
Automatic Urban Area Monitoring Using Digital

Surface Models and Shape Features

Houda Chaabouni-Chouayakh, Pablo d’Angelo, Thomas Krauss and Peter Reinartz

Remote Sensing Technology Institute (IMF)

German Aerospace Center (DLR)

Wessling, Germany

houda.chaabouni@dlr.de

Abstract— Accurate monitoring of urban areas using remote
sensing data requires reliable change detection techniques. Nev-
ertheless, while most of the changes are optically visible and
easily detectable by an expert user, automatic processes are quite
difficult to develop. That is why, the interpretation of changes
has remained up-to-now visual in most operational applications
in remote sensing. This paper provides an automatic approach
for 3D change detection based on the joint use of the height and
spatial information. In fact, when dealing with urban areas, one
possibility to cope with the automatic growth monitoring is the
exploitation of the height information relative to the different
man-made objects that exist in the scene. The subtraction of
Digital Surface Models (DSMs), acquired at different epochs,
should thus provide a valuable information about the 3D urban
changes occurred in the studied area. However, when at least one
of the DSMs presents some artifacts, a simple DSM subtraction
could result also in the detection of virtual changes. To remove
these virtual changes, we propose in this work to include, in
addition to the height information, some shape features that
could be of a great help in describing the geometry of the
constructed or demolished man-made structures. After that, the
Support Vector Machine (SVM) classifier is used to differentiate
real from virtual changes. Evaluation of the proposed approach in
terms of completeness, correctness, overall accuracy, etc has been
performed proving its efficiency and relatively high accuracy.

I. INTRODUCTION

In the last few decades, the constantly intensive global

urbanization has made the urban and suburban areas among

the most dynamic sites on Earth. New innovative tools are thus

required for better monitoring of such areas. Remotely sensed

imagery in some cases may be the only reliable source for

better understanding of urban areas. In fact, satellite imagery

can significantly improve the monitoring of cities in a wide

range of applications, e.g. urban growth monitoring, disaster

damage assessment, urban change detection, etc.

The overall goal of this paper lies in the development of

automatic urban growth monitoring using height and spatial

or shape information. In fact, urban changes are in general

either related to building construction/demolition or vegetation

growth. These two issues should be well described if the

height and shape information are available. In the literature, to

monitor height changes, subtraction of Digital Surface Models

(DSMs) has been widely used (e.g. [1]–[3]). This simple

approach could provide reliable results if accurate DSMs are

available. However, if at least one of the used DSMs shows

some artifacts (which is quite often the case), we are in

general faced by the problem of significant height differences

over some complex 3D structures. This would result in the

detection of virtual changes, generally characterized by strange

shapes. Therefore, this work suggests the additional use of

several shape features in order to describe the geometry of the

spatial extent of the different constructed/demolished build-

ings, generally characterized by quite regular shapes. Similar

approach has been used in [4], [5] to detect respectively

buildings and building changes using Lidar and Laser DSMs.

Accurate building detection maps have been obtained. This

is somehow due to the very good quality of the used DSMs

and to the successful tuning of the different thresholds. In

this article, the used DSMs are generated from two pairs

of Ikonos stereo images acquired at different epochs. Since

the quality of the DSMs is not as good as the Lidar/Laser

ones, some post-processing steps have been included so that

the proposed approach does not remain limited only to high

quality DSMs. Also, still in the frame of the automatization of

our change detection approach and to avoid the manual tuning

of the different thresholds, after the feature extraction step, we

suggest to separate the real changes from the virtual ones,

using the Support Vector Machine (SVM) classifier which

has shown great efficiency and robustness in various pattern

recognition applications ( [6]).

The organization of this paper is as follows: Sections II and

III describe the data used in this work and the different steps

of the proposed 3D change detection approach, respectively.

Section IV assesses the accuracy of our method using different

objective metrics, while section V gives some conclusions and

perspectives.

II. PRESENTATION OF THE DATA

In this work, we perform a multi-temporal and multi-season

change monitoring of an Asiatic urban area using DSMs. Two

pairs of Ikonos-2 stereo images ( c⃝EUSI provided under the

EC/ESA GSC-DA) acquired in spring 2006 and winter 2010

have been used to generate the corresponding DSMs, using

the Semi-Global Matching algorithm (SGM) implemented at

DLR ( [7], [8]). Since the resulting DSMs show holes when

the matching between the two stereo images fails (e.g. over

occluded areas), the delta surface fill technique has been

applied to fill the DSMs with data from the corresponding

SRTM DSM. Fig. 1 displays the two filled DSMs.
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(a) DSM from spring 2006.
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(b) DSM from winter 2010.

