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Fig. 1. Volume renderings of the tooth data set using transfer functions obtained with different target distributions. From left to right,
the target distributions used are occurrence weighted by intensity, occurrence weighted by importance (1 for enamel and 0.5 for the
rest), occurrence weighted by gradient, and occurrence weighted by importance using a mask of the nerve.

Abstract—In this paper we present a framework to define transfer functions from a target distribution provided by the user. A target
distribution can reflect the data importance, or highly relevant data value interval, or spatial segmentation. Our approach is based
on a communication channel between a set of viewpoints and a set of bins of a volume data set, and it supports 1D as well as 2D
transfer functions including the gradient information. The transfer functions are obtained by minimizing the informational divergence
or Kullback-Leibler distance between the visibility distribution captured by the viewpoints and a target distribution selected by the user.
The use of the derivative of the informational divergence allows for a fast optimization process. Different target distributions for 1D
and 2D transfer functions are analyzed together with importance-driven and view-based techniques.

Index Terms—Transfer function, Information theory, Informational divergence, Kullback-Leibler distance.

1 INTRODUCTION

A crucial step in volume rendering is the transfer function definition.
This function assigns optical properties, such as color and opacity, to
the data being visualized determining which structures of the volume
will be visible and how they will be rendered. Transfer functions as-
sume that volume values map directly to physical properties. The main
issues involved in transfer function specification are volume data clas-
sification and management of visual properties.

Different strategies have been proposed to simplify the transfer
function specification [25]. Classical approaches use scalar volume
data to detect boundary information between tissues and then de-
fine the transfer function. Unfortunately, overlaps between data in-
tervals corresponding to different materials make boundary detec-
tion difficult. To overcome this limitation, derived attributes, such
as first and second-order derivatives, are considered to isolate mate-
rials [22, 17, 14, 18]. In this case, the transfer function definition
becomes more complex and user interaction is required. Other tech-
niques define the transfer function on the basis of rendered images and
the user selects one or more favorite images that guide further image
selection [13, 24, 43]. The goal of these methods is to obtain good
renderings but not necessarily good transfer functions. More recent
strategies for transfer function design propose to consider other pa-
rameters, such as visibility [5, 6], or measures that can be derived from
information theory [12, 2]. Despite the advances of these methods, the
automatic definition of the transfer function is still an open research
problem.

In this paper, we present an automatic approach for transfer func-
tion design that does not require previous knowledge nor segmenta-
tion of the model. Our method is defined from a visibility channel
between a set of viewpoints and a set of bins of the volume data set,
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and is formulated as an optimization process that obtains the opacity
transfer function that minimizes the informational divergence between
the visibility distribution (normalized visibility histogram) captured
by the set of viewpoints and a target distribution. This target distribu-
tion is proposed by the user and reflects the data importance, or highly
relevant data value interval, or spatial segmentation. Different target
distributions, based on scalar volume data or derived attributes such
as the gradient, are proposed following two different strategies to ob-
tain the transfer function: a global strategy that assumes no a priori
knowledge of the model and an importance-based strategy that em-
phasizes regions or intensity bins selected by the user in the spirit of
view-dependent cutaways. The performance of the method is analyzed
for different volume data sets.

This paper is organized as follows. In Section 2, we present related
work on transfer function design and on information-theoretic appli-
cations to computer graphics. In Section 3, the framework and the
motivation of the method are presented. In Section 4, the proposed
method is described. Experimental results are shown and discussed
in Section 5. Finally, our conclusions and future work are given in
Section 6.

2 RELATED WORK

In this section, we review different strategies that have been pro-
posed in transfer function design. Since our approach is based on
information-theoretic tools, we also present related work concerning
information theory in computer graphics.

2.1 Transfer Function Design

Pfister et al. [25] classified transfer functions into two different cate-
gories: data-centric or image-centric. Data-centric transfer functions
define visual properties based on volume data values and their de-
rived attributes, such as the gradient magnitude [22], 1st and 2nd order
gradient-aligned derivatives [17], or curvature measures [14, 18]. A
special class of multidimensional transfer functions, called distance-
based, consider distance as a second data dimension [16]. Röttger
et al. [28] introduced spatialized transfer functions, a special variant
of local transfer functions where connected components are identi-
fied and the positional information is mapped to color. In this way,
different objects with the same values can be isolated. Lundström
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et al. [23] introduced local histograms to detect and identify materi-
als with similar intensities. Sereda el al. [38] proposed an extension
of the local histograms capable of detecting the materials that form
the boundaries of the objects. As an alternative, image-centric trans-
fer functions are designed considering parameters that can be derived
from the rendered images. He et al. [13] treated the transfer func-
tion specification as a parameter optimization problem and addressed
it with stochastic search techniques. Marks et al. [24] introduced de-
sign galleries as a general approach for selecting visualization param-
eters in a multidimensional space. Transfer function specification with
this approach is accomplished by selecting previews from a random-
ized selection to guide the search process. König and Gröller [20]
introduced a user-interface paradigm with a set of specification tools
assisted with real-time rendering to aid the user in the selection of the
transfer function. Wu and Qu [43] proposed a method that uses edit-
ing operations and stochastic search of transfer function parameters to
maximize the similarity between rendered images given by the user.
In general, image-centric methods are more goal-oriented and require
less user interaction.

