Automatic Validation of Protocol Narration*

C. Bodei' M. Buchholtz> P. Degano' F. Nielson? H. Riis Nielson?

1 Dipartimento di Informatica, Universita di Pisa,Via F. Buonarroti 2, [-56127 Pisa, Italy.
{chiara,degano}@di.unipi.it
2 Informatics and Mathematical Modelling, Technical University of Denmark,
Richard Petersens Plads bldg 321, DK-2800 Kongens Lyngby, Denmark.
{mib,nielson,riis}@imm.dtu.dk

Abstract

We perform a systematic expansion of protocol narra-
tions into terms of a process algebra in order to make pre-
cise some of the detailed checks that need to be made in
a protocol. We then apply static analysis technology to
develop an automatic validation procedure for protocols.
Finally, we demonstrate that these techniques suffice for
identifying a number of authentication flaws in symmetric
key protocols such as Needham-Schroeder, Otway-Rees, Ya-
halom and Andrew Secure RPC.

1. Introduction

Motivation. Security is a growing concern in the develop-
ment of software utilising the internet and supporting mo-
bility. An important aspect is to ensure the security of the
protocols used for communication: that they do guarantee
the necessary amount of confidentiality, authenticity, mes-
sage integrity, and availability.

Protocol analysis is a hard problem for several reasons.
One is that often it is difficult to make precise what are the
properties one expects from the protocols; indeed there are
examples of protocols that were considered to be secure for
many years and then had their security compromised by
a slight change in the expectations and a brilliant idea for
how to exploit it. Another reason is that protocols are often
described somewhat informally using protocol narrations
that are imprecise about some of the finer details concern-
ing the deployment of the protocol. A third reason is that
one should guard against all possible kinds of misuse, and

*Supported in part by the Information Society Technologies pro-
gramme of the European Commission, Future and Emerging Technolo-
gies, under the IST-2001-32072 project DEGAS and IST-1999-29075
project SecSafe; the Danish SNF-projects SecSaf and LoST; and the Italian
MIUR-projects Al, TS & CFA, and MEFISTO.

it is not easy to give a finitary account of the infinitely many
environments in which the protocol will be used.

Overview of contribution. We base ourselves on stan-
dard protocol narrations and extend them (in Section 2)
with annotations that make it clear how to deal with some
of the tests that need to be performed and how to express the
authentication intentions of the protocol. We then system-
atically translate annotated protocol narrations into terms of
the process algebra LYSA (introduced in Section 3). This is
done in such a way that the precision of the extended pro-
tocol narration is left unchanged and the intentions can be
enforced by a reference monitor that aborts undesired exe-
cutions.

Next we develop (in Section 4) a static analysis for track-
ing the set of encrypted messages that are successfully being
decrypted at each relevant point. We show the semantic cor-
rectness of the analysis and demonstrate that best solutions
(in the manner of principal types for type systems) always
exist. In view of the approximative nature of static analy-
sis the detailed formulation of semantic correctness makes
it clear that the analysis might describe a too large set of
messages but that no successfully decrypted messages are
ever left out.

This allows us (in Section 5) to deal with the general
problem of how to give a finite account of an infinity of
hostile environments. We adapt the classical approach of
Dolev and Yao [14] to model the ability of attackers to send
and receive messages and to perform encryptions as well as
decryptions. We formally show that the approach realises
the notion of “hardest attackers” [31] developed for firewall
security in Mobile Ambients.

We then address a form of authenticity by statically ver-
ifying the origin and destination of messages [18]. More
specifically, we verify whether a message encrypted by A
and intended for B does indeed come from A and reaches
B only. This suffices for dealing with authenticity problems
in the protocols mentioned above, in particular with our run-

1
Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW’'03) C nfr,r.
1063-6900/03 $17.00 © 2003 IEEE SO(IS/[CPI%?SE{R

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 28, 2008 at 05:17 from IEEE Xplore. Restrictions apply.

ning example, the Wide Mouthed Frog protocol. Because of
the approximative nature of static analysis we may well fail
to authenticate a protocol that is in fact correct but we shall
never authenticate a protocol that is in fact flawed.

Our analysis is fully automatic and we briefly outline
(in Section 6) our polynomial-time implementation using
tree grammars. This follows the approach taken in [32]
for translating the problem from an infinite universe to a
tree grammar problem over a finite universe. Actual imple-
mentations are supported by the Succinct Solver [33]; while
the specification of the analysis is compositional the actual
solving procedure requires the entire program (and clauses
for Dolev-Yao) to be present before computing the solution.

We demonstrate (in Section 7) that our technique is
strong enough to report the known problems in symmetric
key protocols such as Needham-Schroeder [28, 29], Otway-
Rees [36], Yahalom [10] and Andrew Secure RPC [40].
Furthermore, it is strong enough that it does not report flaws
in suitably amended versions of these protocols.

We conclude (in Section 8) with an assessment of our
approach and its ability to deal with related security notions.
Appendix A summarises the protocol narrations considered,
Appendix B contains proofs of our main results.

Comparison with state of the art. A number of logical
theories have been developed for confidentiality [9, 14, 37]
based on perfect cryptography; they have often been in-
vestigated with the help of semi-automatic theorem provers
resulting in a rather high computational overhead. A re-
lated approach is that of the NRL protocol analyser [24]
where (possibly confluent) reduction systems are used to
mechanically handle terms involving explicit cryptographic
primitives, like exponentiation. Also logical theories have
been used for authenticity [10, 19, 5, 43] based on per-
fect cryptography; these specifications are not mechanised
and sometimes the resulting formulae lose the operational
flavour of protocols thereby making it hard to establish
soundness with respect to an operational semantics.

To get a more operational view many papers have con-
sidered process algebras for expressing protocols and anal-
ysis methods have been applied accordingly. For example,
type (and effect) systems retain some of the flavour of logic
based approaches but facilitate reasoning at a level closer to
the syntactic presentation of the protocol [4, 1, 3, 20, 21];
mostly they focus on type checking (usually polynomial-
time decidable) rather than type inference (appearing to be

The model checking approach is also oriented towards
an operational approach, e.g. Interrogator [26] and mur¢
[27]. Here a finite state automaton is built to represent the
behaviour of the protocol, occasionally modelling causal-
ity [16], and an exhaustive search is performed to verify
that each reachable state enjoys the desired modal formula.
Lowe [22] specified protocols in CSP and exploited the op-
erational semantics to construct their (finite) models thereby
discovering the man-in-the-middle attack in the public key
Needham-Schroeder protocol that was so far considered se-
cure; in the same vein, see also [39, 41].

