
Automatic Tuning of the Parallelism Degree
in Hardware Transactional Memory�

Diego Rughetti1, Paolo Romano2, Francesco Quaglia1, and Bruno Ciciani1

1 Sapienza Universita’ di Roma, Italy
2 Instituto Superior Técnico, Universidade de Lisboa/INESC-ID, Portugal

Abstract. Transactional Memory (TM) is an emerging paradigm that promises
to ease the development of parallel applications. Due to its inherently specula-
tive nature, however, TM can suffer of performance degradations in presence of
conflict intensive workloads.

A key technique to tackle this issue consists in dynamically regulating the
number of concurrent threads, which allows for selecting the concurrency level
that best fits the intrinsic parallelism of specific applications. In this area, several
self-tuning approaches have been proposed for Software-based implementations
of TM (STM). In this paper we investigate the effectiveness of these techniques
when applied to Hardware TM (HTM), a theme that is particularly relevant and
timely given the recent integration of hardware supports for TM in next generation
of mainstream Intel processors. Our study, conducted on Intel’s implementation
of HTM, identifies several issues associated with the employment of techniques
originally conceived for STM. Motivated by these findings, we propose an inno-
vative machine learning based technique explicitly designed to take into account
peculiarities of HTM systems, and demonstrate its advantages, in terms of higher
accuracy and shorter learning times, using the STAMP benchmark suite.

1 Introduction

Transactional Memory (TM) [12,20] is an attractive programming paradigm for devel-
oping parallel/concurrent applications. By relying on the notion of atomic transaction,
TM stands as a simper alternative to traditional lock-based synchronization. In more
detail, with TM code blocks accessing shared-data can be marked as transactions. The
complexity associated with enforcing coherency of concurrent data accesses is then del-
egated to the TM layer, rather than to any hand crafted synchronization scheme defined
by the programmer. The maturing of the intense research that targeted TM over the
last decade has recently led to the development of TM supports for the most popular
open source compiler (GCC), and to the integration of hardware implementations of
TM (HTM) in the last generations of processors produced by major vendors, such as
Intel or IBM.

Even though TM shows a big potential for simplifying the software development
process, another aspect that is central for the success of TM systems is the actual level

� This work was supported by national funds through FCT (Fundação para a Ciência e Tecnolo-
gia) under project PEst-OE/EEI/LA0021/2013, by the COST Action IC1001 Euro-TM and by
project GreenTM EXPL/EEI-ESS/0361/2013.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 475–486, 2014.
c© Springer International Publishing Switzerland 2014

476 D. Rughetti et al.

of performance they can deliver. In such a context, one core issue to cope with is related
to maximize parallelism, while avoiding thrashing phenomena due to excessive data
contention and high transaction abort rates.

For the case of Software-based implementations of TM (STM), several approaches
have been proposed to cope with thrashing avoidance (see, e.g., [5,18,1,2,23]). One of
the key techniques exploited in these approaches consists in (dynamically) regulating
the actual level of concurrency, i.e. the number of concurrently active threads. All these
approaches rely on performance models (either white-box, e.g. analytic [18,5], or black-
box, e.g. machine-learning [1]), which are used to predict the expected performance,
depending on the application’s workload, while varying the number of threads.

On the other hand, we are not aware of any study in literature that investigates the
issue of how to optimize the degree of parallelism in HTM systems. In this paper we
aim to fill this gap, whose relevance is particularly strong given the recent integration
of HTM in mainstream processors. We start by showing that the problem cannot be
effectively addressed by reusing techniques originally conceived to operate in STM
contexts, due to two key reasons:

1. Existing techniques targeting STM rely on models that do not consider transac-
tion abort causes that are specific to HTM, and that are completely absent in STM
systems. Particularly, in HTM a large number of transaction aborts is due to ca-
pacity constraints of processors’ caches, as well as to a plethora of different micro-
architectural reasons [13] (e.g. interrupts, faults or traps).

