Automatic Translation of Fortran Programs to Vector Form
 Randy Allen and Ken Kennedy

The problem

- New (as of I987) vector machines such as the Cray-I have proven successful
- Most Fortran code is written sequentially, using loops
- Can we exploit parallelism without rewriting everything?

Compiler Vectorization

- Idea: Compiler detects parallelism and automatically converts loops
- No need to rewrite code or learn new language
- Opportunities for parallelism are subtle and difficult to detect
- Programmers need to tweak code into forms the optimizer can recognize

Explicit Vector Instructions

- Idea:Add forms to Fortran $8 x$ to specify parallel operations
- Avoid writing sequential code in the first place
- Programmers better understand what parallelism opportunities exist
- Code must be rewritten

Source-to-Source Translation

- Idea:Automatically convert existing sequential Fortran into parallel Fortran $8 x$
- Translation only occurs once, so more expensive transformations are practical
- Programmers can add any needed parallelism the translator misses

Parallel Fortran Converter

Vector Operations in Fortran 8x

- Note:As of this paper, Fortran $8 x$ is still theoretical
- Vectors and arrays may be treated as aggregates: $X=Y+Z$
- Arithmetic operators are applied point-wise
- Scalars are treated as same-valued vectors
- All arrays must have the same dimensions

Simultaneity

- Array assignment (e.g. $X=Y$) is simultaneous. All of Y is fetched before X is stored
- $X=X / X(2)$ uses the value for $X(2)$ prior to the assignment, even though $X(2)$ will be assigned to
- Equivalent to using a temporary variable

Array Sections

- Triplet notation allows reference to parts of arrays
- $A(1: 100, I)=B(J, 1: 100)$ assigns 100 elements from row J of B to column I of A
- Third element of triple specifies stride: $A(2: 100: 2)$ references first 50 even subscript positions

Array Identification

- Specifies a named mapping to an array
- IDENTIFY /1:M/ D(I) = C(I, I + 1) defines D as the superdiagonal of C
- D is just an alias; it has no storage

Conditional Assignment

- WHERE (A . GT. 0.0) A = A + B indicates that only positive elements of A will be modified
- Errors in evaluating the right-hand side must be ignored when the predicate fails
- E.g., WHERE(A .NE. 0.0) B = B/A

Library Functions

- Mathematical functions (SIN, SQRT, etc.) are extended to operate on arrays
- New intrinsic array operations: DOTPRODUCT,TRANSPOSE
- $\operatorname{SEQ}(1, N)$ returns an index array
- Reductions operations, e.g. SUM

Translation Process

	$\mathrm{DO} 20 \mathrm{I}=1,100$	
S_{1}		$\mathrm{KI}=\mathrm{I}$
		$\mathrm{DO} 10 \mathrm{~J}=1,300,3$
S_{2}		$\mathrm{KI}=\mathrm{KI}+2$
S_{3}		$\mathrm{U}(\mathrm{J})=\mathrm{U}(\mathrm{J}): \mathrm{W}(\mathrm{KI})$
S_{4}	$\mathrm{~V}(\mathrm{~J}+3)=\mathrm{V}(\mathrm{J})+\mathrm{W}(\mathrm{KI})$	
	10	CONTINUE
	20	CONTINUE

- Goal: transform S_{3} and S_{4} into vector instructions and remove them from the inner loop
- Only possible if there is no semantic difference

Simple Case

DO $10 \mathrm{I}=1,100$
$\mathrm{X}(\mathrm{I})=\mathrm{X}(\mathrm{I})+\mathrm{Y}(\mathrm{I})$
10 CONTINUE

- Easily becomes $X(1: 100)=X(1: 100)+Y(1: 100)$

$$
\begin{array}{ll}
& \text { DO } 10 \mathrm{I}=1,100 \\
& \mathrm{X}(\mathrm{I}+1)=\mathrm{X}(\mathrm{I})+\mathrm{Y}(\mathrm{I}) \\
10 & \text { CONTINUE }
\end{array}
$$

- Cannot be converted, because each iteration depends on the previous
- Known as a recurrence

Dependency Detection

- To distinguish parallel and non-parallel loops, translator must detect selfdependent statements
- First, code is normalized to make this test feasible