Language based approaches are built around a detailed
high level language for expressing protocols, e.g. CAPSL
[12] where the resulting programs are translated into a Horn
fragment of linear logic and proofs of security properties
utilise tools like inductive verifiers, model checkers, or a
PROLOG based constraint solver [25].

Static analysis based on control flow analysis has shown
promise of analysing such systems [7, 8, 6, 31] but has so
far not been able to demonstrate its ability to find flaws in
protocols. In this paper we demonstrate the feasibility of
applying static analysis to finding flaws in protocol. The
main strong point of our approach is the ability to perform
a fully automatic analysis.

2. Expanding Protocol Narrations

In the literature, security protocols are usually described
using an informal notation that leaves implicit some as-
sumptions and does not completely state the actions internal
to the principals, as discussed in [2].

Parties in a security protocol interact with an uncertain
environment, where some of the participants are not fully
trusted or maybe hostile. Consequently, even though care-
fully designed, protocols may have flaws, allowing mali-
cious agents or attackers to violate security. An attacker —
according to the classical Dolev and Yao model [14] — gain-
ing some control over the communication network, is able
to intercept or forge or invent messages to convince agents
to reveal sensitive information or to believe it is one of the
legitimate agents in the session.

Consider the following version [4] of the Wide Mouthed
Frog protocol [10] (abbreviated WMF) aiming at establish-
ing a secret session key K between the two principals A and
B sharing master keys K 4 resp. K g with a trusted server.S:

. ¢ S 1. A—S: A{B K}k,
computationally intractable due to the absence of principal 2. S—B: {AK}g
types). Our approach is more in the flavour of type inference 3: A B . { m71 N TZk}K

while retaining the polynomial-time complexity. Other se-
mantic methods are based on testing equivalence or bisimu-
lation to provide the semantics correctness of the approach;
e.g. [17, 15] follow this line to directly verify protocols in
an operational setting.

Usually protocols narrations come along with additional ex-
planations. For the WMF, one has to say that in the first
message A sends to S its name, and then a fresh key K
and the name of the intended receiver B, encrypted under

2
Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW’'03) C nfr,r.
1063-6900/03 $17.00 © 2003 IEEE SO(IS/[CPI%?SE{R

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 28, 2008 at 05:17 from IEEE Xplore. Restrictions apply.

the key K 4. In the second one, S forwards the key and
the sender name A to B, encrypted under the key K p. Fi-
nally, A sends B a long sequence of messages my, ..., my
encrypted under the session key K.

Bridging the gap between informal and formal specifica-
tion is the first and crucial step in programming protocols.
As seen above, protocol narrations only list the messages
to be exchanged, leaving it unspecified which are the ac-
tions to be performed in receiving these messages (inputs,
decryptions and possible checks on them), e.g. B should
use the content of the second message to decrypt the third
message. Furthermore, security goals are left implicit.

As a first step, we unfold the protocol narration in the fol-
lowing extended narration, where we distinguish between
outputs and the corresponding inputs and between encryp-
tions and the corresponding decryptions and we are explicit
on checks performed on received values.

Furthermore, messages are enriched with source address
as well as destination address (i.e. the intended ones in an
honest exchange), as in IP versions 4 and 6. They are passed
in clear and are therefore forgeable. Thus, the general form
will be: source, destination, messagey,--- , messagey
followed by assumptions or checks in square brackets:

1. A— A, S, A{B,K}k,
1. — S xa,vs,2'4,x [check xg = S, 24 = 2/4]
1”. S decrypt = as {:rB,xK}KIA
2. S— S, x5, {TA, Tk} K, ,
2. — B Ys,YB, Y [check yg = B]
2", B decrypty as {ya,yx }kp

. A— A7B7{m17"'7mk}K
3. — B 24,28, 2 [check zp = B, z4 = ya]
3". B decrypt z as {z1, " , 2k byx

The first line describes the actions of the sender of the
message while the next two lines describe the actions of the
recipient. After each input we check whether or not the in-
put was actually meant for the recipient (the first checks in
lines 1/, 2’ and 3'). Additionally, line 1’ checks the inter-
nal consistency of the message and line 3’ checks that the
identity of the sender corresponds to the one found in the
second message. Note that the checks are local to the recip-
ient and do not make the assumption that a recipient has a
priori knowledge about the sender of the message such as
checking that x4 = A in line 1.

As a second step, we look for a way of including the
specification of the security goals to be verified. This im-
plies a further refinement of our narrations in terms of as-
sertions for specifying properties. Here, we are interested
in authentication properties that rely on the fact that sen-
sible information is sent and received by the principals in-
tended by the protocols. That is, a principal would like to

"When analysing protocols, we set k to be a large constant to reduce
the likelihood of flaws due to spurious interactions between the key and
the message exchange phases of the protocol.

ascertain the origin of a message being received, and also
the destination of a message being sent. Consequently, we
refine the narration by specifying origin and destination of
encrypted messages. Back to our example, we will write,
e.g., {B, K}k ,[dest S] to say that in line 1 the encrypted
value is intended for S only. Correspondingly, the decrypt
action of S in line 1” will be annotated with [orig 4].

For the WMF protocol above we obtain the following
extended narration:

1. A-— A, S, A, {B, K}k ,[dest S|

1. — S Ta,Ts, Ty, [check s = S,wa = 4]
17, S decrypt = as {xB,xK}KIA [orig x 4]

2. S — S7x57{xA7:pK}KmB[desth]

2’ — B ys,yB,y[check yg = B]

2", B decrypty as {ya,yx } kp [orig S]

3. A— A,B,{m1,--- ,my}x[dest B]

3. — B ZA,ZB, % [check zp = B, z4 = ya]
3", B decrypt z as {21, -+ , 2k }yj |OTig 24]

Assertions are meant to be added for verification purposes
by someone with a global view of the intentions of the pro-
tocol and are therefore not restricted to only use local infor-
mation (e.g. we can have the assertion [orig S] in line 2").
Other properties, e.g. confidentiality or freshness of various
data, can be addressed in the same style (see the Conclu-
sion).