2. STM-oriented approaches are typically based on software instrumentation and run-
time monitoring of specific parameters (whose values serve as input to instantiate
performance models aimed to guide concurrency optimization). Monitoring these
same parameters in the context of HTM is however unaffordable: existing HTM
implementations do not externalize them, and monitoring them at the software level
would induce overheads analogous to those of implementing an STM, defeating the
whole purpose of HTM.

In the light of these considerations, this paper makes an additional contribution, by
proposing a novel machine learning based technique to dynamically adapt the concur-
rency degree of HTM-based applications. The proposed self-tuning mechanism is ex-
plicitly designed to take into account the peculiarities of HTM systems, and avoids the
issues that affect existing STM-oriented solutions. Via an extensive experimental evalu-
ation based on the well known STAMP benchmark suite [14], and on a HTM-equipped
Intel Haswell processor (8 virtual cores - 4 physical with hyper-threading), we show
that the proposed approach achieves, on average, twice the accuracy of existing meth-
ods, while imposing negligible overheads and abating learning times dramatically.

The remainder of this paper is structured as follows. Section 2 discusses the state of
the art on adaptive solutions for TM systems. In Section 3, we discuss issues associated
with the employment, in the context of HTM, of solutions originally designed to self-
tune the degree of parallelism in STM. Section 4 presents the proposed solution for
optimizing the parallelism level in HTM applications. Section 5 presents the results
of the experimental evaluation based on the STAMP benchmark. Finally, Section 6
concludes the paper.

Automatic Tuning of the Parallelism Degree in HTM 477

2 Related Work

Several analytical models of STM [17,11] have been presented in literature. These mod-
els adopt a white-box approach to capture execution dynamics of STM and allow for
predicting applications’ performance in different configurations. Employing these tech-
niques for the self-tuning of HTM systems is however infeasible for several of reasons.
First, as they rely on white-box models tailored to STM, they fail to capture important
peculiar aspects of HTM, in particular aborts induced by hardware-imposed restrictions.
Further, these solutions typically require extensive instrumentation to gather a large set
of parameters that serve as input for the white-box performance prediction model. Such
instrumentation is not supported by existing HTM, and implementing it via software
would induce unaffordable overheads, as we will also show in Section 3.

Other works have been based on black-box approaches, relying on various types
of statistical/machine learning techniques to capture STM performance trends. These
include techniques based on fitting to predetermined families of functions [8,16], or
more generic regressors such as neural networks [15] and decision trees [5]. As we will
discuss in more detail in the next section, employing these techniques in HTM systems
would induce prohibitive instrumentation overheads. Also, being designed to operate in
STM environments, the input parameters used by these models turn out to be inadequate
to capture the proper dynamics of HTM.

Other black-box approaches adopt a model-free feedback-based method, implement-
ing hill-climbing techniques that adapt the parallelism degree by reacting to variations
of some key performance indicator, such as throughput [4] or abort rate [1]. Due to
their model-free/exploratory nature, these approaches suffer of two main issues: slow
convergence to the optimal solution [19], and risk of being trapped in local maxima.

Another related topic is transaction scheduling [23,9], in which the mapping of trans-
actions to threads is dynamically adapted in order to minimize data contention. Such
a technique has the effect of adapting the degree of parallelism, because rescheduled
threads are removed from the execution for a while. Existing scheduling techniques
employ different types of information, ranging from high level statistics on the abort
ratio [23], to details on transaction’s readset and writeset [9]. As already discussed, ob-
taining information on transactions’ data access patterns is not feasible with existing
HTM implementations.

Other related works, exploit machine learning to optimize orthogonal configuration
parameters of STM, such as selecting the best performing conflict detection and man-
agement algorithm [22] or the most suitable mapping of threads to CPU-cores [3].

Our work is also related to recent research in the area of performance evaluation of
HTM, both for Intel [7,10] and IBM implementations [21]. To the best of our knowl-
edge, the only existing work in the area of self-tuning for HTM [6] copes with an issue
orthogonal to the one tackled in this work, namely the tuning of the retry logic and
fall-back path.