Correa and Ma [5] proposed to use the visibility to guide the trans-
fer function design. They introduced the notion of visibility histogram,
which represents the contribution of each sample in the final result-
ing image, as an interactive aid for generating effective transfer func-
tions. Correa and Ma [6] also generalized the notion of visibility his-
togram along a number of dimensions and proposed a semiautomated
method for generating transfer functions, which progressively explores
the transfer function space towards the goal of maximizing the visibil-
ity of important structures. In our approach, the visibility is also used
as a main parameter to be considered for the transfer function speci-
fication. A main limitation of reported techniques is that they require
user interaction. Automatic transfer function specification is still a
challenge and few methods support it. Salama et al. [30] introduced
a high level semantic model with a simple user interface that allows
visualization experts to design transfer function models for specific
application areas, which can then be used intuitively by non-expert

users. Šereda et al. [37] proposed hierarchical clustering of mate-
rial boundaries for automating the transfer function design. Zhou and
Takatsuka [46] presented an approach for automating transfer function
generations by utilizing topological attributes derived from the contour
tree of a volume that acts as a visual index to volume segments. Wang
et al. [42] presented an interactive transfer function design tool based
on ellipsoidal Gaussian transfer functions. These techniques gener-
ally require a previous segmentation or classification of the volume
data set to automate the process. In our approach no a priori knowl-
edge is required, although this knowledge can also be used to generate
importance-driven visualizations.

2.2 Information Theory in Computer Graphics

Since Shannon published his paper “A mathematical theory of commu-
nication” [33] in 1948, the concepts of information theory have been
applied to many areas such as physics, linguistics, neurology, image
processing, and computer graphics. Two excellent surveys of the ap-
plication of information theory to computer graphics are by Chen and
Jänicke [3], and by Wang and Shen [40]. A summary of information
theory tools for computer graphics is presented in [31].

In computer graphics, the most basic information-theoretic mea-
sures have been used in scene complexity [8], global illumina-
tion [27], light positioning [11], and viewpoint selection for polygonal
scenes [35, 32, 9]. In the latter field, entropy [35], Kullback-Leibler
distance [32], and mutual information [9] have been applied to quan-
tify the quality of a viewpoint. From an information channel between
the set of viewpoints and the polygons of an object, all these measures
can be presented in a unified framework, enabling us to compute other
aspects such as the similarity of two viewpoints, both the stability and
the saliency of a viewpoint, and both the information and the saliency
associated with a polygon [9, 10].

In visualization, information theory has been applied to fields such
as view selection, flow visualization, time-varying volume visualiza-
tion, and transfer function definition. Viewpoint entropy has been

introduced by Bordoloi et al. [1] and Takahashi et al. [34] to select
the best views in volume rendering. Bordoloi et al. [1] also used the
Jensen-Shannon divergence to compute the stability of a viewpoint and
the conditional entropy for time varying volume data. Viola et al. [36]
introduced the mutual information between a set of viewpoints and
a set of objects to calculate the representativeness of a viewpoint, and
Ruiz et al. [29] extended this channel to quantify the voxel information
that can be rendered as an ambient occlusion technique. Xu et al. [44]
used entropy to measure the information content in the local regions
across a vector field and conditional entropy to evaluate the effective-
ness of streamlines to represent the input vector field. Lee et al. [21]
used entropy for viewpoint selection and streamline filtering for flow
visualization. Wang and Shen [39] used entropy to validate the quality
of each individual data block in a LOD and the relationships among
them. In time-varying volume visualization, Ji and Shen [15] applied
entropy to dynamic view selection, and Wang et al. [41] introduced the
conditional entropy to quantify the information a data block contains
with respect to other blocks in the time sequence. Haidacher et al. [12]
introduced the decomposition of mutual information for transfer func-
tion design in multimodal volume visualization. They proposed a
new 2D space for manually defining transfer functions. Bruckner and
Möller [2] introduced isosurface similarity maps to present structural
information of a volume data set by depicting similarities between in-
dividual isosurfaces quantified by mutual information. The maps are
used to guide the transfer function design and the visualization param-
eter specification. In our approach information theory is used to de-
fine a new framework capable to automatically generate good transfer
functions.

3 FRAMEWORK AND MOTIVATION

In this section, we present the visibility channel that constitutes the
framework for the information-theoretic measures used in this paper.
Then, we give motivation for our approach to automatic transfer func-
tion definition.

3.1 Visibility Channel

Viola et al. [36] defined a visibility channel between a set of viewpoints
and the set of objects of a volume data set. From this channel, different
information-theoretic measures for viewpoint selection and illustrative
visualization have been defined [36, 29].

In this paper, we consider an information channel V → B between
random variables V and B that are defined over the alphabets V (set of
viewpoints) and B (set of intensity bins), respectively. Thus, the visi-
bility channel proposed by Viola et al. [36] has been slightly modified
to deal with the intensity bins of the volume data set instead of objects
or voxels. Note that in the explanation of this channel we consider that
each bin corresponds to the set of voxels that have the same intensity
value but this perspective can be extended to consider other binning
strategies such as clusters of intensities or pairs (intensity,gradient).
Viewpoints are indexed by v and intensity bins by b, and the capital
letters V and B as arguments of p() are used to denote probability dis-
tributions. For instance, while p(v) denotes the probability of a single
viewpoint v, p(V ) denotes the input distribution of the set of view-
points. Although diverse configurations of viewpoints can be used, it
is assumed here that all the volume data sets are centered in a sphere
of viewpoints and the camera is looking at the center of this sphere.

The main elements of the channel V → B are the following:

• The transition probability matrix p(B|V ), that is constituted by
the conditional probabilities p(b|v), given by the normalized pro-
jected visibility of intensity bin b over a viewpoint v. A row of
that matrix is denoted by p(B|v) and satisfies that the sum of its
elements is equal to 1: ∑b∈B p(b|v) = 1. Conditional probability
p(b|v) is given by

p(b|v) = vis(b|v)/vis(v), (1)

where vis(b|v) is the visibility of intensity bin b from viewpoint v
and vis(v) = ∑b∈B vis(b|v) is the captured visibility of all inten-
sity bins over the sphere of directions centered at v. The visibility
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vis(b|v) of an intensity bin b from a viewpoint v is the sum of the
visibilities from viewpoint v of all voxels that have intensity b:
vis(b|v) = ∑ f (z)=intensity(b) vis(z|v), where f (z) is the intensity

value of voxel z. The visibility vis(z|v) of a voxel z from a view-
point v is equal to the contribution of voxel z to the final image
according to its opacity and also to the opacity of the preceding
voxels in each ray that visits it [22]. For example, a fully opaque
voxel that is seen from one ray, and that is not occluded at all by
any other voxel in this ray, has a visibility of 1.