Note that the two steps leading to an extended protocol
narration are systematic. This approach is similar to the one
taken by Casper [23], CAPSL [12, 11], and CVS [15].

3. The LySA-calculus

The considerations of Section 2 motivate defining a new
process algebra, LYSA. It differs from the 7 and Spi-
calculus in two aspects. One difference is the absence of
channels: LYSA assumes to have one global communica-
tion medium to which all processes have access. In our
view encodings of protocol narrations should rnot use chan-
nels because the privacy offered by channel based commu-
nication may give a degree of security not matched by e.g.
ethernet based implementations where any one can eaves-
drop or act as an active attacker; indeed, private channels
are often used explicitly as if they were cryptographic keys.
Of course, private channels are relevant when modelling in-
tranets: extending LYSA with channels only requires mi-
nor adjustments to our treatment. The second difference of
LYSA is that the tests associated with input and decryption
are naturally expressed using pattern matching.

Syntax. LYSA consists of terms and processes; values
then correspond to closed terms, i.e. terms without free vari-
ables. Values are used to code keys, nonces, messages etc.

3
Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW’'03) C nfr,r.
1063-6900/03 $17.00 © 2003 IEEE SO(IS/[CPI%?SE{R

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 28, 2008 at 05:17 from IEEE Xplore. Restrictions apply.

The syntax of terms F is as follows:

E = terms

n name (n € \)

x variable (z € X))

{E1, - ,Er}g, symmetricencryption (k > 0)
Here N and X denote sets of names and variables, re-
spectively. Encryptions are tuples of terms F1, - - - , E}, en-

crypted under a term Ej representing a shared key. We
adopt an assumption of perfect cryptography.

The syntax of processes P is mostly familiar to the
polyadic Spi-calculus [4]:

P = processes

0 nil

(E1, - ,Eg). P output

(Er, - ,Ej;xjq1,- -+ ,xx). P input (with matching)
P | P parallel composition
(vn)P restriction

'P replication

decrypt Eas{E1, , Ej; 1, , Tk}, in P

symmetric decryption (with matching)

The set of free variables, resp. free names, of a term or a
process is written fv(-), resp. fn(+), and is defined in the
standard way. (As usual we omit the trailing 0 of processes.)

For ease of presentation we restrict ourselves to a very
simple form of patterns; whenever matching a k-tuple of
values we allow to match on a prefix of 0 < j < k values
and then to bind the remaining k£ — j values to variables.
Syntactically, this is indicated by using a semi-colon to sep-
arate the components where matching is performed from
those where only binding takes place. Both input and de-
cryption only succeed on values where the match succeeds.
Hence, we dispense with an explicit matching construct.

In our calculus we do not have other data construc-
tors than encryption. We could easily add numbers and
operations on these as well as other constructors and de-
structors but we do not really need to do so in order to
model protocol narrations: we can obtain the same effect
using encryption and decryption. Taking pairs as an ex-
ample, and ignoring the annotations, a pair (E, E’) can
be rendered as {E, E'}ppr, and a selection mechanism
such as split F as (z1,22) in P can the be rendered as
decrypt E as {; x1,22}ppg in P assuming of course that
PAIR is a name used only for this purpose.

Similarly, we can deal with both perfect hash functions
and perfect message authentication codes. In the former
case we encrypt messages simply using a name H meant
only for hash functions; in the latter case we encrypt mes-
sages using a pair (MAC, K') where MAC is a name used
only for message authentication codes and K is a symmetric
key. In both cases we make sure that the corresponding de-
cryptions do not bind any variables (after the semi-colon);

in this way decryption already serves as the required test
on hash values. We can also deal with history-dependent
encryption in the same style of [8].

Assertions for origin and destination To describe in
LYSA the intentions of protocols, we decorate their text
with labels, called crypto-points, and with assertions spec-
ifying the origin and destination of encrypted messages.
Crypto-points ¢ are from some enumerable set C (disjoint
from A/ and X') and are mechanically attached to program
points where encryption and decryption occur. Syntacti-
cally, when we make an encryption, we have a LYSA term
on the form:

{Ey,--- ,Ek}%o [dest £]

where the assertion [dest L] specifies the intended crypto-
points £ C C for decryption of the encrypted value.

Similarly, an encryption occurring in a decrypting pro-
cess is on the form:

decrypt Eas{E},- -, Ej; zjq1,- - ,a:k}{E(,) [orig £] in P

where [orig L], specifies the encryption points £ C C at
which F is allowed to have been encrypted.

Notational conventions. We often omit [dest £] and
[orig L] in case L is C and we write [dest /] and [orig /]
instead of the more cumbersome [dest {¢}] and [orig {¢}].

We shall write | - | for a term with all annota-
tions removed; in particular |[{F1,-- - , Ej }%O [dest L] | =
(LB LBl -

To simplify the definition of the control flow analysis in
Section 4, we discipline the a-renaming of bound names.
We assume that for each name n there is a canonical rep-
resentative |n], and we demand that two names are «-
convertible only when they have the same canonical name.
A similar remark applies to variables. The function |-] is
then extended homomorphically to terms: | E'] is the term
where all names and variables are replaced by their canoni-
cal versions.

Semantics. Following the tradition of the 7-calculus, we
shall give LYSA a reduction semantics. The reduction re-
lation — 1s the least relation on closed processes that sat-
isfies the rules in Table 1. It uses the standard notion of
substitution, P[E/x], and structural congruence, =, apart
from the disciplined treatment of a-conversion, discussed
above. As far as the semantics is concerned, we consider
two variants. One takes advantage of annotations, the other
one discards them:

e the reference monitor semantics, written P —gy Q,
takes RM(¢, L', 0/, L) = (L € L' N € L);

4
Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW’'03) C nfr,r.
1063-6900/03 $17.00 © 2003 IEEE SO(IS/[CPI%?SE{R

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 28, 2008 at 05:17 from IEEE Xplore. Restrictions apply.