DO-Loop Normalization

	DO $20 \mathrm{I}=1,100$
	$\mathrm{KI}=\mathrm{I}$
	DO $10 \mathrm{j}=1,100$
	$\mathrm{KI}=\mathrm{KI}+2$
	$\mathrm{U}(3 * \mathrm{j}-2)=\mathrm{U}(3 * \mathrm{j}-2) * W(\mathrm{KI})$
	$\mathrm{V}(3 * \mathrm{j}+1)=\mathrm{V}(3 * \mathrm{j}-2)+\mathrm{W}(\mathrm{KI})$
10	CONTINUE
S_{6}	$\mathrm{J}=301$
20	CONTINUE

- Convert induction variables to iterate from I by steps of I
- Here, J has been replaced by \mathbf{j}
- S_{6} added to preserve post-condition

Induction Variable

Substitution

```
    DO 20 I = 1, 100
    KI=I
    DO 10 j=1,100
        U(3*j-2)=U(3*j-2) *W(KI + 2*j)
        V}(3*\textrm{j}+1)=\textrm{V}(3*\textrm{j}-2)+\textrm{W}(\textrm{KI}+2*\textrm{j}
    10 CONTINUE
    KI= KI + 200
    J = 301
2 0 ~ C O N T I N U E
```

- Convert all subscripts to linear functions of induction variables
- KI has been removed from loop and replaced by its initial value plus its increments
- KI updated post-loop with final value
- Note: repeated addition replaced by multiplication

Dead Statement

Elimination

- Assuming J and KI aren't used outside the loop, their final values can be discarded
- Since they also aren't used within the loop, they can be removed entirely

Vector Code Generation

- Dependency analysis shows S_{4} depends on itself, but S_{3} does not
- Therefore, S_{3} can be vectorized and moved out of the loop

Translation Process

Dependence Analysis

- S_{2} depends on S_{1} if some execution of S_{2} uses a value from a previous $S_{\text {I }}$
- Self-dependence can only arise in loops

Dependency in Loops

DO $10 \mathrm{~J}=1, \mathrm{~N}$
$X(J)=X(J)+C$
10 CONTINUE

No dependency
DO $10 \mathrm{~J}=1, \mathrm{~N}-1$ $\mathbf{X}(J+1)=\mathbf{X}(J)+C$
10 CONTINUE

Dependency in Loops $\begin{array}{cc} & \text { DO } 10 \mathrm{i}=1, \mathrm{~N} \\ \text { (*) } & \text { X }(f(i)),=\mathbf{F}(\mathbf{X}(g(i))) \\ & 10 \\ & \text { CONTINUE }\end{array}$

 General Form

 General Form}

- $\left(^{*}\right)$ depends on itself iff there exist i_{1}, i_{2} such that $I \leq i_{1}<i_{2} \leq N$ and $f\left(i_{1}\right)=g\left(i_{2}\right)$
- Most often, f and g are linear in i
- $a x+b y=n$ has a linear solution iff $\operatorname{gcd}(a, b) \mid n$
- $f(i)=a_{0}+a_{1} i ; g(i)=b_{0}+b_{1} i$
- $\left(^{*}\right)$ depends on itself only if $\operatorname{gcd}\left(a_{1}, b_{1}\right) \mid b_{0}-a_{0}$

Dependency in Loops

- Unfortunately, $\operatorname{gcd}\left(a_{1}, b_{1}\right)$ is commonly I
- More sophisticated techniques are needed

Corollary 3 (Banerdee inequality). If $f(x)=a_{0}+a_{1} x$ and $g(y)=b_{0}+b_{1} y$ then statement $\left(^{*}\right)$ depends on itself only if

$$
-b_{1}-\left(a_{1}^{-}+b_{1}\right)^{+}(N-2) \leq b_{0}+b_{1}-a_{0}-a_{1} \leq-b_{1}+\left(a_{1}^{+}-b_{1}\right)^{+}(N-2)
$$

- Even these only provide necessary conditions for dependence
- Multiple loops are harder still