• The input distribution p(V ), that contains the probability of each
viewpoint. An element p(v) of this probability distribution can
be interpreted as the importance of viewpoint v and is given by

p(v) = vis(v)/∑i∈V
vis(i). (2)

• The output distribution p(B), where each element p(b) is given
by

p(b) = ∑
v∈V

p(v)p(b|v) (3)

and expresses the average projected visibility of intensity bin b
from all viewpoints.

Note that all probabilities of this channel depend on the applied
transfer function. Thus, different transfer functions will generate dif-
ferent transition probability matrices, and input and output distribu-
tions.

In this framework, the conditional entropy H(B|V ) is given by the
weighted average entropy for all viewpoints:

H(B|V ) =− ∑
v∈V

p(v) ∑
b∈B

p(b|v) log p(b|v) = ∑
v∈V

p(v)H(B|v), (4)

where H(B|v) = −∑b∈B p(b|v) log p(b|v) is the viewpoint en-
tropy [35] of viewpoint v. As the viewpoint entropy quantifies the
visibility uncertainty from a given viewpoint v, the conditional entropy
expresses the average visibility uncertainty from all viewpoints.

The degree of dependence or correlation between a set of view-
points V and the intensity bins B is expressed by the mutual informa-
tion I(V ;B):

I(V ;B) = ∑
v∈V

p(v) ∑
b∈B

p(b|v) log
p(b|v)

p(b)
= ∑

v∈V

p(v)I(v;B), (5)

where I(v;B) =∑b∈B p(b|v) log(p(b|v)/p(b)) is the viewpoint mutual
information, which measures the degree of dependence between the
viewpoint v and the set of bins (see [36]).

For the discussion in the next subsection, we introduce here the def-
inition of the informational divergence. The informational divergence
or Kullback-Leibler distance DKL(p,q) between two probability dis-
tributions p and q [7, 45], that are defined over the alphabet X , is
given by

DKL(p,q) = ∑
x∈X

p(x) log
p(x)

q(x)
. (6)

The conventions that 0 log(0/0) = 0 and a log(a/0) = ∞ if a > 0 are
adopted. DKL(p,q) can be interpreted as a divergence measure be-
tween the true probability distribution p (observed data) and the target
probability distribution q (theoretical model or description). The infor-
mational divergence satisfies the information inequality DKL(p,q) ≥
0, with equality if and only if p = q. The informational divergence is
not strictly a metric since it is not symmetric and does not satisfy the
triangle inequality. It is important to emphasize that both the viewpoint
mutual information and the viewpoint entropy can be obtained from
the informational divergence as follows: I(v;B) = DKL(p(B|v), p(B))
and H(B|v) = log |B|−DKL(p(B|v),{1/n}), where {1/n} is the uni-
form distribution (see [7]).

3.2 Motivation

As we commented above, the automatic definition of a transfer func-
tion for a volumetric data set is still a big challenge. This has been
also emphasized in the recent survey “Information Theory on Scien-
tific Visualization” by Wang and Shen [40].

Taking into account that mutual information and conditional en-
tropy represent, respectively, the information transfer and the average
uncertainty in a channel, one might wonder whether within the pre-
vious framework we can use the maximization (or minimization) of
mutual information (or conditional entropy) to find out the most in-
formative transfer functions. In Section 3.1, we have observed that
the viewpoint mutual information I(v;B) is a Kullback-Leibler dis-
tance (Equation 6) between the visibility distribution p(B|v) over the
viewpoint v and the average visibility p(B) of the intensity bins, and
that the mutual information I(V ;B) is the weighted average of the dis-
tances I(v;B). Thus, the maximization of mutual information would
be achieved when the visibility distributions p(B|v) of each viewpoint
v significantly diverged from the average visibility p(B). As I(V ;B)
expresses the correlation between viewpoints and intensity bins, its
maximization would imply that each view saw a very specific part of
the volume data set and different from what the other viewpoints were
seeing. In general, the maximization of mutual information would
tend to produce a very opaque transfer function since more occlusions
would permit to see different objects from different viewpoints. On
the contrary, the minimization of mutual information would produce
a very transparent visualization due to the fact that all the viewpoints
should see all the bins of the data set with a similar projected visibility.
From Equation 4, we observe that conditional entropy H(B|V ) is the
weighted average of the entropy H(B|v) for all viewpoints. Thus, the
minimization or the maximization of the conditional entropy would try
to see, respectively, only one intensity bin from each viewpoint (i.e.,
minimal uncertainty) or all the bins with the same probability (i.e.,
maximal uncertainty). In general, the previous options are too spe-
cific and, thus, are not good candidates to accomplish our purpose of
finding appropriate transfer functions.

As we have mentioned in the previous section, the informational
divergence can be interpreted as a distance between the observed data
and a theoretical description which can include the relevance of data.
From this reasoning and the previous considerations on the conve-
nience of using mutual information or conditional entropy, we adopt
a more global strategy to define an informative transfer function: to
minimize the informational divergence between the average projected
visibility distribution from all viewpoints (calculated for a given trans-
fer function) and a target distribution which expresses our theoretical
objective. Thus, using an iterative process, the transfer function will
evolve to fulfill the requirements of the target distribution. As we will
see in the next section, all these measures can be used to deal with both
1D and multidimensional transfer functions.

It is interesting to note that this strategy could be extended to con-
sider the average of the informational divergences between the visibil-
ity distribution of each viewpoint and a global target distribution. In
this case, for specific target distributions, both the mutual information
and the conditional entropy would be obtained as particular cases (see
Section 3.1). In this paper, we focus our attention on the most global
form of the informational divergence and future research will be done
comparing it with the average informational divergence.

4 METHOD

The basic idea of our transfer function specification method is to min-
imize the distance between the distribution of the projected visibility
of a volumetric data set (from an initial arbitrary transfer function that
evolves towards the desired transfer function) and a target distribution
that expresses the data importance, or highly relevant data value inter-
val, or spatial segmentation.

