Automatic Translation of
Fortran Programs to

Vector Form
Randy Allen and Ken Kennedy

The problem

® New (as of 1987) vector machines such as
the Cray-1 have proven successful

® Most Fortran code is written sequentially,
using loops

® Can we exploit parallelism without
rewriting everything?

Thursday, September 12, 2013

Compiler Vectorization

® |dea: Compiler detects parallelism and
automatically converts loops

® No need to rewrite code or learn new
language

® Opportunities for parallelism are subtle and
difficult to detect

® Programmers need to tweak code into
forms the optimizer can recognize

Thursday, September 12, 2013

Explicit Vector
Instructions

® |dea:Add forms to Fortran 8x to specify
parallel operations

® Avoid writing sequential code in the first
place

® Programmers better understand what
parallelism opportunities exist

® Code must be rewritten

Thursday, September 12, 2013

Source-to-Source
Translation

® |dea: Automatically convert existing
sequential Fortran into parallel Fortran 8x

® T[ranslation only occurs once, so more
expensive transformations are practical

® Programmers can add any needed
parallelism the translator misses

Thursday, September 12, 2013

Parallel Fortran
Converter

Vector

Fortran 8x Machine
§ Fortran Sx RSt

A Compiler

Fortran
4 Translator

>

\4
Hand Improvement

Thursday, September 12, 2013

Vector Operations in
Fortran 8x

® Note:As of this paper, Fortran 8x is still
theoretical

® Vectors and arrays may be treated as
aggregates: X =Y + £

® Arithmetic operators are applied point-wise
® Scalars are treated as same-valued vectors

® All arrays must have the same dimensions

Thursday, September 12, 2013

Simultaneity

® Array assignment (e.g. X = Y)is
simultaneous. All of Y is fetched before X is
stored

o X = X/ X(2) uses the value for X(2) prior
to the assighment, even though X(2) will be
assigned to

® Equivalent to using a temporary variable

Thursday, September 12, 2013

Array Sections

® [riplet notation allows reference to parts of
arrays

e A(1:100, I) = B(J, 1:100) assigns 100
elements from row | of B to column | of A

® Third element of triple specifies stride:
A(2:100:2) references first 50 even

subscript positions

Thursday, September 12, 2013

Array ldentification

® Specifies a named mapping to an array

e TDENTIFY /1:M/ D(I) = C(I, I + 1)
defines D as the superdiagonal of C

® D is just an alias; it has no storage

Thursday, September 12, 2013

Conditional Assighment

e WHERE(A .GT. 0.0) A = A + B indicates

that only positive elements of A will be
modified

® Errors in evaluating the right-hand side
must be ignored when the predicate fails

® Eg, WHERE(A .NE. 0.0) B = B/A

Thursday, September 12, 2013

Library Functions

® Mathematical functions (SIN, SQRT, etc.)
are extended to operate on arrays

® New intrinsic array operations:
DOTPRODUCT, TRANSPOSE

e SEQ(1,N) returns an index array

® Reductions operations, e.g. SUM

Thursday, September 12, 2013

Translation Process

DO 201=1,100

S, Kl=1]
DO 10J =1,300,3
S U) = UJ) =« W(KI)
Ss V({J + 3) = V({J) + W(KI)

10 CONTINUE
20 CONTINUE

® Goal: transform S3 and S4 into vector
instructions and remove them from the
inner loop

® Only possible if there is no semantic
difference

Thursday, September 12, 2013

Simple Case

DO 10I=1, 100
X(I) = X(I) + Y(I)
10 CONTINUE

® Easily becomes x(1:100) = x(1:100) + Y(1:100)

DO 10I=1,100
X(I+1)=X(D)+Y(I
10 CONTINUE

® Cannot be converted, because each
iteration depends on the previous

® Known as a recurrence

Thursday, September 12, 2013

Dependency Detection

® TJo distinguish parallel and non-parallel
loops, translator must detect self-
dependent statements