Fig. 1. The two DSMs used in this work to perform a multi-temporal and multi-season change monitoring of an Asiatic urban area.

III. CHANGE DETECTION METHODOLOGY

A typical solution to detect positive and negative changes

consists in subtracting one DSM from the other. Such an

approach provides generally good results when every pixel in

the image represents the real height of the corresponding point

in the studied area. However, when at least one of the DSMs

exhibits artifacts, this simple approach can not be reliable. In

this work, after the subtraction of the two DSMs depicted in

Fig. 1, we propose to introduce some post-processing steps in

order to generate accurate change detection results. Actually,

after examining deeply the DSM difference image depicted in

Fig. 2, we have found out that:

∙ most of the virtual changes come from the DSMs artifacts

caused either by the SRTM-based filling over shadowed

areas or by some precision errors in the height com-

putation. To overcome the first problem, we propose to

eliminate shadows over the wrongly filled areas. Whereas,

a histogram-based thresholding and shape feature extrac-

tion were included in our change detection procedure

to remove automatically the virtual changes caused by

height computation errors.

∙ the real changes are mainly linked to the construction of

several new buildings or to varying levels of vegetation

growth since the data have been acquired in different

seasons. Therefore, in our change detection procedure, we

will focus on building detection using shape features and

vegetation detection using the Normalized Differenced

Vegetation Index (NDVI) computed from the multispec-

tral images.

A. Shadow elimination

One of the common artifacts in DSMs over urban areas

comes from the SRTM-based filling. Exemplarily, neighboring
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Fig. 2. Absolute difference between the DSMs of Fig. 1.

buildings separated by a narrow road appear usually as one

connected structure in the filled version of the DSM as can be

seen in Fig. 3. In order to recover this problem, we propose to

apply the following shadow-hole mask on the DSM difference

image:

��� = (�����ℎ���	 ∪���
�ℎ���	) ∩������, (1)

where �����ℎ���	 and ���
�ℎ���	 are the shadow masks

computed, according to the method of [9], from the left and

right stereo images, respectively, and ������ represents the

hole mask calculated from the unfilled DSM.
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Fig. 3. Illustration of the usefulness of the shadow detection in improving
the DSM quality inside urban areas. (a) Multi-spectral image. (b) Unfilled
DSM. (c) DSMs subtraction. (d) Improved DSMs subtraction.

B. Histogram-based thresholding

As done in [10], we perform a histogram-based thresholding

on the DSM difference image after applying the shadow-

hole mask to remove the virtual changes coming from height

computation errors. Observing the histogram of the difference

image (Fig. 4), possible changes are located far away from the

average value. To determine the threshold Threspos relative to

the possible positive changes, a histogram-based thresholding

is applied as follows:

Threspos = min
�∈[0,ℎmax

pos ]

(

∑�

�=0 ℎpos(�)
∑ℎmax

pos

�=0 ℎpos(�)

)

> 0.99, (2)

where ℎpos is the histogram relative to the positive changes and

ℎmax
pos is the maximal height difference. The threshold relative

to the possible negative changes is similarly computed.
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Fig. 4. Histogram of the DSM difference image whose absolute value is
depicted in Fig. 2 after applying the shadow-hole mask.

C. Feature extraction and SVM-based real change detection

After thresholding, the changes are treated as segments and

different features have been computed for each segment in

order to describe at best the real positive and negative changes.

The mainly observed 3D changes are linked either to vegeta-

tion changes since the two stereo images have been acquired

in two different seasons (spring and winter), or to building

construction since a quite long period (4 years) separates the

acquisition years of the two stereo image pairs. Therefore, for

feature extraction, the following steps have been followed:

∙ First, NDVI masks are computed from the multi-spectral

images and their overlaps with the change segments are

examined in order to detect changes relative to vegetation.

∙ After that, assuming that the rest of the change segments

are linked to building construction, we suggest to com-

pute the following shape features for each segment: area,

elongation (ratio of the major axis length and the minor

axis one), eccentricity (ratio of the distance between the

foci of the ellipse that has the same second-moments as

the segment, and its major axis length), solidity (propor-

tion of the pixels in the convex hull that are also in the

segment), extent (ratio of pixels in the segment to pixels

in the total bounding box) and compactness (ratio of the

square root of the area to the perimeter of the segment).