(Com)

N_i LE:] = LE)

Ely"'7Ek>'P | (Eiv

I- .
7Ejax]+17"'

Neo LEi] = | Ei)

r1).Q —r P | Q[Ej+1/xj41,- -+, Ex/xi]

A REL L)

(Decr)

decrypt ({E1, - - - 7Ek}(jﬂo [dest £]) as {E1, - - -

P —gr P

P —gr P

/. .
7Ej1:cj+17"'

7$k}g{) [orig L']in P —r P[Ej+1/xj41, -, Ex/xy]

P=QAQ—-rQ ANQ =P

(Par) (Res)

PlQ—-=rP|Q

vn)P —r (v

n)P’

(Congr)
P —gr P

Table 1. Operational semantics, P —r P’, parameterised on .

e the standard semantics, written P — (), takes, by con-
struction, R to be universally true.

The rule (Com) expresses that an output
(Ery -+ E;,Ejt1,--+ ,Eg). P is matched by an input
(Bq, -+ s B wjgn, 0, @x).Q in case the first j elements

are pairwise the same. More precisely, we need to compare
E; with all annotations removed with E! with all its anno-
tations removed and to express this we use the operation
| -]. When the matchings are successful each E; is bound
to each z;.

Similarly, the rule (Decr) expresses the result of match-
ing an encryption {E1,- -+, Ej, Ej4q,- - ,Ek}go [dest L]
withdecrypt £ as {Ef, -+, B 21, ,xk}gé [orig L]
in P, i.e. with a corresponding decryption. As was the case
for communication the | F; | must equal the correspond-
ing | E!] for the first j components and additionally the
keys must be the same, i.e. |Ep| = | FE}] — this mod-
els perfect symmetric cryptography. When successful, each
E; is bound to each x;. In the reference monitor seman-
tics we ensure that the crypto-point of the encrypted value
is acceptable at the decryption (i.e. £ € L) and that the
crypto-point of the decryption is acceptable for the encryp-
tion (i.e. ' € L). In the standard semantics the condition
R, L, ¢, L) is universally true and thus can be ignored.
The rules (Par), (Res) and (Congr) are standard.

As noted above, both semantics can be easily extended
to deal with more general or different annotations as well as
public key cryptography.

The LYSA specification. We are now ready to systemat-
ically translate the annotated protocol narrations from Sec-
tion 2 into LYSA.

Protocol narrations usually focus on roles, i.e. sender
(A), receiver (B), server (5). Actually, each principal may
play many different roles. In the LYSA specification we
shall be explicit about using the protocol in a more general
setting where many principals may use the protocol at the
same time. We shall assume the existence of n + 2 princi-
pals named I; (i € {-1,0,1,---,n}); the name I; can be

Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW’03)

1063-6900/03 $17.00 © 2003 IEEE

5

thought of as the IP-address of the principal. Each of the
principals Iy, --- , I, may serve in the initiator role of A
as well as in the responder role of B; the principal [; will
present itself as (I;, A) when serving as the initiator and as
(I;, B) when serving as the responder. We assume that there
is one server, which is modelled in the same way: its name
is I.; and it will serve in the role of S. Each principle can
participate in an unlimited number of concurrent runs.

In the LYSA specification we only explicitly describe the
legitimate part of the system. Any principals outside the le-
gitimate part (i.e. potential attackers) are given the canoni-
cal name I and may take on any role.

The LYSA specification of the WMF protocol is:

0. (KM K7)

Loofim [y v Ey)

JF

(I A To1, 8,1y A, {1, B, Ko Y [dest).
3. (vmaiz) - - - (vmei;)

(I, A, I;, B, {mus;, - -- ,mkij};;ij [dest B;])
2. | [for Y1, S, 15, By).
2" |f—-1 decrypt y; as {Is, A; yi; }KB [orig S] in
3/. (Ii,A,Ij,B;Zij).
3". decrypt z;; as {; 2;", -+, 2, } i« - [orig A;]in 0
. e V1, A 121, S, 1y A;).
1. [7_o decrypt x; as {I;, B; :cZJ}KA [orig A;] in
2. (I_1,8,1;,B,{I;, A, IK}KB [destB K

Here the checks of the extended narration above are per-
formed by matching on inputs and decryptions®. The sep-
aration of different branches of the matching allows us to
keep the analysis simple and efficient.

The first line of the LYSA specification ensures that the
master keys between the legitimate principals and the server
are unknown to outsiders; we assume that different keys
K# and K7 are used for the two roles of the principals.

2For simplicity, LYS A only allows matching on prefixes of tuples. Con-
sequently, we may occasionally have to rearrange the order of the elements
of tuples though this has not been necessary for the WMF protocol.

TEEE .2

COMPUTER
SOCIETY

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 28, 2008 at 05:17 from IEEE Xplore. Restrictions apply.

The next three lines model the principals /; in their ini-
tiator roles. We let ¢ range from 1 to n since we only model
the legitimate part of the system. Each initiator wants to
engage in a communication with any of the other legitimate
principals I; in their responder roles so we let j range from
1 to n as well. (A principal does not want to authenticate
itself; hence j # . If needed, e.g. for checking confi-
dentiality, we can remove this constraint.) An encrypted
message sent from the principal /; in the initiator role is
labelled with the crypto-point A; and annotated with the in-
tended crypto-point for decryption such as S in line 1 above
(strictly speaking the singleton set {.S}). Correspondingly,
the principal I; in the responder role uses the crypto-point
B;, while the server uses the crypto-point .S.

The next four lines model the legitimate principals /; in
their responder roles. The match of the first decryption (line
2"") reveals the identity of the sender and here we are pre-
pared to receive input from any agent i.e. we let j range
from -1 to n. This follows the general scheme that when-
ever we do an input or a decryption we never restrict our
attention to the legitimate part of the system; semantically
our encoding is indistinguishable from writing one input,
which matches the name of any principal.

The last three lines model the server. It is ready to handle
requests from principles inside as well as outside the legiti-
mate part of the system (so 0 < 7,5 < n); however, it does
not accept messages from itself. Note that also agents out-
side the legitimate part of the system share master keys K
and K with the server.

4. Control Flow Analysis

The aim of the analysis is to give a safe approximation
to when the reference monitor may abort the computation.

Terms. Foreach term E, the analysis will determine a su-
perset of the possible canonical values that it may evaluate
to. For this we keep track of the potential values of variables
and to this end we introduce a global abstract environment:

e p: |X| — p(V) maps the canonical variables to the
sets of canonical values that they may be bound to.