The process of finding the optimal transfer function is represented
in Figure 2. This process begins with an initial transfer function given
by the user (if no specific function is provided the linear ramp is used).
With this initial transfer function and the input data, the visibility dis-
tribution is computed for a set of viewpoints. Then, the objective func-
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Fig. 2. The volume data set, a default transfer function, and a target distribution that reflects the data importance are all entered into the system.
Then, an optimization process is performed and the opacity function that minimizes the distance to the target distribution is obtained.

tion, based on the informational divergence or Kullback-Leibler dis-
tance between the obtained visibility distribution and the target one, is
evaluated. From this value, the optimizer, based on the steepest gradi-
ent descent algorithm, assesses a new transfer function in the direction
of the gradient. The process is repeated with the new transfer function
until the value of the objective function is below a given threshold or
a given number of iterations has been performed.

One of the limitations of the steepest gradient descent is the de-
termination of its constant step value. If this is too high, the process
converges quicker but the accuracy is lower. On the other hand, if the
step value is too low, the convergence is reached with more iterations
and the probability of falling in a local minimum is higher. In order
to improve the convergence process, we have implemented two vari-
ants of the basic method. First, the algorithm adjusts the step value
for each bin and, therefore, there is not a single global value. Second,
if the sign of the gradient at a given bin changes for a given iteration,
which means that we have exceeded the minimum, then the step size
for this intensity is halved in order to have more accuracy.

Next, the main parts of this process are described: the target distri-
butions, the objective function, and the optimizer.

4.1 Target Distribution

The target distribution represents an importance-based description of
what the user expects to be visualized, i.e., the probability of each bin
at the final rendered image. We propose two main strategies to define
the target distribution: a global strategy, which considers general fea-
tures of the volume data set, and an importance-based strategy, which
exploits a priori knowledge of the data.

4.1.1 Global strategies

We present here different target distributions based on global proper-
ties that can be derived from the volume data set. There are many
possible target distributions, amongst them:

• The uniform distribution

q(b) =
1

NB
, (7)

where NB is the number of intensity bins. In this case, we are as-
signing the same probability to each intensity bin. Observe that,
if we have an intensity bin with only one voxel, our algorithm
will tend to give too much importance to this bin, and too little
importance to the bins with the highest occurrence.

• The probability distribution obtained from the occurrence of
each intensity bin:

q(b) = occurrence(b)/ ∑
i∈B

occurrence(i). (8)

This approach requires that each intensity bin is visualized ac-
cording to its probability in the volume data set.

• The probability distribution obtained from the depth of bins:

q(b) = depth(b)/ ∑
i∈B

depth(i), (9)

where depth(b) is computed as depth(b) = dmax −
max f (z)=intensity(b) |z − c|, dmax is the maximum distance

of any voxel to the volume center c, z is the position of a voxel,
and f (z) is the intensity value at voxel z. In this approach, the
intensities which are close to the center of the image will have
a higher probability of being projected. This strategy has an
important drawback since the intensity values located close to
the image center with low occurrence could have a high target
probability, and therefore the method would try to magnify its
projected probability by increasing its opacity and decreasing
the opacities of the other intensities, giving a very transparent
final solution. In order to overcome this drawback, the depth
distribution will be weighted by the occurrence of the intensity
value. Note that the new distribution will have to be normalized
again.

• The probability distribution obtained from the intensity value it-
self:

q(b) = intensity(b)/ ∑
i∈B

intensity(i). (10)

This approach assigns more probability of being projected to the
highest intensities. For instance, in medical imaging, when a
contrast agent enhances the vessels in MR angiography or a PET
tracer highlights metabolical spots, the highest intensity values
are the most relevant. As in the previous approach, we will
weight this value by the occurrence of each intensity value.

These global strategies can be easily extended to multidimensional
transfer functions. In particular, we use the 2D space generated by in-
tensity and gradient. In this case, the four previous strategies can be
utilized in the same way than in the 1D transfer function by quantizing
the intensity and the gradient to a limited number of clusters. Our ex-
periments work with 256 intensity clusters and 16 gradient magnitude
clusters (both uniform). Thus, we are using a random variable with
an affordable alphabet of 4096 possible values. Using this extension,
another target can be defined:

• The probability distribution obtained from the gradient values:

q(b) = gradient(b)/ ∑
i∈B

gradient(i). (11)

Note that B represents now the joint variable
(intensity,gradient). In this case, the voxels with high
gradients will be highlighted. As in other previous strategies,
this distribution will be commonly weighted by the occurence.
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4.1.2 Importance-based strategies

It is very common to have a priori knowledge about which intensi-
ties are relevant or which regions of the data should be emphasized.
For instance, in CT data the intensity ranges are determined by the
Hounsfield scale. Thus, the user can manually determine which in-
tensity ranges are relevant and which not. It is also common to be
interested in preserving the context of the area of interest. This con-
text has to be visualized in the final image with less importance than
the relevant areas.

To achieve the above objectives, the target distributions presented
in the previous section can be weighted by an importance function
importance(b). In this way, a priori knowledge of the data is combined
with statistical features of the data. Since the sum of all elements of
the target distribution must be one, a normalization step has to be done
after the combination of the global and importance weights.

In medical imaging, physicians are usually interested on certain
spatial regions which share the same intensity ranges with other non-
relevant anatomical regions. Since the proposed basic method only
deals with intensity values, it will no be able to emphasize only the
interest region. To tackle this problem, segmentation strategies that
create a mask containing the region of interest are applied. This mask
can be obtained either by an image processing algorithm or by a man-
ual segmentation. Our method can be easily adapted to take this spatial
information into account. If we assume that the original volume data
set takes intensity values from 0 to max, a new data set is generated by
keeping the intensity values of the voxels outside the mask and adding
the value max+1 to the intensity values of the voxels inside the mask.
After this simple process, the new volume data set can take values
from 0 to 2max+ 1. This is equivalent to add a bit to the volume in-
tensity according to the mask. Then, our method can be applied to this
new data set.