3 Concurrency Regulation Approaches: STM vs HTM

In this section we assess the effectiveness of existing approaches for self-tuning the
degree of parallelism of STM, when employed in the context of HTM. We focus our

478 D. Rughetti et al.

study on model-based approaches that rely on machine learning [15,16]. This choice is
motivated by the fact that, as discussed in Section 2, we are not aware of any analytical
model capable of predicting the performance of HTM. Also, model-based approaches
are known to achieve faster convergence than model-free ones [19], and avoid the issue
of getting stuck in local maxima.

The performance models adopted in these approaches [15,16] aim at predicting the
transaction wasted time (namely the CPU time spent in the execution of transaction
instances that are eventually aborted) as a function of the number of concurrent threads.
These models take as input a set of parameters, some of which are used to capture the
data access pattern, and provide in output the expected wasted time. Specifically, these
models can be seen as implementing the following function:

wtime = f(rssize, wssize, rwaff , wwaff , ttime, ntctime, k) (1)

where k denotes the number of concurrent threads supposed to run the application,
wtime is the average transaction wasted time, rssize (resp. wssize) is the average read-
set (resp. write-set) size of transactions, rwaff – read-write affinity (resp. wwaff –
write-write affinity) is an index providing an estimation of the likelihood that an object
read (resp. written) by a transaction is also written by another transaction, ttime is the
average execution time of the committed transaction runs, and ntctime is the average
execution time of non-transactional code blocks. As for the latter parameter, it is typical
for TM applications interleave, in the same thread, the execution of transactional and
non-transactional code blocks. The non-transactional blocks are typically used for tasks
such as the interaction with an external user/application and/or the acquisition of input
parameters for the transaction to be run.

In the solutions in [15,16] the shape of the function f is determined either by fit-
ting data in the training set using generic neural networks, or by using a specialized
family of analytical functions (which is used to build sub-functions whose composition
determines the actual shape of f). In both cases, the predicted value of the transaction
wasted time is used to compute the value of the expression k/(wtime+ttime+ntctime),
which represents the system throughput, and so to predict the value of k that is expected
to maximize the throughput.

As pointed out before, both approaches rely on the run-time monitoring of the input
parameters of function f . This is requested both for the initial model instantiation phase,
as well as for performance prediction and concurrency regulation (once the application
is already deployed). Particularly, the run-time monitoring of rssize , wssize, rwaff

and wwaff allows for determining whether workload shifts occur, which may require
a change of the parallelism degree k in order to ensure optimal performance.

These approaches adopt a further refinement of the performance model, which takes
into account the fact that, besides wtime, also ttime and ntctime can actually vary sig-
nificantly with k. This phenomenon is imputable to hardware level contention, such as
cross-core cache contention at lower cache-levels in the multi-core architecture. Hence,
the observed values of ttime and ntctime cannot be immediately used as input to the
function f when carrying out predictions with values of k different from the ones used
when those values were observed. Rather, correction functions are used to predict the
values of ttime and ntctime in the target configuration of the parallelism level for which

Automatic Tuning of the Parallelism Degree in HTM 479

Fig. 1. STM-oriented concurrency regulation architecture

estimation is being carried out. These correction functions are typically much simpler
than f (in fact, they are often linear), and have been shown to be identifiable in various
ways, e.g., via a simple polynomial regression approach [16]. Overall, the final equation
used for dynamically computing the best suited parallelism level, via maximization vs
the value of k, is

k

wtime,k + ttime,k + ntctime,k
(2)

where the subscript ’k’ exactly expresses the above depicted parameter dependency
(also involving ttime and ntctime). The architecture that has been proposed for exploit-
ing the above model in order to dynamically regulate concurrency in STM systems is
schematized in Figure 1.

