster than the actual time

required by the equivalent design on the board.

Therefore, our host TLM was more efficient for valida-

tion of our designs than onboard testing.

Comparisons with the XVP model are even more

favorable to the TLMs. The XVP executed the same

multithreaded applications on the Xilkernel at speeds

of more than two orders of magnitude slower than the

TLMs. This was because the application binary and

the Xilkernel libraries were interpreted on the Micro-

Blaze instruction set simulation (ISS) model inside

the XVP. Again, the host-compiled TLMs were shown

to be more efficient than cycle-level ISS models.

Accuracy. The timed TLM without the RTOS model

showed an average error rate of 66%, and up to

83%, depending on application parallelism. The un-

derestimation of execution time was because the

individual threads executing on the PE model

accrued time in parallel. From the perspective of

the SystemC scheduler, these threads were indepen-

dent. In reality, however, the threads were dynami-

cally scheduled on the PE. Adding dynamic

scheduling by an RTOS model dramatically

improved accuracy. However, with the fine-grained

IPC, the designs exhibited significant system over-

head and thus the TLM with untimed RTOS (‘‘With

RTOS’’ in Table 3) underestimated the execution

time by 32% on average. This result can be com-

pared to other state-of-the-art solutions, none of

which model any RTOS overhead.

Adding RTOS overhead modeling reduced the

error rate to less than 10%, yielding already suffi-

ciently accurate timing information. The remaining

error was due to our abstract analysis and modeling

of RTOS overheads, which we chose to automate

the TLM generation and support high simulation

speed.

Transaction-Level Validation of Multicore Architectures

Table 3. Timed-RTOS (T-RTOS) TLM simulation and estimation results.

Design Model type

Simulation

time (s)

Estimated

time (s)

Estimation

error (%)

JPEG No RTOS 0.02 0.21 �75.00

With RTOS 0.25 0.53 �35.56

With T-RTOS 0.27 0.75 9.98

XVP 168.00 1.25 50.00

MP3 No RTOS 0.01 0.20 �41.00

With RTOS 0.08 0.25 �25.95

With T-RTOS 0.08 0.36 5.29

XVP 60.00 0.37 7.00

MP3 þ JPEG No RTOS 0.04 0.20 �83.00

With RTOS 0.32 0.79 �32.25

With T-RTOS 0.33 1.10 �6.20

XVP 213.00 1.60 37.00

* RTOS: real-time operating system; T-RTOS: timed-RTOS; XVP: Xilinx Virtual Platform.

18 IEEE Design & Test of Computers

[3B2-11] mdt2011030010.3d 21/4/011 12:3 Page 18

Finally, in our experiments we compared the TLM

accuracy to that of the commercial XVP. The XVP

overestimated the application execution time by

31% on average. These estimation errors can be traced

back to inaccurate modeling of memory accesses in

XVP.6 Comparing all solutions, our TLM with timed

RTOS yielded the most accurate timing estimation.

FOR FUTURE WORK, we will investigate fast cache

modeling to accurately capture the dynamic effects

of caches. Furthermore, the RTOS models will be

extended to symmetric multicore architectures, in

which multiple cores may share the same address

space. �

Acknowledgments
We thank Pramod Chandriah and Yonjin Ahn for

providing the JPEG, MP3, and H.264 reference mod-

els. We also thank the reviewers for their detailed

feedback.

�References
1. D.D. Gajski et al., Embedded System Design: Modeling,

Synthesis and Verification, Springer, 2009.

2. J.T. Russell and M.F. Jacome, ‘‘Architecture-Level Perfor-

mance Evaluation of Component-Based Embedded Sys-

tems,’’ Proc. 40th Design Automation Conf. (DAC 03),

ACM Press, 2003, doi:10.1145/775832.775936.

3. C. Brandolese et al., ‘‘Source-Level Execution Time Esti-

mation of C Programs,’’ Proc. 9th Int’l Symp. Hardware/

Software Codesign (CODES 01), ACM Press, 2001,

doi:10.1145/371636.371694.

4. T. Kempf et al., ‘‘A SW Performance Estimation Frame-

work for Early System-Level-Design Using Fine-Grained

Instrumentation,’’ Proc. Design, Automation and Test

in Europe Conf. (DATE 06), IEEE CS Press, 2006,

doi:10.1109/DATE.2006.243830.

5. J.-Y. Lee and I.-C. Park, ‘‘Timed Compiled-Code Simula-

tion of Embedded Software for Performance Analysis

of SOC Design,’’ Proc. 39th Design Automation Conf.

(DAC 02), ACM Press, 2002, doi:10.1145/513918.513994.

6. Xilinx, Embedded System Tools Reference Manual, 2005.

7. T. Grötker et al., System Design with SystemC, Kluwer

Academic Publishers, 2002.

8. L. Yu, S. Abdi, and D. Gajski, Transaction Level Platform

Modeling in SystemC for Multi-Processor Designs, tech.

report CECS-07-01, Center for Embedded Computer

Systems, Univ. of California, Irvine, 2007.

9. LLVM (Low Level Virtual Machine) Project, ‘‘The LLVM

Compiler Infrastructure,’’ v. 2.8, 2010; http://www.llvm.org.

10. Y. Hwang, S. Abdi, and D. Gajski, ‘‘Cycle-Approximate

Retargetable Performance Estimation at the Transaction

Level,’’ Proc. Design, Automation and Test in Europe

Conf. (DATE 08), EDAA, 2008, pp. 3-8.

11. Y. Hwang, G. Schirner, and S. Abdi, ‘‘Automatic Genera-

tion of Cycle-Approximate TLMs with Timed RTOS Model

Support,’’ Proc. 3rd IFIP TC 10 Int’l Embedded Systems

Symposium (IESS 09), Springer, 2009, pp. 66-76.

Samar Abdi is an assistant professor of electrical

and computer engineering at Concordia University,

Canada. His research interests include modeling and

validation of multicore embedded systems. He has a

PhD in information and computer science from the Uni-

versity of California, Irvine. He is a member of IEEE.

Yonghyun Hwang is a senior engineer at Qual-

comm. His research interests include SoC modeling

and real-time operating systems. He has a PhD in infor-

mation and computer science from the University of

California, Irvine.

Lochi Yu is an assistant professor of electrical engi-

neering at the University of Costa Rica. His research

areas include modeling of embedded systems and

brain computer interfacing. He has a PhD in electrical

and computer engineering from the University of Cali-

fornia, Irvine. He is a member of IEEE.

Gunar Schirner is an assistant professor of electri-

cal and computer engineering at Northeastern Univer-

sity. His research interests include embedded-system

modeling, system-level design, and embedded-

software synthesis. He has a PhD in electrical and

computer engineering from the University of California,

Irvine. He is a member of IEEE.

Daniel D. Gajski is a professor of electrical and

computer engineering and director of the Center for

Embedded Computer Systems at the University of Cal-

ifornia, Irvine. His research interests include are in de-

sign methodologies for embedded systems. He has a

PhD in computer and information sciences from the

University of Pennsylvania. He is an IEEE Fellow.

�Direct questions and comments about this article

to Samar Abdi, Dept. of Electrical and Computer

Eng., Concordia University, 1515 St. Catherine West,

S-EV005.183, Montreal, Quebec, Canada H3G 2W1;

samar@ece.concordia.ca.

19May/June 2011

[3B2-11] mdt2011030010.3d 21/4/011 12:3 Page 19