4.2 Objective Function

The kernel of our method is given by a divergence measure between
the visibility distribution and a target distribution. A common measure
of probability distribution distance in information theory is the infor-
mational divergence or Kullback-Leibler distance [7, 45] (see Equa-
tion 6).

From the informational divergence, two different measures between
the projected visibility of each bin and a target distribution q(B) can
be defined depending on how the visibility is estimated:

• Global informational divergence (GID), which is defined as

DKL(p(B),q(B)) = ∑
b∈B

p(b) log
p(b)

q(b)
, (12)

where p(b) = ∑v∈V p(v)p(b|v), and p(v) is obtained from the
normalization of the projected visibility of the volume data set
over the viewpoint v (see Equations 2 and 3). Thus, p(B) rep-
resents the mean visibility of each intensity considering all the
viewpoints. As p(B) has to become similar to q(B) to obtain the
desired transfer function, our objective is to minimize the global
informational divergence (Equation 12).

• Viewpoint informational divergence (VID). When we only con-
sider the current viewpoint v, Equation 12 becomes

DKL(p(B|v),q(B)) = ∑
b∈B

p(b|v) log
p(b|v)

q(b)
, (13)

where p(B|v) represents the visibility of each intensity by con-
sidering only the current viewpoint (see Equation 1). Note that
this measure is view dependent and will have to be recomputed
each time the viewpoint changes.

Considering that the target distribution q(B) and the set of view-
points are constant during the visualization, observe that the previous
measures only depend on the opacities of each intensity in the transfer

Fig. 3. Visibility distribution obtained with GID, 6 viewpoints, and the
occurrence target distribution applied to the CT-body: (grey area) the
target distribution, (blue line) the initial visibility distribution using the
linear ramp transfer function, and (red line) the final visibility distribution.

function definition. From now on, this opacity vector will be denoted
as A = (α0,α1, . . . ,αn−1), where n is the number of intensity bins.

The main drawback of the minimization of informational diver-
gence is that the final transfer function could be given by too low
opacity values, i.e., the final solution could be too transparent. This
is due to the fact that the informational divergence is based on prob-
ability distributions, which can be seen as ratios of visibility, and not
on absolute visibility values. Since the excessive transparency is not a
desired feature, an opacity constraint can be included. Thus, a possible
loss of opacity can be compensated by the requirement of maximizing
the global visibility. Hence, our objective function is defined as

F(A) = (1−β )DKL(p,q)−β
E

Emax
, (14)

where DKL(p,q) stands for DKL(p(B),q(B)) or DKL(p(B|v),q(B)), E
is the absorbed energy for all the rays during the raycasting, Emax is the
maximum achievable energy absorbtion, which corresponds to the one
when the transfer function is completely opaque, and β is a parameter
that weights the contribution of the opacity constraint term. Observe
that E also depends only on the opacity vector A.

Figure 3 plots the visibility distributions for the CT-body using the
global strategy that considers the occurrence distribution as target. In
the plot, the target distribution is represented by a grey area, the ini-
tial visibility distribution using the default transfer function by a blue
line, and the final visibility distribution by a red line, respectively.
For this experiment, the parameter β has been set to 0 and, thus,
F(A) = DKL(p,q). For the initial distribution, F(A) = 0.188, while

for the final distribution, F(A) = 9.02 ·10−9.

4.3 Optimizer

The proposed method is implemented using the steepest gradient de-
scent optimizer [26]. The goal of this method is to find the vector
of opacities A which minimizes the objective function F(A) defined
in Equation 14. This method requires an initial step size s, which is
set to 1 in our implementation. The optimization process consists of
an iterative algorithm in which each opacity value of the new transfer
function at iteration t is computed as

At = At−1 − st−1∇F(A), (15)

where the symbol ∇ represents the gradient and, therefore,

∇F(A) =
(

∂F(A)
∂α0

,
∂F(A)

∂α1
, . . . ,

∂F(A)
∂αn−1

)

. The gradient computation is de-

tailed in the next subsection. The higher the s value, the faster the con-
vergence but the lower the accuracy. In the basic method this s value is
constant for all iterations and intensity bins, but it can be easily modi-
fied in order to have an adaptive step for each bin. In our experiments
we use an adaptive method. Once the new transfer function is defined,
the new value of the objective function has to be computed. If this
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Fig. 4. Evolution of the objective function F(A) for GID with respect to
the number of iterations for the CT-body using the occurrence target
distribution, β = 0, and 6 viewpoints.

value is lower than the global minimum, the current transfer function
is considered as the new optimal one. Once the program has con-
verged, or has done all the iterations, the volume data set is rendered
using the optimal transfer function.

Figure 4 plots the F(A) values for the CT-body case using the oc-
currence target distribution, β = 0, and 6 viewpoints with respect to
the number of iterations. As it can be seen, the measure tends to 0
and converges with less than 50 iterations. As DKL(p,q) ≥ 0, when
β = 0, we will consider that the method will have converged when
F(A) achieves a value lower than a given threshold, typically 0.001.

4.3.1 Gradient computation

In typical gradient descent optimizer scenarios, the gradient compu-
tation is one of the most computationally demanding steps, since its
estimation requires that the objective function is computed 2n times,
where n is the number of the degrees of freedom. In our case, n cor-
responds to the number of intensity bins, which can be such a large
number that can make this approach unfeasible. In this case, an ana-
lytical computation, or at least a reasonable good approximation, be-
comes the best way to tackle the problem. In this section, we describe
how this approximation can be computed.

In order to compute ∇F(A), we will have to determine
∂F(A)

∂αi
for all

intensities i. From the linearity property of the derivative, we have that

∂ F(A)

∂αi
= (1−β )

∂DKL(p,q)

∂αi
−β/Emax

∂E

∂αi
. (16)

Therefore, we can divide the computation into two parts: ∂DKL

∂αi
and

∂E
∂αi

.