In addition to these features, we compute the mean and

standard deviation of the height over each segment.

After feature extraction, we propose to use SVM to classify

the segments into real and virtual changes. We run SVM 10

times with different training and testing data to avoid any

dependency between the choice of the training data and the

classification results. In Fig. 5, we provide the mean of the 10

repetitions. The degrees of redness and blueness represent the

probability of each segment to be a real change: the higher the

mean value of each segment is, the more probable the segment

to a real change corresponds.
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Fig. 5. Positive (in blue) and negative (in red) change map. The degrees of
blueness and redness represent the probability of each segment to be a real
change.

IV. ACCURACY ASSESSMENT

To assess the accuracy of our change detection results,

we have compared a sub-image of the change map (Fig.

6(a)) to a Ground Truth (GT) map (Fig. 6(b)) that has been

manually derived from the stereo images. We could notice that

only two changes (whose centroids are located approximately

at (1360, 1250) and (1400, 1280)) out of 32 have not been

detected. They correspond actually to 3m height differences

which have been removed during the thresholding step. Also

the changes whose centroids are located at (1275, 1010) and

(1278, 1055) have been detected as one connected component

since their boundaries are separated only by 4 pixels.
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(a) Change detection map.
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(b) Ground Truth (GT) map.

Fig. 6. Change detection results versus GT.

A pixel-to-pixel evaluation of our change detection approach

in terms of confusion matrix, is summarized in Table I where

TP (True Positive) and TN (True Negative) are the numbers of

pixels classified as ”Change” and ”Non-change” by both maps,

respectively, and FP (False Positive) and FN (False Negative)

are the numbers of pixels classified as ”Change” only in our

change detection map or only in the GT one, respectively.

TABLE I

PIXEL-TO-PIXEL EVALUATION OF OUR CHANGE DETECTION ALGORITHM.

Ground truth
Our results Change Non-change

Change 13530 (TP) 1362 (FP)
Non-change 3083 (FN) 622025 (TN)

Based on the quantities computed in Table I, the following

objective metrics ( [4], [11]) were employed to provide a

quantitative assessment of our change detection algorithm:

Branching Factor = FP/TP, (3)

Miss Factor = FN/TP, (4)

Completeness(%) = 100× TP/(TP + FN), (5)

Correctness(%) = 100× TP/(TP + FP), (6)

Quality Percentage(%) = 100× TP/(TP + FN + FP), (7)

Overall Accuracy(%) = 100× (TP + TN)/#pixels. (8)

Each metric mentioned above provides its own quantitative

measure for evaluating the overall performance of the algo-

rithm. The branching and miss factors describe the two types

of potential mistakes (FP and FN) that may occur in the

automatic process. The completeness represents the percentage

of ”Change” pixels which are correctly detected while the

correctness shows the percentage of detected ”Change” pixels

which belong indeed to the ”Change” class. The quality

percentage describes how likely a ”Change” pixel produced

by the automatic approach is true, and is the most stringent

measure of the overall results of the six statistics. The overall

accuracy shows the percentage of correctly classified pixels.

The suggested 3D change detection algorithm shows a branch-

ing factor of 0.1 and a miss factor of slightly poor perfor-

mance (0.22). This indicates that the number of over-classified

”Change” pixels is less than the number of missed ”Change”

pixels. A rate of 81.4% in completeness and a higher rate of

90.8% in correctness have been obtained. This is also due to

the tendency of our algorithm to produce less FP pixels than

FN ones. Finally, the proposed change detection technique

shows a quality percentage of 75.2% and an overall accuracy

of 99.3%, proving its efficiency and relatively high accuracy.

V. CONCLUSIONS AND PERSPECTIVES

This paper suggested an automatic urban area monitoring

technique by extracting height and spatial information from

DSMs generated from two pairs of stereo data acquired at

different epochs. Height changes are computed through DSM

subtraction. Whereas, spatial information is extracted by com-

puting several shape features for each change. Finally, the sep-

aration between real and virtual changes is performed through

SVM-based classification. To provide a quantitative assess-

ment of the developed change detection algorithm, different

common objective metrics such as completeness, correctness,

etc have been computed. The results are globally satisfying and

promising, although some of them could still be improved and

completed. They can be considered as preliminary results for

some higher level urban area monitoring where for instance

a fusion between the multi-spectral data and the DSMs is

considered in the overall change detection process.
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