Here we write V for the set of canonical terms with no free
variables. The judgement for expressions takes the form

pEFE:Y

and expresses that ¥ C V is an acceptable estimate of the
set of values that ¥ may evaluate to in the abstract environ-
ment p. The judgement is defined by the axioms and rules
of Table 2. Note that we use the operation |-] to get hold

amount to demanding that ©J contains all the canonical val-
ues associated with the components of a term; indeed, when
fv(E) = () we have p = E : {| F|}. Furthermore:

e p=FE:Vand |E'| € p(|z]) imply
pE E[E/x]: 9.

In the sequel we shall use two kinds of membership tests:
the usual V' € ¢ that simply tests whether V is in the set ¢/
and the faithful test V' £ ¢ that holds if there is a value V' in
9 that equals V' when the annotations are ignored, formally:

Ved iff V' ed:|V]=|V]
Processes. In the analysis of processes we focus on which
values can flow on the network:

o x C p(V*): the abstract network environment that in-
cludes all the message sequences that may flow on the
network.

To obtain this information we shall, as for terms, make use
of the abstract environment p. The judgement for processes
takes the form

(ps k) Frm P 1)

where v will be a possibly empty set of “error messages” of
the form (¢, ¢’) indicating that something encrypted at £ was
unexpectedly decrypted at ¢; we prove in Theorem 2 that
when 1) = () we may dispense with the reference monitor.

The judgement is defined by the axioms and rules in the
lower part of Table 2 and is explained below.

Remember that the first three rules in Table 2 describe
the analysis of terms and, thus, give the set of values, v,
that a term may evaluate. This is used e.g. in the rule for
k-ary output that (i) finds the sets ¥J; for each term E;, (ii)
requires that all k-tuples of values (V4, - - - , V}) taken from
U1 X - - - X), can flow on the network i.e that they are in the
k-component, and (iii) requires that (p, %, 1) are also valid
analysis estimates of process P.

In input the terms Fy, - - - , E; are used for matching val-
ues sent on the network. Thus, the rule for input (i) checks
whether these first j terms have acceptable estimates vJ;
and (ii) checks whether the first j values of any message
V1,--+,V;,Viy1,..., Vi) in k (ie. in any message pre-
dicted to flow on the network) are pointwise included in 9J;.
The check is actually expressed using the faithful member-
ship predicate, i.e. as V; E¥;, because annotations are ig-
nored for matching just as in the semantics. If the check is
successful then (iii) the values V11, ..., V}, are included in
the estimates for the variables x 41, - - - , 2y, respectively.

The rule for decryption handles the matching similarly to
the rule for input: besides (i) establishing the validity of all
the components of a decryption (i.e. the sets 9 and ¥;) it (ii)

of the canonical names and variables. Basically, the rules checks for each encrypted value {Vp, - - -, Vk}f,o [dest L] €
6
Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW’'03) nfr,r.
1063-6900/03 $17.00 © 2003 IEEE CSO(IS/[CI;ILEJ¥%R

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 28, 2008 at 05:17 from IEEE Xplore. Restrictions apply.

/\fzop':Ei:ﬁi/\

|n] €9 p(lz]) €9 YVo, Vi, -, Vi : AlLg Vi €95 = {Vi,--+ Vi }y, [dest L] € 0
pEN:Y pEz:Y p'Z{Elwu,Ek}%O[destC]:ﬂ
(p,k) Frm 09
A§:1p'=Ei119iA /\g:1p|:Ei:19i/\
Vi, Vier Al Vi €9 = (Vi Vi) ERA V(Vi,- Vi) €kt Ny ViEYi = AR Vi€ p(la]) A
(pv'%) ':RMP:w (p,li) ':RMP:1/}
(p7K) ':RM <E17"' 7Ek>Pw (pﬂ‘f) ':RM (E17"' 7Ej;mj+17"' 7$k)P'¢}
(p, k) Erm Pritp A (p, k) FErm Pa c 1) (p, k) FErm P29 (p, k) FErm P21
(p, k) Erm P1|Py 2 (p, k) FErm (V)P 1 (p, k) FErm 1 P24
pEE:O N N_ypkE Ei:9i A
VA{Vi, - Vil [dest £] € 00 AL_g ViEW: = Afjpy Vi € p(|i]) A
(=RM(¢, L', 0", L) = (£,0") €) A

(p k) Erm P29
(p, k) =rm decrypt E as {E1, -+ , Ej; xji1,- - ,xk}éo [orig £']in P : %

¥ whether the values V7, ..

Table 2. Analysis of terms, p = E : ¢, and analysis of processes, (p, k) =rm P : 9.

..V} are pointwise included in

Theorem 1 If P —x Q and (p, k) =rm P : ¢ then also

the values in ¥; (including the key). Again we use the faith-
ful membership tests for matching since the semantics ig-
nores the annotations. If the check is successful then the
values predicted for the variables x; should pointwise con-
tain the values V;. Finally, (iii) the 1)-component of the anal-
ysis is updated to contain (¢, ¢') if the destination or origin
assertions might be violated, i.e. if (¢ ¢ L) or (¢’ ¢ L).

Both in the case of input and decryption we make sure
only to analyse the continuation process P in those cases
where the input or decryption could indeed succeed. This
is essential for obtaining the necessary precision so that the
analysis only rarely reports errors on correct protocols.

The rules for the inactive process, parallel composition,
restriction and replication are straightforward.

Semantic properties.
* (p, k) Erm P :tpand [E'] € p([x]) imply
(b, K) Frm PE"/x] : 1),
o If P = (Q then
(p, k) FErm P iff (p, k) Frm Q : 9.
The subject reduction result below expresses that our

analysis is semantically correct regardless of the way the
semantics is parameterised:

We have the following results:

(p, k) Erm Q : v in particular this holds for the standard
semantics as well as the reference monitor semantics.