First, we would like to compute the derivative of the Kullback-
Leibler divergence between the observed intensities distribution and
the objective distribution when the opacity of a single intensity is mod-
ified in the transfer function.

Let X be the original observed intensities with a distribu-
tion X = {p1, p2, . . . , pn} and Y be the objective distribution
Y = {q1,q2, . . . ,qn}. Let see what happens in X when the opacity αi

corresponding to intensity i is modified. During the probability com-
putation process, the probability of the intensity i is estimated as

pi =
∑k Ikαi

∑i ∑k Ikαi
=

eiαi

E
, (17)

where k represents a sample with intensity i, Ik is the remaining trans-
parency corresponding to the sample k, and, then, ei = ∑k Ik is a mul-
tiplicative factor which depends on the number of samples of this in-
tensity and their remaining transparencies. Finally, E = ∑i ∑k Ikαi is
a normalization factor (to ensure that the distribution sums 1) which

represents the absorbed energy of all intensities. Then, we can assume
that if the opacity of the intensity i is increased by ∆αi, the new prob-
ability will be approximately

p′i =
∑k I′k(αi +∆αi)

E ′

≈
∑k Ik(αi +∆αi)

E
=

ei(αi +∆αi)

E
= pi

(

1+
∆αi

αi

)

.(18)

We assume here that the remaining transparency will be approximately
the same, since the opacities remain the same except for ∆αi. Hence,
we can define ki as

ki = 1+
∆αi

αi
. (19)

We can also assume that all the other probabilities will be modified
by a multiplicative factor Ki that is the same for all of them. In order
to have the summation of the distribution normalized to 1, we get the
equation ki pi +Ki(1− pi) = 1. Thus, we can define Ki as

Ki =
1− piki

1− pi
. (20)

Hence, the probability distribution X ′ of the intensities after the mod-
ification of the opacity will be X ′ ≈ {Ki p1,Ki p2, . . . ,ki pi, . . . ,Ki pn}.

Then, we would like to compute the derivative of DKL(p,q) for
each intensity opacity in the transfer function. In order to compute the
derivative we will use

∂DKL(p,q)

∂αi
= lim

∆αi→0

DKL(p′,q)−DKL(p,q)

∆αi
, (21)

where p′ is the visibility probability when the transfer function with
the modified opacity is applied.

Then, the Kullback-Leibler divergence between X ′ and the objec-
tive distribution Y (which remains constant after the modification of
the opacity) is computed as

DKL(p′,q) =
n

∑
j=1

p′j log

(

p′j

q j

)

= KiDKL(p,q)+(ki −Ki)pi log

(

pi

qi

)

+Ki(1− pi) log(Ki)+ ki pi log(ki). (22)

To compute the derivative we use

∂ DKL(p,q)

∂αi
= lim

∆αi→0

DKL(p′,q)−DKL(p,q)

∆αi

= lim
∆αi→0

(Ki −1)DKL(p,q)

∆αi

+ lim
∆αi→0

(ki −Ki)pi log
(

pi

qi

)

∆αi

+ lim
∆αi→0

Ki(1− pi) log(Ki)

∆αi

+ lim
∆αi→0

ki pi log(ki)

∆αi
. (23)

By computing these limits, we obtain the following analytical expres-
sion:

∂DKL(p,q)

∂αi
=

−pi

αi(1− pi)
DKL(p,q)+

pi

αi(1− pi)
log

(

pi

qi

)

+
−pi

ln(2)αi
+

pi

ln(2)αi

=
pi

αi(1− pi)

(

log

(

pi

qi

)

−DKL(p,q)

)

. (24)
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The second derivative term in Equation 16 corresponds to ∂E
∂αi

. As

we have previously shown, we have that

E = ∑
i

∑
k

Ikαi = ∑
i

eiαi. (25)

Then, its derivative can be approximated by

∂E

∂αi
≈ ∑

k

Ik = ei =
piE

αi
, (26)

where pi is the visibility probability, E is the absorbed energy for all
the rays during the raycasting, and αi is the opacity of intensity i.

Observe that this computation can be done in constant time for
each intensity. This allows us to work with the initial intensity res-
olution with reasonably low computational costs. In our experiments,
the computational time spent in this step is much lower than the com-
putation of DKL, where the visibility probability computation is more
demanding.

5 RESULTS

In this section we present the several experiments that have been car-
ried out to evaluate the proposed approach. For our tests, we have
used the following data sets: the CT-head (512×512×460 and 4096
intensity bins), the CT-body (256 × 256 × 415 and 4096 intensity
bins), the CT-carp (256 × 256 × 512 and 2872 intensity bins), the
CT-tooth (256 × 256 × 161 and 1279 intensity bins), and two syn-
thetic brain models from the BrainWeb database [4]: the MRI-healthy
(181 × 217 × 181 and 4096 intensity bins) and the MRI-damaged
(181× 217× 181 and 4096 intensity bins). All the experiments have
been carried out on a PC equipped with an Intel Core 2 Quad Q9550
CPU, 4 GB of RAM, and a NVIDIA GeForce GTX 280 graphics card.

In the following experiments, we have used by default the global
informational divergence (GID), β = 0, a stopping threshold value
of the objective function equal to 0.001, and 6 uniformly distributed
viewpoints. To show the results we have applied different predefined
color transfer functions and local illumination. For comparison pur-
poses, the Euclidean distance proposed by Correa and Ma [6] to define
a transfer function has been implemented using the steepest gradient
descent optimizer. Similarly to informational divergence, we have ob-
tained an analytical expression of the gradient of Euclidean distance
to speed up the optimization process.