® First, code is normalized to make this test
feasible

Thursday, September 12, 2013

DO-Loop
Normalization

DO20I=1,100
Ki=1
DO 10j = 1, 100
Kl =KI + 2
UB+j—2)=U(@3+j—2) » WKI)
VB+j+1)=V(@3=+j—2)+ W(KI)
10 CONTINUE
20 CONTINUE

® Convert induction variables to iterate from
| by steps of |

® Here,] has been replaced by |

® 5¢ added to preserve post-condition

Thursday, September 12, 2013

Induction Variable
Substitution

DO20I=1,100
Ki=1
DO10j=1,100

UB+j—2)=U@B+j—2) s WEKI+2sj)
VBsj+1)=V(@Bej—2)+ W(EKI+2+j)
10 CONTINUE
KI = KI + 200
J = 301
20 CONTINUE

® Convert all subscripts to linear functions of induction variables

® Kl has been removed from loop and replaced by its initial value
plus its increments

® Kl updated post-loop with final value

® Note: repeated addition replaced by multiplication

Thursday, September 12, 2013

Dead Statement

Eliminati
DO20I=1,100
DO103=1,100
Ss UB+j—2)=U@B*»j—2)« W(I+2+))
S, VB+j+1)=V@B+j—2)+W(I+2+))

10 CONTINUE
20 CONTINUE

® Assuming] and Kl aren’t used outside the
loop, their final values can be discarded

® Since they also aren’t used within the loop,
they can be removed entirely

Thursday, September 12, 2013

Vector Code
Generation

DO20I=1,100
Ss U(1:298:3) = U(1:298:3) + W(I — 2:1 + 200:2)
DO 10j =1, 100
S VB+j+1)=V@B+j—2)+ W(I+2+))

10 CONTINUE
20 CONTINUE

® Dependency analysis shows S4 depends on
itself, but S3 does not

® [herefore, S3 can be vectorized and moved
out of the loop

Thursday, September 12, 2013

Translation Process

Scanner- Tree Vector Pretty
Parser Translator Printer

Preliminary Parallel Code

Transforms Generation

Thursday, September 12, 2013

Dependence Analysis

® 5, depends on S if some execution of $;
uses a value from a previous S

® Self-dependence can only arise in loops

Thursday, September 12, 2013

Dependency in Loops

DO10J=1,N
X(J) =X(J)+C NO dependency

10 CONTINUE

DO10J=1,N~-1

= C
0 cagtll =X+ Recurrence

Thursday, September 12, 2013

Dependency in Loops

DO10i=1,N

*) X(f(2),=F(X(g()))
0 codro), = FX(gl General Form

® (*) depends on itself iff there exist iy, i2 such
that | <ij <ip < Nand f(i\) = g(i)

® Most often,fand g are linear in i

® ax + by = n has a linear solution iff gcd(a,b) | n
® f(i) =ao + aii;g(i) = bo + bi

® (*) depends on itself only if gcd(ai,bi) | bo — ao

Thursday, September 12, 2013

Dependency in Loops

® Unfortunately, gcd(ai,bi) is commonly |

® More sophisticated techniques are needed

COROLLARY 3 (BANERJEE INEQUALITY). If f(x) = ap + a;x and g(y) = by + b,y
then statement (*) depends on itself only if

by — (a7 +b)"(N—=2)<by+ by —ayp— a <= =b, + (a7 — b))"(N - 2).

® Even these only provide necessary conditions
for dependence

® Multiple loops are harder still

Thursday, September 12, 2013

Indirect Dependence

DO10I=1, 100
T(I) = A(I) = B(I)
S(I) = S(I) + T(I)
A(I + 1) = S(I) + C(I)
10 CONTINUE

® 5|, Sy and S3 all depend indirectly on
themselves

Thursday, September 12, 2013

Types of Dependency

® We say S; depends on S if one of these
conditions hold

® Jrue dependence: S; uses the output of S

® Antidependence: S| would use the output of
S; if they were reversed

® (Qutput dependence: S; recalculates the
output of S

Thursday, September 12, 2013

Loop-Related
Dependency

® |oop carried dependence: one statement
stores to a location; another statement reads
from that location in a later iteration

