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The problem

• New (as of 1987) vector machines such as 
the Cray-1 have proven successful

• Most Fortran code is written sequentially, 
using loops

• Can we exploit parallelism without 
rewriting everything?
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Compiler Vectorization

• Idea: Compiler detects parallelism and 
automatically converts loops

• No need to rewrite code or learn new 
language

• Opportunities for parallelism are subtle and 
difficult to detect

• Programmers need to tweak code into 
forms the optimizer can recognize
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Explicit Vector 
Instructions

• Idea: Add forms to Fortran 8x to specify 
parallel operations

• Avoid writing sequential code in the first 
place

• Programmers better understand what 
parallelism opportunities exist

• Code must be rewritten
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Source-to-Source 
Translation

• Idea: Automatically convert existing 
sequential Fortran into parallel Fortran 8x

• Translation only occurs once, so more 
expensive transformations are practical

• Programmers can add any needed 
parallelism the translator misses
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Vector Operations in 
Fortran 8x

• Note: As of this paper, Fortran 8x is still 
theoretical

• Vectors and arrays may be treated as 
aggregates: X = Y + Z

• Arithmetic operators are applied point-wise

• Scalars are treated as same-valued vectors 

• All arrays must have the same dimensions
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Simultaneity

• Array assignment (e.g. X = Y) is 
simultaneous. All of Y is fetched before X is 
stored

• X = X / X(2) uses the value for X(2) prior 
to the assignment, even though X(2) will be 
assigned to

• Equivalent to using a temporary variable
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Array Sections

• Triplet notation allows reference to parts of 
arrays

• A(1:100, I) = B(J, 1:100) assigns 100 
elements from row J of B to column I of A

• Third element of triple specifies stride: 
A(2:100:2) references first 50 even 
subscript positions 
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Array Identification

• Specifies a named mapping to an array

• IDENTIFY /1:M/ D(I) = C(I, I + 1) 
defines D as the superdiagonal of C

• D is just an alias; it has no storage
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Conditional Assignment

• WHERE(A .GT. 0.0) A = A + B indicates 
that only positive elements of A will be 
modified

• Errors in evaluating the right-hand side 
must be ignored when the predicate fails

• E.g., WHERE(A .NE. 0.0) B = B/A
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Library Functions

• Mathematical functions (SIN, SQRT, etc.) 
are extended to operate on arrays

• New intrinsic array operations: 
DOTPRODUCT, TRANSPOSE

• SEQ(1,N) returns an index array

• Reductions operations, e.g. SUM
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Translation Process

• Goal: transform S3 and S4 into vector 
instructions and remove them from the 
inner loop

• Only possible if there is no semantic 
difference
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Simple Case

• Easily becomes X(1:100) = X(1:100) + Y(1:100)

• Cannot be converted, because each 
iteration depends on the previous

• Known as a recurrence
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Dependency Detection

• To distinguish parallel and non-parallel 
loops, translator must detect self-
dependent statements

• First, code is normalized to make this test 
feasible
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DO-Loop 
Normalization

• Convert induction variables to iterate from 
1 by steps of 1

• Here, J has been replaced by j

• S6 added to preserve post-condition
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Induction Variable 
Substitution

• Convert all subscripts to linear functions of induction variables

• KI has been removed from loop and replaced by its initial value 
plus its increments

• KI updated post-loop with final value

• Note: repeated addition replaced by multiplication
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Dead Statement 
Elimination

• Assuming J and KI aren’t used outside the 
loop, their final values can be discarded

• Since they also aren’t used within the loop, 
they can be removed entirely
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Vector Code 
Generation

• Dependency analysis shows S4 depends on 
itself, but S3 does not

• Therefore, S3 can be vectorized and moved 
out of the loop
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Translation Process

Scanner-
Parser

Vector 
Translator

Pretty
Printer

TreeTree

Preliminary 
Transforms

Parallel Code 
Generation
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Dependence Analysis

• S2 depends on S1 if some execution of S2 
uses a value from a previous S1

• Self-dependence can only arise in loops
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Dependency in Loops

No dependency

Recurrence
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Dependency in Loops

• (*) depends on itself iff there exist i1, i2 such 
that 1 ≤ i1 < i2 ≤ N and f(i1) = g(i2)

• Most often, f and g are linear in i

• ax + by = n has a linear solution iff gcd(a,b) | n

• f(i) = a0 + a1i; g(i) = b0 + b1i

• (*) depends on itself only if gcd(a1,b1) | b0 – a0

General Form
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Dependency in Loops

• Unfortunately, gcd(a1,b1) is commonly 1

• More sophisticated techniques are needed

• Even these only provide necessary conditions 
for dependence

• Multiple loops are harder still
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Indirect Dependence

• S1, S2, and S3 all depend indirectly on 
themselves
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Types of Dependency

• We say S2 depends on S1 if one of these 
conditions hold

• True dependence: S2 uses the output of S1

• Antidependence: S1 would use the output of 
S2 if they were reversed

• Output dependence: S2 recalculates the 
output of S1
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Loop-Related 
Dependency

• Loop carried dependence: one statement 
stores to a location; another statement reads 
from that location in a later iteration

• Loop independent dependence: one statement 
stores to a location; another statement reads 
from that location in the same iteration

• Self-dependence is a special case of loop 
carried dependence
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Testing Procedure
• Test each pair of statements for dependence, 

building a dependence relation D

• Compute the transitive closure D+

• Execute statements which do not depend on 
themselves in D+ in parallel

• Execution order must be consistent with D+

• Reduce cycles to π-blocks; the resulting graph 
is acyclic
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Example
This…

Becomes…

Note: S4 precedes S3
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Multiple Loops

• Important to note which loop carries the 
dependence

• We can define a maximum depth where a 
given dependence occurs

• Loop independent dependencies have infinite 
depth

• Dependency arcs are labeled with depth and 
type
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Example
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Example
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Further Techniques

• Loop interchange: move recurrences to 
outer loops

• Recurrence breaking: antidependent and 
output dependent single-statement 
recurrences can be ignored

• Thresholds: recurrences may permit partial 
vectorization
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Conditional Statements

Initial code

Vectorize

Convert to data
dependency
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Implementation

• Initial work based on PARAFRASE

• PFC is ~25,000 lines of PL/I

• Implements most of the translations 
discussed in the paper

• Runs their test case in 1 min on a 3 MB 
machine
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Exploring the tradeoffs between 
programmability and efficiency 

in data-parallel accelerators
Yunsup Lee, Rimas Avizienis, Alex Bishara, Richard Xia, 

Derek Lockhart, Christopher Batten and Krste Asanović
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MIMD vs SIMD
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Two Hybrid 
Approaches
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SIMT

• Combines MIMD’s logical view with vector-
SIMD’s microarchitecture

• VIU executes multiple μTs using SIMD as 
long as they proceed on the same control 
path

• VIU uses masks to selectively disable 
inactive μTs on different paths
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VT

• HT manages CTs; CTs manage μTs

• Vector-fetch instruction indicates scalar 
instructions to be executed by μTs

• VIU operates μTs in SIMD manner, but 
scalar branch can cause divergence
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Irregular Control Flow 
Example
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Summary

• Vector-based microarchitectures more area 
and energy efficient than scalar-based

• Maven (VT) more efficient and easier to 
program than vector-SIMD

• Suggestion that VT more efficient but 
harder to program than SIMT
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