
Automatic Translation of 
Fortran Programs to 

Vector Form
Randy Allen and Ken Kennedy

Thursday, September 12, 2013



The problem

• New (as of 1987) vector machines such as 
the Cray-1 have proven successful

• Most Fortran code is written sequentially, 
using loops

• Can we exploit parallelism without 
rewriting everything?

Thursday, September 12, 2013



Compiler Vectorization

• Idea: Compiler detects parallelism and 
automatically converts loops

• No need to rewrite code or learn new 
language

• Opportunities for parallelism are subtle and 
difficult to detect

• Programmers need to tweak code into 
forms the optimizer can recognize

Thursday, September 12, 2013



Explicit Vector 
Instructions

• Idea: Add forms to Fortran 8x to specify 
parallel operations

• Avoid writing sequential code in the first 
place

• Programmers better understand what 
parallelism opportunities exist

• Code must be rewritten

Thursday, September 12, 2013



Source-to-Source 
Translation

• Idea: Automatically convert existing 
sequential Fortran into parallel Fortran 8x

• Translation only occurs once, so more 
expensive transformations are practical

• Programmers can add any needed 
parallelism the translator misses

Thursday, September 12, 2013



Parallel Fortran 
Converter

Translator Fortran 8x 
Compiler

Fortran 8x

Hand Improvement

Fortran
Vector

 Machine
 Code

Thursday, September 12, 2013



Vector Operations in 
Fortran 8x

• Note: As of this paper, Fortran 8x is still 
theoretical

• Vectors and arrays may be treated as 
aggregates: X = Y + Z

• Arithmetic operators are applied point-wise

• Scalars are treated as same-valued vectors 

• All arrays must have the same dimensions

Thursday, September 12, 2013



Simultaneity

• Array assignment (e.g. X = Y) is 
simultaneous. All of Y is fetched before X is 
stored

• X = X / X(2) uses the value for X(2) prior 
to the assignment, even though X(2) will be 
assigned to

• Equivalent to using a temporary variable

Thursday, September 12, 2013



Array Sections

• Triplet notation allows reference to parts of 
arrays

• A(1:100, I) = B(J, 1:100) assigns 100 
elements from row J of B to column I of A

• Third element of triple specifies stride: 
A(2:100:2) references first 50 even 
subscript positions 

Thursday, September 12, 2013



Array Identification

• Specifies a named mapping to an array

• IDENTIFY /1:M/ D(I) = C(I, I + 1) 
defines D as the superdiagonal of C

• D is just an alias; it has no storage

Thursday, September 12, 2013



Conditional Assignment

• WHERE(A .GT. 0.0) A = A + B indicates 
that only positive elements of A will be 
modified

• Errors in evaluating the right-hand side 
must be ignored when the predicate fails

• E.g., WHERE(A .NE. 0.0) B = B/A

Thursday, September 12, 2013



Library Functions

• Mathematical functions (SIN, SQRT, etc.) 
are extended to operate on arrays

• New intrinsic array operations: 
DOTPRODUCT, TRANSPOSE

• SEQ(1,N) returns an index array

• Reductions operations, e.g. SUM

Thursday, September 12, 2013



Translation Process

• Goal: transform S3 and S4 into vector 
instructions and remove them from the 
inner loop

• Only possible if there is no semantic 
difference

Thursday, September 12, 2013



Simple Case

• Easily becomes X(1:100) = X(1:100) + Y(1:100)

• Cannot be converted, because each 
iteration depends on the previous

• Known as a recurrence

Thursday, September 12, 2013



Dependency Detection

• To distinguish parallel and non-parallel 
loops, translator must detect self-
dependent statements

• First, code is normalized to make this test 
feasible

Thursday, September 12, 2013



DO-Loop 
Normalization

• Convert induction variables to iterate from 
1 by steps of 1

• Here, J has been replaced by j

• S6 added to preserve post-condition

Thursday, September 12, 2013



Induction Variable 
Substitution

• Convert all subscripts to linear functions of induction variables

• KI has been removed from loop and replaced by its initial value 
plus its increments

• KI updated post-loop with final value

• Note: repeated addition replaced by multiplication

Thursday, September 12, 2013



Dead Statement 
Elimination

• Assuming J and KI aren’t used outside the 
loop, their final values can be discarded