When porting the above approaches (that are naturally conceived for STM) on top of
HTM-based systems, the following two issues arise:
1. Monitoring overhead - tracing the features to be used as input to the performance

model in Eq. 1 would be too costly in HTM. Specifically, obtaining information on
readset/writeset size would require instrumenting every single transactional opera-
tion, paying a cost analogous to the one paid when handling transactional
accesses via software techniques (just like in STM). Also, the relative cost for com-
puting parameters like rwaff and wwaff (which are based on the scalar product
of relative read/write access rates to individual transactional objects kept by the
TM) would dominate, when compared to the actual transaction processing time in
HTM based systems. These overheads would hinder performance severely, espe-
cially when considering that the key advantage of HTM systems is to avoid any
cost related to additional software instrumentation.

2. Inadequacy of the input features - as already mentioned, a key difference between
STM and HTM is that, in the former, data conflicts are the unique source of trans-
action aborts. In fact, the input parameters for Eq. 1, used as the base performance
model by the works in [15,16], are targeted to characterise the data access profile as
the unique cause for transaction aborts, and do not capture the dynamics of aborts
due to architectural constraints. As shown in Table 1, this kind of aborts actually rep-
resents the dominant source of aborts for all the STAMP benchmark applications.

480 D. Rughetti et al.

Table 1. Abort reasons

Benchmark conflict capacity other
vacation 1% 41% 58%
kmeans 0% 2% 98%
genome 1% 35% 64%
intruder 1% 40% 59%
labyrinth 0% 79% 21%

ssca2 0% 2% 98%
yada 34% 37% 29%

Table 2. Sampling overhead

Conc. level kmeans intruder genome
1 2% 3% 3%
2 2% 4% 3, 5%
3 3% 1, 3% 3, 5%
4 2% 1, 8% 1, 3%
5 4% 0, 1% 3, 5%
6 3, 5% 0, 1% 3%
7 1, 6% 0, 1% 3, 5%
8 4, 5% 4, 5% 1, 7%

Hence, the need for devising models capable of explicitly capturing these phenom-
ena, and to overcome the inadequacy of existing STM-oriented models.

These considerations led us to reconsider the set of input parameters to be used in
the performance model, and to investigate on the ability of the following variant of the
model to capture the dynamics proper of HTM:

wtime = f(ttime, ntctime, abortconflict, abortcapacity, abortother, k) (3)

where ttime and ntctime have the already explained meaning, whereas the explana-
tion of the other parameters is the following: abortconflict is the abort rate due to
data-conflict, abortcapacity is the abort rate due to overflows of cache capacity, and
abortother is the abort rate due to other architectural reasons.

We evaluated this approach considering an instantiation of Eq. 3 based on neural
networks, and two alternative instantiations of the correction function for ttime and
ntctime, one using linear regression and the other using again neural networks (NN).
We refer to the whole approach as 2-layered, due to the presence of the correction
function. Table 3 shows the discrepancy in the throughput (compared to the optimal
throughput, statically determined by exploring all the concurrency levels between 1 and
8 for all the different phases of each benchmark run) which is achieved by regulating
concurrency via the reliance on the model in Eq. 3. Instead, in Table 2 we report the
run-time monitoring overhead for sampling the input parameters of the performance
model as the number of thread varies (again between 1 and 8). We can see that the sam-
pling overhead is very limited, confirming the adequacy of our choice in relation to the
input features for the performance model in Eq. 3, from the perspective of efficiency.
Concerning effectiveness while regulating concurrency, which is a reflection of the per-
formance model accuracy, the results are less exciting, with errors (expressed in terms
of throughput penalty with respect to the optimal achievable throughput) of up to 18%
for the approach using linear regression, and 15% for the one using neural networks.