® |oop independent dependence: one statement
stores to a location; another statement reads
from that location in the same iteration

® Self-dependence is a special case of loop
carried dependence

Thursday, September 12, 2013

Testing Procedure

® Test each pair of statements for dependence,
building a dependence relation D

® Compute the transitive closure D*

® Execute statements which do not depend on
themselves in D in parallel

® Execution order must be consistent with D¥

® Reduce cycles to TT-blocks; the resulting graph
is acyclic

Thursday, September 12, 2013

S,
S,

S
Sy

Example
This...

DO10I=1,99
X(I=1I
B(I) = 100-1
10 CONTINUE
DO20I=1,99
A(I) = F(X(I))
X(I+1)=G(B(I))
20 CONTINUE

Becomes...

X(1:99) = SEQ(1, 99, 1)
B(1:99) = SEQ(99, 1, -1)
X(2:100) = G(B(1:99))
A(1:99) = F(X(1:99))

Note: S4 precedes S3

)
()

Thursday, September 12, 2013

Multiple Loops

® |mportant to note which loop carries the
dependence

® We can define a maximum depth where a
given dependence occurs

® [oop independent dependencies have infinite
depth

® Dependency arcs are labeled with depth and
type

Thursday, September 12, 2013

DO 301=1, 100

Sy X(I) = Y(I) + 10
DO 20J =1, 100
Sy B(J) = A(J, N)
DO 10K =1, 50
Ss A(J + 1, K) = B(J) + C(J, K)
10 CONTINUE
Ss YI+J)=AlJ+1,N)

20 CONTINUE
30 CONTINUE

DO301=1,100

code for S;, Ss, S,
generated at lower levels

30 CONTINUE
S, X(1:100) = Y(1:100) + 10

Thursday, September 12, 2013

Example

DO30I=1,100
DO 20J=1,100

code for S, S;
generated at lower levels

20 CONTINUE

Ss Y(I+1:I+100)=A(2:101, N)
30 CONTINUE
S X(1:100) = Y(1:100) + 10
DO30I=1,100
DO20J=1,100
Sz B(J) = A(J: N)
Sy A(J +1,1:100) = B(J) + C(J, 1:100)
20 CONTINUE
Ss Y(I+1:I+100)=A(2:101, N)

30 CONTINUE
S, X(1:100) = Y(1:100) + 10

Thursday, September 12, 2013

Further Techniques

® [oop interchange: move recurrences to
outer loops

® Recurrence breaking: antidependent and
output dependent single-statement
recurrences can be ignored

® Thresholds: recurrences may permit partial
vectorization

Thursday, September 12, 2013

Conditional Statements

DO 100(I=1I,3N oo
. o IF (A(I) .LE. 0) GOTO 100
Initial code A(I) = B(I) + 3

100 CONTINUE

Convert to data P i1 N
dependency o CARRCEBRION A =20+

. BR1(1:N) = A(1:N) .LE. 0
Ve ctorize WHERE ((NOT. BR1(1:N)) A(1:N) = B(1:N) + 3

Thursday, September 12, 2013

Implementation

Initial work based on PARAFRASE
PFC is ~25,000 lines of PL/I

Implements most of the translations
discussed in the paper

Runs their test casein | minona 3 MB
machine

Thursday, September 12, 2013

Exploring the tradeoffs between
programmability and efficiency
in data-parallel accelerators

Yunsup Lee, Rimas Avizienis, Alex Bishara, Richard Xia,
Derek Lockhart, Christopher Batten and Krste Asanovic

Thursday, September 12, 2013

(a) MIMD

(b) Vector-SIMD

MIMD vs S

Programmer's Logical View Typical Core Microarchitecture
HT |/[wro |/[wrt |)[w2 |)[w3 |)[wra | [wmi | DA |
—HNENENEREEN . = ol | | fEz] | Multi-

V||V Y|) [\ | | e

I 7| ez <

Memory \) T Y

Data Memory]