The next result shows that our analysis correctly predicts
when we can safely dispense with the reference monitor.
We shall say that the reference monitor RM cannot abort a
process P whenever there exist no @, Q" such that P —*
Q — Q' and P —},, Q-rm. As usual, stands for the
transitive and reflexive closure of the relation in question,
and Q—rwm stands for =3Q’ : Q —rm Q’. We then have:

Theorem 2 If (p, k) Erm P : () then RM cannot abort P.
Analysis of WMF. For the protocol of Section 2 we have

(p, /i)):RM WMF : (Z)

where p has these non-empty entries (for 1 < 4,5 < n,
i #£j,and1 <1 <k)

p: i {{Ij,B,Kij}z}[destS]}
ey = {Ky)
v — {{l;, A Kij}jedest By}
yly — {Ki}
zig = {{maig, - mig Y [dest By}
zit = {mag}

7

YF]',F.

Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW’03)
1063-6900/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 28, 2008 at 05:17 from IEEE Xplore. Restrictions apply.

COMPUTER

SOCIETY

and k is:

K {<Ii7A7[*1757Ii7A7{Ij7B7Kij}2iA[deSt S]>}
W{(I-1,5, 1;, B, {Ii, A, Ki; } 5 [dest B;])}
J
U{(Li, A, 13, B, {muij, -+ s mus} i [dest By))}

Observe that yff is bound to the session key K;; and that
z{;" is bound to my;; indicating the communication of 7
from principal I; to principal /;.

5. Modelling the Attacker

Protocols are executed in an environment where there
may be malicious attackers. Writing P, for the imple-
mentation of the protocol, the actual environment may take
the form of an arbitrary process having a placeholder for
Py, for most process algebras the characteristic contexts
take the form P, | @ for some process () representing the
environment and this is the scenario we consider as well.

Hardest attackers and Dolev-Yao. We aim at finding a
formula fRDl\\,(, characterising all attackers; this means that
if (p, K, 1)) satisfies Fry then (p, k) FErm @ : ¢ for all at-
tackers). There are at least two approaches to finding such
a formula. One is to define a formula inspired by the pio-
neering studies of Dolev and Yao [14] and then to prove its
correctness. The other is to find a “hardest attacker” and to
prove that it is as strong as any other attacker as was done
for firewall security in [31]. We base our presentation on the
first approach and then show the close connection between
the two approaches in Theorem 4.

To characterise all attackers we need to make a few as-
sumptions that benefit the control flow analysis but that have
no semantic consequences. We shall say that a process P is
of type (Nf, Ay, Agnc) whenever: (1) it is closed (i.e. has
no free variables), (2) its free names are in N;, (3) all the
arities used for sending or receiving are in 4,; and (4) all
the arities used for encryption or decryption are in Agpc.
Clearly we can inspect Py to find minimal Nt Ay, Agne
such that Py, is of type (N5, A,., Agnc); to avoid having to
deal with too many special cases we shall assume that A,
contains at least one positive integer (e.g. 1). We claim that
there is no loss of generality in assuming that attackers have
type (s, A, Agnc) as well; in particular, we claim that the
ability of the attacker to use a “private channel” based on
k-ary communication for k ¢ A,; or k-ary cryptography for
k ¢ Agnc, does not increase its computational power.

One aspect concerning attackers is that we have no con-
trol over the canonical names and variables used. This
motivates inspecting P, to find the finite set N of all
canonical names used and the finite set A, of all canon-
ical variables used. We then postulate a new canoni-
cal name n, not in N; and a new canonical variable z,

not in X.. Given a process Q of type (N, A, Agnc)
we then construct the semantically equivalent process @l
as follows: (a) all restrictions (vn)P are a-converted
(in the classical sense) into restrictions (v n’)P’ where n’
has the canonical representative n,, (b) all occurrences
of variables z; in (Ei,---,Ej; xjq1,---,2x). P and
decrypt Eas{E,--- ,Ej; xjq1,- - ,xk}f% [orig L] in P
are a-converted (in the classical sense) to use variables
with canonical representative z,. Thus, @/ only uses finitely
many canonical names and variables.

Another aspect concerning attackers is the presence of
annotations. In our view the attacker really should not have
annotations at encryption and decryption points since the
annotations are intended for expressing the intentions of the
protocol and the attacker cannot be part of this. However,
our syntax requires annotations and we therefore take the
semantically equivalent approach of ensuring that all anno-
tations are the trivial ones, [dest C] and [orig C], and that all
crypto-points are replaced by the crypto-point ¢4 not occur-
ring in P,,. We write Q for the resulting process.

We now have sufficient control over the capabilities of
the attacker that we can characterise the potential effect of
all attackers @ of type (N, Ay, Agnc). We do so by defin-
ing the formula FR of type (Nf, Ay, Agnc) for expressing
the Dolev-Yao condition for LYSA; it is defined as the con-
junction of the five components in Table 3.

We can now establish the soundness of the Dolev-Yao
condition for LYSA:

Theorem 3 If (p,r,%) satisfies FRN of type
(N7, A, Agnc) then (p. k) Frm Q = ¢ for all attack-
ers Q Oftype (Ma Am AEnc)'

We can now show the close connection between the
Dolev-Yao condition and the notion of “hardest attackers”
[31]. This result also shows the “completeness” of the
Dolev-Yao condition: we have not needlessly added capa-
bilities that cannot be possessed by real attackers:

Theorem 4 There exists an attacker Qhnard
of type (Ni, A, Agnc) such that the formula

(p, k) ErM Qhard : ¥ is equivalent to the formula
FR of type (N, Ay, Agnc).

Crypto-based authenticity. The annotations of LYSA
were designed to facilitate studying the properties of
origin authentication and of destination authentication.
The first property amounts to making sure that an en-
crypted message that principal B; expects from A; (written
decrypt Fas{Ey,-- ,xk}f% [orig A;]in P)
was indeed encrypted only by A;. The second property
is symmetric: a message that A; intends for B; (written
{Ey,--- ,Ek}fgo [dest B;]) is successfully decrypted only
by B.

B i,

8
Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW’'03) C nfr,r.
1063-6900/03 $17.00 © 2003 IEEE SO(IS/[CPI%?SE{R

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 28, 2008 at 05:17 from IEEE Xplore. Restrictions apply.