The key reason for this is that, contrary to the base performance model developed
for STM (expressed by Eq. 1), in the proposed model for HTM in Eq. 3, all the input
parameters may exhibit a dependency on the level of parallelism. So specific correc-
tion functions should be used for each of them (which might exhibit non-linear shape),
increasing significantly the complexity of the approach, and ultimately degrading its
accuracy. In order to back this claim, in the third column of Table 3 we provide data
related to the performance that could be reached by the 2-layered approach if a set of

Automatic Tuning of the Parallelism Degree in HTM 481

Table 3. Throughput penalty with the 2-layered approach

Benchmark 2-layered-linear 2-layered-NN 2-layered-optimal
intruder 8% 6, 3% 3, 2%
genome 10% 4, 4% 2, 7%
kmeans 18% 15% 5, 6%
vacation 18% 14% 3, 4%

ssca2 0, 80% 0, 74% 0, 55%
yada 0% 0% 0%

labyrinth 10% 9% 3, 2%

optimal correction functions for input parameters were available. As we can see com-
paring the third column with the first two, the performance delivered by the 2-layered
approach strictly depends on the accuracy of the correction functions.

4 A Classification Based Approach

In order to cope with the issues pointed out in the previous section, we worked on an
alternative way of approaching the problem of instantiating the performance model used
to guide the adaptation of the concurrency level. To this end, we cast the performance
prediction problem as a classification, and not a regression, problem. Specifically, given
a workload profile, instead of predicting the system performance for every possible
concurrency level (and then picking the optimal one), we aim to determine directly the
optimal parallelism level, among the (finite set of) possible ones.

In this way we operate according to a “1-step” approach that does not require the
use of correction functions, which were shown to be the Achilles’ heel of existing ap-
proaches in Section 3. We decided to use and compare two different machine learning
approaches to cope with this classification problem: Decision Trees and Neural Net-
works. However, as we will see in Section 5, both the algorithms provide very similar
accuracy levels.

The fulcrum of the new approach is the construction of the training set for the clas-
sification algorithms. Particularly, each sample we relied on is a couple < i,o > where
i = [ttime,ntctime,abortconflict, abortcapacity , abortother] and o = [kopt], with kopt
representing the optimal level of parallelism, namely the concurrency level that ensures
the best throughput given the workload profile expressed by i.

The training set can be populated by executing a few runs of the application with
different inputs and configuration parameters. For each input, the application is exe-
cuted for any level of parallelism, namely varying the number of threads from 1 to the
maximum number of hardware-threads supported by the target system. This way, for
each workload/configuration tested during the training phase, it is always possible to
determine the best performing concurrency level.

As we will show in Section 5, the new approach achieves consistently better accu-
racy than the 2-layered approach based on the performance model expressed by Eq. 3,
namely the variation of the STM performance model originally exploited in [15,16].
Further, a relevant advantage of the new approach, beyond its higher accuracy, consists

482 D. Rughetti et al.

of its simplicity. On the other hand, a drawback with respect to the 2-layered approach,
is that it does not allow to estimate the absolute performance achievable when using a
degree of parallelism not considered in the training phase, which could be instead use-
ful, for instance, to support what-if analysis. This aspect is inter-twinned with, e.g., pro-
visioning processes in the Cloud, since what-if analysis with non-observed parallelism
levels may lead to planning for provisioning adequately powerful multi-core machines
(or scaling up/down already in use resources) in order to meet specific performance lev-
els (while optimizing the costs). On the other hand, the new 1-step approach based on
classification is targeted at optimizing the application run-time in scenarios where the
available resources (and hence the set of possible parallelism levels for the hosted appli-
cation) are known and could be tested during the training phase used to instantiate the
performance model. Note that this is a means for optimizing already done investments.

5 Experimental Results

In this section we report experimental data for a comparison between the 2-layered
approach derived by adapting the proposals in [16], [15] and the new classification
based approach. We executed our tests on top of system equipped with an Intel Haswell
Xeon E3-1275 3,5 GHz processor (8 virtual cores: 4 physical with hyper-treading1) with
32 GB RAM. Intel TSX extension (i.e., Intel’s implementation of HTM) requires that a
software-based fall-back method is specified, in case a transaction cannot be executed
in hardware. In the evaluation we consider a fall-back path based on a single global
lock. We keep on relying on the STAMP benchmark suite [14] also in this comparative
study.