Figure 5 shows the results obtained with the CT-head using the
global strategy for both 1D transfer functions (a, c, e) and 2D transfer
functions (b, d, f), and considering different target distributions. In
2D transfer functions we have used 256 intensity bins and 16 gradient
bins. The first pair (a-b) has been obtained with occurrence (Occ) and
occurrence weighted gradient (Occ*Grad) target distributions, respec-
tively. The second pair (c-d) shows the visualizations obtained with the
same target distributions and the Euclidean distance. The visual results
obtained from both informational divergence and Euclidean distance
are very similar. In average, the time for each iteration and the num-
ber of iterations for a given threshold are also similar. However, the
use of informational divergence, which is the most natural measure of
discrimination in information theory (IT) [7, 45], enables us to unify
in the same framework the viewpoint selection and the transfer func-
tion design. The third pair of images (e-f) has been obtained using
occurrence weighted by intensity (Occ*Int), and occurrence weighted
by gradient and depth (Occ*Grad*Depth), respectively. In Figure 5(a),
which corresponds to the occurrence distribution, the muscle has large
visibility due to its greater volume with respect to the other anatom-
ical structures such as bone or skin. Observe that when weighting
occurrences by intensity (Figure 5(e)) the method assigns high opaci-
ties to the bone structure because this has the highest intensity values
in CT images. Note that 2D visualizations are clearer than the ones
obtained with 1D transfer functions. Since muscle has a low gradi-
ent magnitude, it is almost transparent and allows to visualize inner
structures, specially with the target of occurrence weighted by gradient
(Figure 5(b)). Gradient information provides a better delineation of or-
gan boundaries and hence a clearer representation is obtained. We also

(a) GID, Occ (b) GID, Occ*Grad

(c) Eucl, Occ (d) Eucl, Occ*Grad

(e) GID, Occ*Int (f) GID, Occ*Grad*Depth

(g) VID, Occ*Grad (h) VID, Occ*Grad

Fig. 5. Global strategy applied to the CT-head. The following target dis-
tributions have been considered: 1D transfer functions with occurrence
(Occ) and occurrence weighted by intensity (Occ*Int); 2D transfer func-
tions with occurrence weighted by gradient (Occ*Grad) and occurrence
weighted by both gradient and depth (Occ*Grad*Depth). The global in-
formational divergence (GID) has been used in (a, b, e, f), the Euclidean
distance in (c, d), and the viewpoint informational divergence (VID) in (g,
h), where only the viewpoint shown has been used.
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(a) (b) (c) (d) (e)

Fig. 7. Importance-based strategy applied to two MRI brain data sets: (a) initial visualization of the MRI-healthy and the resulting visualization
giving importance to (b) white matter, (c) grey matter, (d) glial tissue. (e) Visualization of the MRI-damaged giving importance to the lesion area. In
(b) and (c) the importance is 1 for the masks and 0.2 for the rest. In (d) and (e) the importance is 1 for the masks and 0.1 for the rest.

(a) (b)

Fig. 6. Importance-based strategy applied to the CT-head assigning im-
portance 1 to the intensities corresponding to bone structure and 0.2 to
the rest, using as target distributions: (a) occurrence and (b) occurrence
weighted by gradient.

observe that introducing depth information into the target distribution
(Figure 5(f)) the obtained image is more transparent, but the bound-
aries of the organs can still be perceived. The last pair of images (g-h)
has been obtained with the viewpoint informational divergence (VID)
from the viewpoint shown and the occurrence weighted by gradient
target distribution. In this case, image cluttering increases because the
method assigns the opacities so that all structures are seen according
to the target distribution and, consequently, since only one viewpoint
is considered, the structures have to become more transparent.

The next experiment has been designed to illustrate the importance-
driven strategy supported by our approach. To assign importance to the
volume we can consider two alternatives: a relevant intensity range
and a segmentation mask. For each alternative, an importance value is
given to the most relevant part and a lower one to the context. The first
alternative is illustrated in Figure 6, where the CT-head is rendered
after assigning importance to the intensity range of the bone structure.
Figure 6(a) has been obtained with the target of occurrence weighted
by importance (1 for the bone and 0.2 for the rest). If we compare
this image with the one of Figure 5(a), obtained with the same target
but without importance, we can observe how the bone is highlighted.
Figure 6(b) has been obtained using the same importance distribution
and the target distribution given by occurrence weighted by gradient.
Comparing this image with the one of Figure 5(b), obtained with the
same target but without importance, we can observe how the bones are
more prominent. The result of giving importance to an intensity range
is also illustrated in the second image of Figure 1, where the target
distribution is occurrence weighted by importance, and we have given
importance 1 to the enamel and 0.5 to the rest.

To illustrate the second alternative, which uses a segmentation
mask, we apply the importance-driven strategy to the MRI brain data
sets. In Figures 7(a-d), we show the original MRI-healthy model and

(a) β = 0 (b) β = 2/3 (c) β = 8/9

Fig. 8. Visualization of the CT-body obtained from the target function
given by the occurrence weighted by gradient and β values equal to 0,
2/3, and 8/9, respectively.

the importance-based visualizations obtained by assigning importance
to the white matter, the grey matter, and the glial tissue masks, re-
spectively. The last image (Figure 7(e)) has been obtained from the
MRI-damaged data set by assigning importance to the damaged area.
In all the cases, we have assigned importance 1 to the mask. The rest
of the model has importance 0.2 in (b, c), and 0.1 in (d, e). The volume
data set is rendered in greyscale and using color in the important area.
Observe that, although the regions of interest have different sizes and
occluding tissues, they are always highly visible while the context is
kept. In the fourth image of Figure 1, we can see another example of
giving importance to a segmented region. In this case, the nerve has
been highlighted.

The next experiments aim at showing the effects of using the pa-
rameter β and different number of viewpoints. Figure 8 shows the
visualization of the CT-body, using the target distribution given by
occurrence weighted by gradient. These visualizations have been ob-
tained by setting β to 0, 2/3, and 8/9. Remember that this parameter
weights the contribution of the opacity constraint in the objective func-
tion. The higher the value of β , the higher the total opacity of volume
visualization. As it can be seen, by increasing the parameter β the
final transfer function becomes more opaque.