Indirect Dependence

	DO $10 \mathrm{I}=1,100$
S_{1}	
S_{2}	$\mathrm{~T}(\mathrm{I})=\mathrm{A}(\mathrm{I}) * \mathrm{~B}(\mathrm{I})$
S_{3}	$\mathrm{~S}(\mathrm{I})=\mathrm{S}(\mathrm{I})+\mathrm{T}(\mathrm{I})$
	$10 \mathrm{~A}(\mathrm{I}+1)=\mathrm{S}(\mathrm{I})+\mathrm{C}(\mathrm{I})$
	CONTINUE

- S_{1}, S_{2}, and S_{3} all depend indirectly on themselves

Types of Dependency

- We say S_{2} depends on S_{1} if one of these conditions hold
- True dependence: S_{2} uses the output of S_{1}
- Antidependence: S_{I} would use the output of S_{2} if they were reversed
- Output dependence: S_{2} recalculates the output of $\mathrm{S}_{\text {I }}$

Loop-Related Dependency

- Loop carried dependence: one statement stores to a location; another statement reads from that location in a later iteration
- Loop independent dependence: one statement stores to a location; another statement reads from that location in the same iteration
- Self-dependence is a special case of loop carried dependence

Testing Procedure

- Test each pair of statements for dependence, building a dependence relation D
- Compute the transitive closure D^{+}
- Execute statements which do not depend on themselves in D^{+}in parallel
- Execution order must be consistent with D^{+}
- Reduce cycles to π-blocks; the resulting graph is acyclic

Example

\section*{This...
 | | | DO 10II $=1,99$ |
| :--- | :--- | :--- |
| S_{1} | | X(I) $=\mathrm{I}$ |
| S_{2} | B(I) $=100-\mathrm{I}$ | |
| | 10 | CONTINUE |
| | | DO $20 \mathrm{I}=1,99$ |
| S_{3} | | A(I) $=\mathbf{F}(\mathrm{X}(\mathrm{I}))$ |
| S_{4} | X(I) $=1)=\mathbf{G}(\mathrm{B}(\mathrm{I}))$ | |
| | 20 | CONTINUE |}

Becomes...

$$
\begin{aligned}
& \mathrm{X}(1: 99)=\operatorname{SEQ}(1,99,1) \\
& \mathrm{B}(1: 99)=\mathrm{SEQ}(99,1,-1) \\
& \mathrm{X}(2: 100)=\mathbf{G}(\mathrm{B}(1: 99)) \\
& \mathbf{A}(1: 99)=\mathbf{F}(\mathbf{X}(1: 99))
\end{aligned}
$$

Note: S_{4} precedes S_{3}

Multiple Loops

- Important to note which loop carries the dependence
- We can define a maximum depth where a given dependence occurs
- Loop independent dependencies have infinite depth
- Dependency arcs are labeled with depth and type

Example

		DO $30 \mathrm{I}=1,100$
S_{1}		$\mathrm{X}(\mathrm{I})=\mathrm{Y}(\mathrm{I})+10$
		DO $20 \mathrm{~J}=1,100$
S_{2}		$\mathrm{B}(\mathrm{J})=\mathrm{A}(\mathrm{J}, \mathrm{N})$
		DO $10 \mathrm{~K}=1,50$
S_{3}		$\mathrm{A}(\mathrm{J}+1, \mathrm{~K})=\mathrm{B}(\mathrm{J})+\mathrm{C}(\mathrm{J}, \mathrm{K})$
	10	CONTINUE
S_{4}		$\mathrm{Y}(\mathrm{I}+\mathrm{J})=\mathrm{A}(\mathrm{J}+1, \mathrm{~N})$
	20	CONTINUE
	30	CONTINUE

DO $30 \mathrm{I}=1,100$
code for S_{2}, S_{3}, S_{4}
generated at lower levels
30 CONTINUE
$S_{1} \quad \mathrm{X}(1: 100)=\mathrm{Y}(1: 100)+10$

Example

		DO $30 \mathrm{I}=1,100$
		DO $20 \mathrm{~J}=1,100$
code for S_{2}, S_{3}		
generated at lower levels		

DO $30 \mathrm{I}=1,100$
DO $20 \mathrm{~J}=1,100$
$\begin{array}{lc}S_{2} & \mathrm{~B}(\mathrm{~J})=\mathrm{A}(\mathrm{J}, \mathrm{N}) \\ S_{3} & \mathrm{~A}(\mathrm{~J}+1,1: 100)=\mathrm{B}(\mathrm{J})+\mathrm{C}(\mathrm{J}, 1: 100)\end{array}$
20 CONTINUE
$\mathrm{Y}(\mathrm{I}+1: \mathrm{I}+100)=\mathrm{A}(2: 101, \mathrm{~N})$
30 CONTINUE
$\mathrm{X}(1: 100)=\mathrm{Y}(1: 100)+10$