Let us start by analyzing the results considering the usage of a global lock on the fall-
back path. Table 4 shows the mean penalty, with respect to the optimal throughput, due
to wrong concurrency level choices. The first and the second columns report results for
the classification approach implemented resp. with decision trees and neural networks.
The third and fourth columns show results for the 2-layered approach using neural
networks for the performance prediction model, and linear regression (column 3) or
neural networks (column 4) for the correction function. Note that for all the considered
approaches we are here considering the set of features specified by Eq. 3.

As we can see by comparing the first two columns, excluding the row related to
the Intruder benchmark, using neural network or decision tree to implement classifica-
tion approaches yields approximately the same performance. Looking at the third and
fourth column, it emerges clearly that the proposed classification approach can pro-
vide significant benefits in terms of accuracy: the average throughput penalty (across
all benchmarks) is in fact equal to 3, 71% and 3, 39%, for the classification-based ap-
proach using, respectively, decision tree (DT) and neural network (NN), whereas the
average throughput penalty for the 2-layered approach is of about 9, 33% when using
a linear correction function and of approximately 7, 06% when using neural networks.
This means, on average, a relative increase of accuracy by a factor 2.

1 At the time of writing, this is the largest degree of parallelism achievable using HTM-equipped
Intel processors.

Automatic Tuning of the Parallelism Degree in HTM 483

Table 4. Throughput penalty comparison

Benchmark classification-DT classification-NN 2-layered-linear 2-layered-NN
intruder 7, 8% 2, 7% 8% 6, 3%
genome 5, 2% 7, 1% 10% 4, 4%
kmeans 5, 4% 5, 9% 18% 15%
vacation 3, 1% 3, 8% 18% 14%

ssca2 0, 70% 0, 72% 0, 80% 0, 74%
yada 0% 0% 0% 0%

labyrinth 3, 8% 3, 5% 10% 9%

average 3, 71% 3, 39% 9, 33% 7, 06%

The graphs in Figure 2 show how the performance penalty due to wrong prediction
varies with respect to the number of samples used to train two different performance
predictors, the one based on the proposed classification approach and the one based on
the 2-layered approach. Each point is the mean value of the results of experiments exe-
cuted with a fixed number of predictors that have been trained varying the composition
of the training set and the configuration of the predictors (e.g. the number of hidden
nodes in the neural networks). If we look at the left graph, which shows the results
for the labyrinth, genome and kmeans benchmarks, we can see that the classification
approach consistently outperforms the 2-layered one. Moreover the proposed approach
requires less samples to ensure optimal performance and presents less variation in the
results as shown by the bars on top of the histograms. These trends are confirmed by the
right graph, which shows the performance penalty for other three benchmarks, namely
intruder, vacation and ssca2. We avoid to present results related to the yada benchmark
because, as shown in Table 4, for this benchmark all the approaches always ensure
optimal performance (this is due to the fact that, at any point in time, the optimal con-
figuration for yada never varies).

 0

 10

 20

 30

 40

 50

50 100 200 400 800 1200

th
ro

ug
hp

ut
 p

en
al

ty
 (

%
)

training samples number

1-step labyrinth
2-layered labyrinth

1-step kmeans
2-layered kmeans

1-step genome
2-layered genome

 0

 10

 20

 30

 40

 50

50 100 200 400 800 1200

th
ro

ug
hp

ut
 p

en
al

ty
 (

%
)

training samples number

1-step intruder
2-layered intruder

1-step vacation
2-layered vacation

1-step ssca2
2-layered ssca2

Fig. 2. Performance penalty varying predictor’s training set size

The graphs in Figure 3 show the application speedup with respect to a non-
instrumented sequential version, while varying the degree of parallelism, for two bench-
marks of the STAMP suite, respectively Intruder and Genome. When running with no

484 D. Rughetti et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8

sp
ee

du
p

Maximum concurrent threads

intruder

Adaptive
Not-adaptive

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

sp
ee

du
p

Maximum concurrent threads

genome

Adaptive
Not-adaptive

Fig. 3. Speedup

adaptive regulation of concurrency, we fix the degree of parallelism statically at start-up.
On the other hand, when considering the adaptive version, we set the initial and max-
imum parallelism level according to the value reported on the x-axis of the figure, but
then let the concurrency regulation mechanism adjust the parallelism level according to
the indications of the performance model.