(1) Area, Y(Vi,---, Vi) € 52 Aiy Vi € p(za)
(2) /\kGAEnc V{V17 e 7Vk}$/0 [deSt ['] € p(z.) :
Vo Ep(ze) = (Ajz1 Vi € p(2e) A
(=RM(£,C, fu, £) = (£, 04) € 1))
(3) Akecage YWVo, Vit Al Vi € p(2e) =
{Vi,-+, Vi}yt [dest C] € p(za)

(4) Nkea, YV, Vie: Aiiy Vi€p(za) = (Vi - -

(5) {ne} U [Ni] € p(20)

7Vk>€l€

the attacker may learn by eavesdropping

the attacker may learn by decrypting messages with keys
already known

the attacker may construct new encryptions using the keys known

the attacker may actively forge new communications

the attacker initially has some knowledge

Table 3. Dolev-Yao condition.

A—S: A{BK}g, M—S: M{B,K}g, | A— Ms:
S — Mp:A{K}ky S — Mp: M, {K}ky, My — S:
Mg — B: A {K}k, Mg — B: A {K}k, S — B":
A—B: {mi--mptxk M—B: {mi---mi}tx | A— Mp:
My — B

Attack 1 Attack 2

Ava{K}KA AHMS:AvB’{K}KA A—>MS:A7B7{K}KA
A B {K}k, Ms—S: AM{K}k, Ms—S:AM{K}k,
{A7K}KB/ S — M: {A7K}KM S— M : {A7K}KA/[
{mi--mptx A— Mp:{mi---mptx My — S:A B {K}k,
{mi---mg}x S—B: {AK}kg
M—B: {mi--mg}tx
Attack 3 Attack 4 Attack 5

Table 4. Attacks on WMF variations.

More formally, for the dynamic property we say that
Py, guarantees dynamic authentication with respect to the
annotations in FPq,, if the reference monitor RM cannot
abort Py, | Q regardless of the choice of the attacker Q.

Similarly, for the static property we say that Ps,, guar-
antees static authentication with respect to the annotations
in Py, if there exists p and « such that (p, k) Frm P : 0
and (p, r, 0) satisfies FR\

Theorem S If Py, guarantees static authentication then
Py, guarantees dynamic authentication.

Proof. If (p,x) Erm Psys : 0 and (p, k, () satisfies F
then, by Theorems 2 and 3, RM does not abort Pgy | Q
regardless of the choice of attacker Q.

Validation of WMFE. We analyse the WMF protocol of
Section 2 and restrict our attention to the solutions that sat-
isfy the formula FRy thereby taking care of the Dolev-Yao
attacker. The least solution has an empty ¢)-component re-
flecting that the analysis guarantees static as well as dy-
namic authentication.

We now consider two variants of the protocol: one where
the initiator’s name is not encrypted and one where the re-
sponder’s name is not encrypted (see Appendix A). In the
first case the 1)-component is

{(Ai, Bj) |i#j,1<i,j<n} U{(le,B) |1 <j<n}

showing that static authentication fails. The pair (A;, B;)
shows that a value encrypted at A; has wrongfully been de-
crypted at B;; similarly, the pair (¢,, B;) shows that a value
created by the attacker has been decrypted at B;. Actually

9

also dynamic authentication fails: the two contributions to
1) correspond to the first two attack sequences of Table 4;
here we write Mx to denote the attacker (called M) pre-
tending to be X. Both sequences will result in B believing
that he is communicating with A’ although he is communi-
cating with A and M, respectively.

In the case where the responder’s name is not encrypted
(see Appendix A) the ¢ component becomes

{(Ai,€)|1<i<n} U {(ts,B;)]|1<j<n}

so again the analysis shows that static authentication fails.
Also dynamic authentication fails: the attacks correspond-
ing to the three contributions to v are shown in the last three
columns of Table 4.

6. The Implementation

One can show that there always is a least choice of p,
k, and v such that (p, k) Erm P : ¢ and (p, &, 1)) satis-
fies FRy. To obtain an implementation we use the Suc-
cinct Solver [33], which for a formula of an extensions
of Horn clauses, called Alternation-free Least Fixed Point
logic (ALFP), finds the least interpretation of the predicate
symbols in the formula, which satisfies the formula. The
logic is interpreted over a finite universe unlike the compo-
nents p, x and ¢, which contain elements from the infinite
universe of terms. To obtain an efficient implementation we
transform the analysis into a logically equivalent formula-
tion written in ALFP and we also ensure that the terms can
be encoded over a finite universe. We proceed as follows.

Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW’03)
1063-6900/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 28, 2008 at 05:17 from IEEE Xplore. Restrictions apply.

TEEE .2

COMPUTER
SOCIETY

Firstly, the specification of the analysis in Table 2 is suc-
cinct [35]; using the techniques of [34] it is transformed into
a verbose specification [35]. This is obtained by adding fur-
ther labels to the syntax and making every analysis compo-
nent global by using the new labels to link the values of the
components to specific places in the syntax.

Secondly, applying techniques from [32] the specifica-
tion is transformed to use a finite universe by encoding
terms as production rules in a tree grammar. Essentially,
this boils down to representing encrypted terms by one level
of nesting. Remember that we have added labels (written as
superscripts and for now ignoring annotations) so a term
such as { £’} .1, will be represented by the value {l2};,.
Assuming that K is a name we then keep a production rule
ly — K along with production rules for the non-terminal /5
describing the value of the term E. This lets us represent in-
finitely many values by a finite number of production rules.
Take for example the process

(n) | o). ({2} 2,

which encrypts the name n arbitrarily many times under the
key K. We represent all the possible values occurring by the
productionrules Iy — n,ly — {l4}15,l3 — K, and ly — 4
and [, — l2. Note in particular that the applied occurrence
of = at l4 may evaluate to both the value from [; (i.e. to
n) and to all the values of the encrypted term at lo. The
latter gives rise to a cycle in the grammar, thus, representing
encryptions of arbitrary nesting depth. The simple structure
of the terms allows us in general to represent all possible
values, which occur during process execution, by a finite
number of production rules.

Thirdly, we transform the analysis into ALFP. This in-
volves a number of straightforward encodings such as repre-
senting sets as predicates and encoding the finite sequences
used in communication and encryption into predicates of a
fixed arity.

The formula FRY for the attacker is transformed in a
similar way as described in the second and third step above.
Finally, the analysis is turned into a formula generation
function that given a process P produces an ALFP formula,
which represents the analysis of P. This formula together
with the transformed FRy is then given to the Succinct
Solver, which calculates the values of the analysis compo-
nents p, k, and 1 (which by now are represented in a differ-
ent, but equivalent, way to those used in Table 2).