Architectural Registers

CT'/ -\“ 3 | Instruction Memory |
e ey =B Loy
wr0 | (wrn) (w2] ((u13). | EE | [ce 11D viv |
: : : ; 7 \ “ 7 ‘uT0d | | fuTi | Vector
i - i Lanes
1
X 4
\)

- - - EpT23 | | EuT33
X ‘ l x
/ Memory - E‘
/ / —r—
Vector-SIMD Vector-SIMD Architectural VMU
Arithmetic Memory Vector Register i ¥ 3
Instructions Instructions with 4 Elements Data Memory |

Thursday, September 12, 2013

(d) SIMT

() vir

Iwo Rybrid
Approaches

Instr Memory]

Microthread Block w/ 4 Microthreads

. 4

. . /, ‘\ !T
HT |/ — — [ol

E| uTo || pTl1 ||| T2 || T3 ||| uT4 | WTi || LT0]

T

VWAIETETIEET=IRIE= o || B

|
Vector

Lanes
4

i

+
: 3

.]'

L] ' [] ==
] i { H

. Data Memory]

Instruction Memory]

L;' *

l s) . 3 24'_‘ l k]) CTj :

cp (I

\Y';[U 1

RRIFERIrERRIEE]

. 4

Yy Y
——
il
}:HH

.

= :
w SOLIE

uT1d | | Vector

b T”ﬂ
- —
ELLL &

MRE Lanes

"/

Vector and Scalar Vector and Scalar i

-] v |
L % % ‘ f
Memory '& T 1V
4 vmu |
|

Control Flow Instructions Memory Instructions Data Memory

Thursday, September 12, 2013

SIMT

® Combines MIMD’s logical view with vector-
SIMD’s microarchitecture

® VIU executes multiple pTs using SIMD as
long as they proceed on the same control

path

® VIU uses masks to selectively disable
inactive P Ts on different paths

Thursday, September 12, 2013

\"Al

® HT manages CTs; CTs manage UTs

® Vector-fetch instruction indicates scalar
instructions to be executed by U Ts

® VIU operates UTs in SIMD manner, but
scalar branch can cause divergence

Thursday, September 12, 2013

Irregular Control Flow
Example

for (i =
if (AL
C[i] =

0; 1 € n; i++)
] >0)
x * A[i] + B[i];

load

2 loop:

setvl
load.v
load.v
cmp.gt.v
mul.sv
add.vv
store.v
add

add

add

sub
br.neq

X, X_ptr

vlien, n

VA, a_ptr

VB, b_ptr

VF, VA, O

VT, x, VA, VF
vC, VT, VB, VF
VC, c_ptr, VF
a_ptr, vlen
b_ptr, vlen
c_ptr, vlen

n, vlen

n, 0, loop

(b) Vector-SIMD

[br.gte tidx, n, done

2 add a_ptr, tidx
' load a, a_ptr
1 br.eq a, 0, done
5 add b_ptr, tidx
¢ add c_ptr, tidx
? load X, X_ptr
3 load b, b_ptr
9 mul t, x, a
10 add c, t, b
1 store c, c_ptr
12 done:

(c) SIMT

1 load X, X_ptr
mov.sv VZ, x
i loop:
1 setvl vlen, n
5 load.v VA, a_ptr
6 load.v VB, b_ptr
7 mov.sv VD, c_ptr
] fetch.v ut_code
9 add a_ptr, vlen
10 add b_ptr, vlen
1 add c_ptr, vlen
sub n, vlen
br.neq n, 0, loop
1
i ut_code:
16 br.eq a, 0, done
7 mul t, z, a
18 add c, t, b
19 add d, tidx
o) store c, d
!l done:
stop
(d) VT

Thursday, September 12, 2013

Summary

® Vector-based microarchitectures more area
and energy efficient than scalar-based

® Maven (VT) more efficient and easier to
program than vector-SIMD

® Suggestion that VT more efficient but
harder to program than SIMT

Thursday, September 12, 2013