Further Techniques

- Loop interchange: move recurrences to outer loops
- Recurrence breaking: antidependent and output dependent single-statement recurrences can be ignored
- Thresholds: recurrences may permit partial vectorization

Conditional Statements

Initial code

DO $100 \mathrm{I}=1, \mathrm{~N}$
IF (A(I) .LE. 0) GOTO 100 $\mathrm{A}(\mathrm{I})=\mathrm{B}(\mathrm{I})+3$
100 CONTINUE

Convert to data dependency

DO $100 \mathrm{I}=1, \mathrm{~N}$
BR1(I) $=\mathrm{A}(\mathrm{I})$. LE. 0
$\mathrm{IF}(. \operatorname{NOT} . \mathrm{BR1}(\mathrm{I})) \mathrm{A}(\mathrm{I})=\mathrm{B}(\mathrm{I})+3$ CONTINUE

Vectorize
$\operatorname{BR} 1(1: N)=A(1: N) . L E \cdot 0$
WHERE (.NOT. BR1(1:N)) A(1:N) $=\mathrm{B}(1: \mathrm{N})+3$

Implementation

- Initial work based on PARAFRASE
- PFC is $\sim 25,000$ lines of PL/I
- Implements most of the translations discussed in the paper
- Runs their test case in I min on a 3 MB machine

Exploring the tradeoffs between programmability and efficiency in data-parallel accelerators
Yunsup Lee, Rimas Avizienis, Alex Bishara, Richard Xia, Derek Lockhart, Christopher Batten and Krste Asanović

MIMD vs SIMD

Two Hybrid Approaches

SIMT

- Combines MIMD's logical view with vectorSIMD's microarchitecture
- VIU executes multiple μ Ts using SIMD as long as they proceed on the same control path
- VIU uses masks to selectively disable inactive μ Ts on different paths

$\sqrt{7}$

- HT manages CTs; CTs manage μ Ts
- Vector-fetch instruction indicates scalar instructions to be executed by $\mu \mathrm{Ts}$
- VIU operates μ Ts in SIMD manner, but scalar branch can cause divergence

Irregular Control Flow Example

```
for ( i = 0; i < n; i++ )
    if (A[i] > 0)
    C[i] = x*A[i] + B[i];
```

load	x, $x_{\text {_ }}$ ptr
loop:	
setvl	vlen, n
load.v	VA, a_ptr
load.v	VB, b_ptr
cmp.gt.v	VF, VA, 0
mul.sv	VT, x, VA, VF
add.vv	VC, VT, VB, VF
store.v	VC, c_ptr, VF
add	a_ptr, vlen
add	b_ptr, vlen
add	c_ptr, vlen
sub	n , vlen
br neq	n, 0, 100

(b) Vector-SIMD

1	br.gte tidx, n, done	
2	add	a_ptr, tidx
3	load	a, a_ptr
4	br.eq	a, 0, done
5	add	b_ptr, tidx
6	add	c_ptr, tidx
7	load	x, x_ptr
8	load	b, b_ptr
9	mul	t, x, a
10	add	c, t, b
11	store	c, c_ptr
12	done:	
(c) SIMT		

```
load x, x_ptr
    mov.sv VZ,
loop:
4 setvl vlen, n
    load.v VA, a_ptr
    load.v VB, b_ptr
    mov.sv VD, c_ptr
    fetch.v ut_code
    add a_ptr, vlen
    add b_ptr, vlen
    add c_ptr, vlen
    sub n, vlen
    br.neq n, 0, loop
ut_code:
    br.eq a, 0, done
    mul t, z,a
    add c, t, b
    add d, tidx
    store c, d
21 done:
22 stop
```

(d) VT

Summary

- Vector-based microarchitectures more area and energy efficient than scalar-based
- Maven (VT) more efficient and easier to program than vector-SIMD
- Suggestion thatVT more efficient but harder to program than SIMT