For the Intruder benchmark, when increasing the level of parallelism, the perfor-
mance of the non-adaptive version of the application increases until it reaches a con-
currency level equal to 4. Beyond this optimal level of parallelism, the performance
decreases due to an excessive number of transaction aborts. The adaptive version of the
application, instead, is able to determine at runtime which is the optimal concurrency
level. As the dotted line in the graph shows, if we execute the application with a num-
ber of maximum available threads larger than 4, the adaptive version ensures the same
speed-up that the application can reach when it is executed with the optimal concur-
rency level. Similar results can be obtained with the Genome benchmark as shown by
the right plot.

Finally, in Figure 4 we report data showing the relative performance improvements
achievable by approaches that dynamically regulate concurrency vs the static case
where all the 8 available virtual cores are always employed for running the applica-
tion. In this study we considered both our 1-step proposal, based on machine learning,

 0

 0.5

 1

 1.5

 2

genome vacation intruder

re
la

tiv
e

sp
ee

du
p

w
rt

 th
e

st
at

ic
 c

as
e

Benchmark

static (8-threads fixed)
hill-climbing

1-step

Fig. 4. Speedup (vs the static configuration employing 8 threads) of hill-climbing [4] and 1-step

Automatic Tuning of the Parallelism Degree in HTM 485

and the hill climbing based technique investigated in [4]. The data refer to three differ-
ent benchmark applications from STAMP, namely genome vacation and intruder. The
plots highlight that the 1-step approach constantly outperforms the hill-climbing tech-
nique. This is as a result of the ability of the proposed approach to avoid sub-optimal
exploration phases (unlike hill-climbing) and of identifying the optimal configuration
in a prompt and accurate way.

6 Conclusions

In this paper we presented the results of a study aimed at evaluating the feasibility of
re-using concurrency regulation techniques originally conceived for STM systems, or
adaptations of them, in the context of HTM systems.

We have shown, also via experimentation, that these techniques do not fully fit HTM
scenarios for two main reasons. On the one hand, the inadequacy of the parameters
selected as input to the performance models used to drive the concurrency regulation
process. On the other hand, the overhead for the monitoring of the model’s input pa-
rameters, which becomes unaffordable in HTM.

We then devised and investigated a machine learning approach, based on classifica-
tion and specifically tailored for HTM, which we have shown to yield higher accuracy,
reduced overhead and shorter learning time. The assessment of this approach has been
based on experimental results achieved by running the STAMP benchmark suite on
top of a machine equipped with and Intel 8 virtual cores CPU (4 physical plus hyper-
threading) with HTM support.

As future work along the concurrency regulation path we plan to investigate how to
combine performance prediction models, and how to devise innovative models, for con-
texts where STM and HTM co-exist as an hybrid support for shared-data management
in parallel/concurrent applications.

References

1. Ansari, M., Kotselidis, C., Jarvis, K., Luján, M., Kirkham, C., Watson, I.: Advanced con-
currency control for transactional memory using transaction commit rate. In: Luque, E.,
Margalef, T., Benı́tez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 719–728. Springer,
Heidelberg (2008)

2. Blake, G., Dreslinski, R.G., Mudge, T.: Proactive transaction scheduling for contention man-
agement. In: Proc. of MICRO, pp. 156–167. ACM (2009)

3. Castro, M., Goes, L.F.W., Ribeiro, C.P., Cole, M., Cintra, M., Mehaut, J.F.: A machine
learning-based approach for thread mapping on transactional memory applications. In: Proc.
of HiPC, pp. 1–10. IEEE Computer Society (2011)

4. Didona, D., Felber, P., Harmanci, D., Romano, P., Schenker, J.: Identifying the optimal level
of parallelism in transactional memory applications. In: Gramoli, V., Guerraoui, R. (eds.)
NETYS 2013. LNCS, vol. 7853, pp. 233–247. Springer, Heidelberg (2013)