• Since they also aren’t used within the loop, 
they can be removed entirely

Thursday, September 12, 2013



Vector Code 
Generation

• Dependency analysis shows S4 depends on 
itself, but S3 does not

• Therefore, S3 can be vectorized and moved 
out of the loop

Thursday, September 12, 2013



Translation Process

Scanner-
Parser

Vector 
Translator

Pretty
Printer

TreeTree

Preliminary 
Transforms

Parallel Code 
Generation

Thursday, September 12, 2013



Dependence Analysis

• S2 depends on S1 if some execution of S2 
uses a value from a previous S1

• Self-dependence can only arise in loops

Thursday, September 12, 2013



Dependency in Loops

No dependency

Recurrence

Thursday, September 12, 2013



Dependency in Loops

• (*) depends on itself iff there exist i1, i2 such 
that 1 ≤ i1 < i2 ≤ N and f(i1) = g(i2)

• Most often, f and g are linear in i

• ax + by = n has a linear solution iff gcd(a,b) | n

• f(i) = a0 + a1i; g(i) = b0 + b1i

• (*) depends on itself only if gcd(a1,b1) | b0 – a0

General Form

Thursday, September 12, 2013



Dependency in Loops

• Unfortunately, gcd(a1,b1) is commonly 1

• More sophisticated techniques are needed

• Even these only provide necessary conditions 
for dependence

• Multiple loops are harder still

Thursday, September 12, 2013



Indirect Dependence

• S1, S2, and S3 all depend indirectly on 
themselves

Thursday, September 12, 2013



Types of Dependency

• We say S2 depends on S1 if one of these 
conditions hold

• True dependence: S2 uses the output of S1

• Antidependence: S1 would use the output of 
S2 if they were reversed

• Output dependence: S2 recalculates the 
output of S1

Thursday, September 12, 2013



Loop-Related 
Dependency

• Loop carried dependence: one statement 
stores to a location; another statement reads 
from that location in a later iteration

• Loop independent dependence: one statement 
stores to a location; another statement reads 
from that location in the same iteration

• Self-dependence is a special case of loop 
carried dependence

Thursday, September 12, 2013



Testing Procedure
• Test each pair of statements for dependence, 

building a dependence relation D

• Compute the transitive closure D+

• Execute statements which do not depend on 
themselves in D+ in parallel

• Execution order must be consistent with D+

• Reduce cycles to π-blocks; the resulting graph 
is acyclic

Thursday, September 12, 2013



Example
This…

Becomes…

Note: S4 precedes S3

Thursday, September 12, 2013



Multiple Loops

• Important to note which loop carries the 
dependence

• We can define a maximum depth where a 
given dependence occurs

• Loop independent dependencies have infinite 
depth

• Dependency arcs are labeled with depth and 
type

Thursday, September 12, 2013



Example

Thursday, September 12, 2013



Example

Thursday, September 12, 2013



Further Techniques

• Loop interchange: move recurrences to 
outer loops

• Recurrence breaking: antidependent and 
output dependent single-statement 
recurrences can be ignored

• Thresholds: recurrences may permit partial 
vectorization

Thursday, September 12, 2013



Conditional Statements

Initial code

Vectorize

Convert to data
dependency

Thursday, September 12, 2013



Implementation

• Initial work based on PARAFRASE

• PFC is ~25,000 lines of PL/I

• Implements most of the translations 
discussed in the paper

• Runs their test case in 1 min on a 3 MB 
machine

Thursday, September 12, 2013



Exploring the tradeoffs between 
programmability and efficiency 

in data-parallel accelerators
Yunsup Lee, Rimas Avizienis, Alex Bishara, Richard Xia, 

Derek Lockhart, Christopher Batten and Krste Asanović

Thursday, September 12, 2013



MIMD vs SIMD

Thursday, September 12, 2013



Two Hybrid 
Approaches

Thursday, September 12, 2013



SIMT

• Combines MIMD’s logical view with vector-
SIMD’s microarchitecture

• VIU executes multiple μTs using SIMD as 
long as they proceed on the same control 
path

• VIU uses masks to selectively disable 
inactive μTs on different paths

Thursday, September 12, 2013



VT

• HT manages CTs; CTs manage μTs

• Vector-fetch instruction indicates scalar 
instructions to be executed by μTs

• VIU operates μTs in SIMD manner, but 
scalar branch can cause divergence

Thursday, September 12, 2013



Irregular Control Flow 
Example

Thursday, September 12, 2013



Summary

• Vector-based microarchitectures more area 
and energy efficient than scalar-based

• Maven (VT) more efficient and easier to 
program than vector-SIMD

• Suggestion that VT more efficient but 
harder to program than SIMT

Thursday, September 12, 2013