Figure 9 shows the visualization of the CT-tooth obtained using the
target distribution occurrence weighted by gradient for three different
viewpoints (first row) and the same corresponding views computed
with 6 viewpoints (second row). Note how the transfer functions are
clearly dependent on the selected viewpoints. In the case of a sin-
gle viewpoint, all structures are visible from each viewpoint, while
considering more viewpoints occlusions do not allow to perceive all
structures from a single viewpoint.

Figure 10, shows the visualization of CT-carp obtained using the
target distribution occurrence weighted by gradient with β = 0.5, and
for 1, 6, 20 and 42 viewpoints. Note that the differences obtained
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(a) 1 vp (b) 6 vp (c) 20 vp (d) 42 vp

Fig. 10. CT-carp is visualized considering 1, 6, 20 and 42 viewpoints (vp) using as target distribution the occurrence weighted by gradient with
β = 0.5 .

Fig. 9. Visualization of the CT-tooth obtained from the target distribution
given by the occurrence weighted by gradient for three different view-
points (first row) and the same corresponding views computed with 6
viewpoints (second row).

using 6, 20 or 42 viewpoints are minimal and, hence, the use of 6
viewpoints is a good trade-off between quality and speed for the global
informational divergence.

To evaluate the computation time, we have considered different data
sets, target distributions, and stopping threshold values of the objec-
tive function. Table 1 reports the obtained results. From left to right,
the first two columns indicate the evaluated model and the used target
distribution, and the next columns are the thresholds of the distances
considered to stop the process. For each configuration we collect the
computation time in seconds and the number of iterations required by
different target distributions. In the two bottom rows, we show respec-
tively the computation time for the CT-carp when only one viewpoint
is considered, and the computation time for the MRI-healthy when the
importance is driven by the white matter mask. The performance of
our methods only benefits from the GPU implementation of the visi-
bility computation, because the rest of computations have been done
in CPU. The results usually converge in less than 50 iterations. With
more iterations, the results are barely improved from a perceptual point
of view. If we compare the computational time of our experiments
with manual editing, that ranges from 5 to 20 minutes [19], the time
improvement obtained with our method is significant.

5.1 Limitations

The automatic definition of a good transfer function is a big challenge.
There are few methods that fully automate the transfer function design
and most of them require previous knowledge or a pre-segmentation
of the volume model. Our approach requires to define the target dis-
tribution and the parameter β has to be assigned by the user as well.
Strictly speaking, because of these user settings, the method cannot be
classified as fully automatic. However, we have experimentally ob-
served that good results are already achieved with β = 0. Also, the
target distribution is much more intuitive to define for the user (simi-
larly to importance definition) than the transfer function.

In our approach, we have focused on opacity transfer functions con-
sidering that opacity is the main factor that affects the visibility of
structures. In the medical scenario this would be sufficient as the ra-
diologists use primarily grey-levels to depict structures when it comes
to visualization of single imaging modality. In our examples we have
used pre-defined color transfer functions to increase the contrast in
printed images by additional contrast in chromatic channel. Adapting

Table 1. Number of iterations and time cost (in seconds) for differ-
ent data sets and stopping threshold values. Target distributions are:
occurrence (Occ), occurrence weighted by importance (Occ*Imp), oc-
currence weighted by gradient and intensity (Occ*Grad*Int), and occur-
rence weighted by gradient (Occ*Grad).

Data set Target ≤ 0.01 ≤ 0.001 ≤ 0.0001

CT-body GID, Occ 7 it. 30 it. 50 it.

4.76 20.70 34.60

CT-tooth GID, Occ*Imp 17 it. 31 it. 63 it.

5.12 9.49 19.24

CT-head GID, Occ*Grad*Int 15 it. 19 it. 34 it.

22.57 29.45 56.55

CT-carp VID, Occ*Grad 20 it. 24 it. 32 it.

3.40 4.86 6.98

MRI-healthy GID, Occ*Imp 21 it. 31 it. 55 it.

18.76 29.32 54.26

the color distribution automatically can be seen as natural continuation
of our research.

6 CONCLUSIONS

We have presented a new information-theoretic framework for auto-
matic transfer function design that, based on a user-defined target dis-
tribution, obtains the opacity transfer function whose visibility distri-
bution minimizes the informational divergence to the target. We have
proposed different target distributions defined on intensities or on a
2D space which considers the intensities and the gradient magnitudes.
We provided two strategies, a global one that considers general fea-
tures of the data and an importance-driven one that emphasizes inten-
sity ranges or regions of interest. The different options of the method
have been evaluated on several data sets. It has been seen that the
results with a global strategy give a good overall visualization of the
volume data set, while the ones obtained with the importance-based
strategy achieve focus+context visualizations. In addition we have
evaluated the results obtained using the informational divergence of
only one viewpoint. With this approach the computational cost is re-
duced considerably, but a recomputation is necessary when the view-
point is changed. The computational cost of the proposed methods is
low enough to make this technique feasible for real environments.

Future research will be done to define a new objective function that
approximates the target distribution while maximizing the projected
visibility without requiring a parameter such as β . In addition, we will
analyze the performance of other distances, such as f -divergences or
Jensen-Shannon divergence. Future work will be done to obtain a fully
GPU implementation. To improve the computational cost, we will also
explore new optimization methods.
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[28] S. Röttger, M. Bauer, and M. Stamminger. Spatialized transfer functions.

In EuroVis, pages 271–278, 2005.

[29] M. Ruiz, I. Boada, M. Feixas, and M. Sbert. Viewpoint information chan-

nel for illustrative volume rendering. Computers and Graphics, 34:351–

360, 2010.

[30] C. R. Salama, M. Keller, and P. Kohlmann. High-level user interfaces for

transfer function design with semantics. IEEE Transactions on Visualiza-

tion and Computer Graphics, 12:1021–1028, September 2006.

[31] M. Sbert, M. Feixas, J. Rigau, I. Viola, and M. Chover. Information

Theory Tools for Computer Graphics. Morgan & Claypool Publishers,

2009.

[32] M. Sbert, D. Plemenos, M. Feixas, and F. González. Viewpoint qual-
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