5. Didona, D., Romano, P., Peluso, S., Quaglia, F.: Transactional auto scaler: elastic scaling of
in-memory transactional data grids. In: Proc. of ICAC, pp. 125–134. ACM (2012)

6. Diegues, N., Romano, P.: Self-tuning intel transactional synchronization extensions. In: Proc.
of ICAC (2014)

486 D. Rughetti et al.

7. Diegues, N., Romano, P., Rodrigues, L.: Virtues and limitations of commodity hardware
transactional memory. In: Proc. of PACT (2014)

8. Dragojević, A., Guerraoui, R.: Predicting the scalability of an STM: A pragmatic approach.
In: TRANSACT (2010)

9. Dragojević, A., Guerraoui, R., Singh, A.V., Singh, V.: Preventing versus curing: Avoiding
conflicts in transactional memories. In: Proc. of PODC, pp. 7–16. ACM (2009)

10. Goel, B., Titos, R., Negi, A., McKee, S.A., Stenstrom, P.: Performance and energy analysis
of the restricted transactional memory implementation on haswell. In: Proc. of IPDPS. IEEE
Computer Society (2014)

11. He, Z., Hong, B.: Modeling the run-time behavior of transactional memory. In: Proc. of
MASCOTS, pp. 307–315 (2010)

12. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data
structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

13. Intel Corporation: Intel Transactional Synchronization Extensions (Intel TSX) - Program-
ming Considerations

14. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford Transactional Appli-
cations for Multi-Processing. In: Proc. of IISWC, Seattle, WA, USA, pp. 35–46 (2008)

15. Rughetti, D., Di Sanzo, P., Ciciani, B., Quaglia, F.: Machine learning-based self-adjusting
concurrency in software transactional memory systems. In: Proc. of MASCOTS, pp. 278–285.
IEEE Computer Society (2012)

16. Rughetti, D., Di Sanzo, P., Ciciani, B., Quaglia, F.: Regulating concurrency in software trans-
actional memory: An effective model-based approach. In: Proc.of SASO. IEEE Computer
Society (2013)

17. di Sanzo, P., Ciciani, B., Palmieri, R., Quaglia, F., Romano, P.: On the analytical modeling
of concurrency control algorithms for software transactional memories: The case of commit-
time-locking. Performance Evaluation 69(5), 187–205 (2012)

18. di Sanzo, P., Palmieri, R., Ciciani, B., Quaglia, F., Romano, P.: Analytical modeling of
lock-based concurrency control with arbitrary transaction data access patterns. In: Proc. of
WOSP/SIPEW (2010)

19. Schroeder, B., Harchol-Balter, M., Iyengar, A., Nahum, E., Wierman, A.: How to determine
a good multi-programming level for external scheduling. In: Proc. of ICDE (2006)

20. Shavit, N., Touitou, D.: Software transactional memory. In: Proc. of PODC, pp. 204–213.
ACM (1995)

21. Wang, A., Gaudet, M., Wu, P., Ohmacht, M., Amaral, J.N., Barton, C., Silvera, R., Michael,
M.M.: Software support and evaluation of hardware transaction memory on blue gene/q.
IEEE Transactions on Computers 99 (2013)

22. Wang, Q., Kulkarni, S., Cavazos, J.V., Spear, M.: Towards applying machine learning to
adaptive transactional memory. In: Proc. of TRANSACT (2011)

23. Yoo, R.M., Lee, H.H.S.: Adaptive transaction scheduling for transactional memory systems.
In: Proc. of SPAA, pp. 169–178. ACM (2008)

	Automatic Tuning of the Parallelism Degreein Hardware Transactional Memory
	1 Introduction
	2 Related Work
	3 Concurrency Regulation Approaches: STM vs HTM
	4 A Classification Based Approach
	5 Experimental Results
	6 Conclusions
	References