The time complexity of solving a formula in the Succinct
Solver is polynomial in the size of the universe, over which
the formula is interpreted. For our implementation the uni-
verse is linear in the size of the process and a simple worst-
case estimate of the degree of the complexity polynomial
is given as one plus the maximal nesting depth of quanti-
fiers in the formula [33]. For our current implementation
the nesting depth is governed by the maximal length of the

sequences used in communication and encryption though
techniques from [32] might have been be applied to yield a
cubic worst-case upper bound. In practice, the implemen-
tation runs in sub-cubic time and we obtain running times
well under one minute for all the experiments conducted in
the next section.

7. Validation of Protocols

In this section we summarise the analysis results we
have obtained for a number of variations of the following
symmetric key protocols: Wide Mouthed Frog (as studied
in Section 2) [4, 10], Needham-Schroeder [28], Amended
Needham-Schroeder [29], Otway-Rees [36], Yahalom [10]
and Andrew Secure RPC [40]. The protocol narrations are
summarised in Appendix A. In the actual experiments we
have taken the number of principals, n, to be 3.

Robustness of protocol narrations. In our formalisation
of protocol narrations in LYSA in Section 2 we decided to
focus on: (i) separating identities (e.g. I;) fromroles (e.g. A
and B), and (ii) using distinct master keys (e.g. Kl-A and
K25) for distinct roles. Decisions like these are crucial for
the properties of the protocol and our first experiment will
show not only that some of the protocols are more robust
than others but also that our approach is able to pinpoint the
amount of safeguarding needed for a protocol to be trust-
worthy (see Table 5).

When roles as well as master keys are kept distinct, as
shown in the first column of Table 5, we observe a non-
empty value for v in the case of Needham-Schroeder. This
reflects a potential problem due to a type flaw so that the
attacker sends the incremented nonce (in step 5 of Appendix
A) instead of the nonce (in step 4). A simple correction is to
insert unique tags in the encrypted messages produced in the
protocol; with these corrections our analysis result reports
that the problem has disappeared. Similar type flaws and
corrections are observed for Amended Needham-Schroeder
and Andrew Secure RPC.

The next three columns of Table 5 show what hap-
pens when we omit some of the safeguards. For the Wide
Mouthed Frog, ¥ is non-empty when master keys and roles
are the same. This corresponds to a parallel session attack
(reported in e.g. [15]) where the first message from one ses-
sion gets mixed up with the second message from another.
The attack cannot take place when we keep roles or master
keys apart, which is confirmed by the analysis result.

For Otway-Rees there is an attack when master keys are
not kept distinct. This corresponds to an attack reported in
[37], which exploits that encrypted messages from a princi-
pal acting both as initiator and responder may be confused.

In [10] an optimised version of the Yahalom protocol is
suggested and an attack is reported in [42]; from Table 5

10
Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW’'03) C nfr,r.
1063-6900/03 $17.00 © 2003 IEEE SO(IS/[CPI%?SE{R

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 28, 2008 at 05:17 from IEEE Xplore. Restrictions apply.

protocol A#B A=B A#B A=B
1<ij<ni#j No K #KP NoK{ #KP ANoK{ =KP ANeoK{ =KP
Wide Mouthed Frog 0 0 0 (A4, Bi), (S,S)
with nonces 0 0 [0
Needham-Schroeder (A;, As) (A;, As) (A;, As) (A, As)
with type flaw corrected 0 0 0 0
Amended Needham-Schroeder (A;, As) (A;, As) (A;, As) (A, As)
with type flaw corrected 0 0 0 0
Otway-Rees |0 | 0 | (B:,S5),(S,B:) | (Bi,S),(S,B:)
Yahalom [[[0
with BAN optimisation 0 0 [(Ai, Bi), (S, As), (S, By)
Paulson’s amendment] 0 [0
Andrew Secure RPC (A7, B)), (BI, A)) | (A7, B)), (BI, A}) | (A7, B)), (B, A7) | (A7, B)), (BI, A))
with BAN correction [0 0 0
and type flaw corrected

Table 5. Overview of results: robustness of protocol narrations.

Needham-Schroeder
with type flaw corrected

Amended Needham-Schroeder [
with type flaw corrected

(B2, %), (Le, B2)

Table 6. Overview of results: leaking of old
session keys.

we see that the attack only succeeds when not distinguish-
ing between roles and when using the same master key for
distinct roles. Paulson [38] suggests an amendment whose
correctness we can confirm.

Our findings suggest that many classical problems such
as parallel session, type flaw, and reflection attacks occur
precisely because a number of crucial distinctions are not
made sufficiently clear in the protocol narrations; it is en-
couraging to observe that our approach can pinpoint this.

Leaking an old session key. Many protocols become in-
secure when old session keys are compromised. Our second
experiment shows that our approach is able to detect also
these vulnerabilities. To be specific we add an old session

protocol | K95 is leaked key KX and the corresponding tickets issued by the server
Wide Mouthed Frog (te, B2) (see Section 2) to the knowledge of the attacker in formula
with nonces 0 (5) in the definition of the formula F%y in Section 5. We

perform our experiments using full safeguards: roles and
identities are kept distinct and distinct master keys are used
for distinct roles (see Table 6).

Our results confirm that the WMF protocol as presented

Otway-Rees | 0 in [4] is problematic when old session keys are leaked. The
Yahalom (e, Bs) original presentation in [10] used time stamps but since
with BAN optimisation 0 we do not model time we present a correction with nonces
Paulson’s amendment [] (see Appendix A); our analysis result then guarantees static
Andrew Secure RPC (A1,4) as well as dynamic authentication even in the presence of
with type flaw corrected leaked old session keys.
with BAN correction 0 We also confirm that the Needham-Schroeder protocol

is vulnerable to the leaking of old session keys; the cor-
responding attack is that of Denning-Sacco [13]. Further-
more, our analysis results guarantee static and dynamic au-
thentication for the Amended Needham-Schroeder protocol
(with the type flaw corrected) and the Otway-Rees protocol
in the presence of leaked old session keys.

For the Yahalom protocol our analysis result shows that
there may be an authentication problem in case of leaked
old session keys. This is a false alarm which is due to the
independent attribute nature of our analysis. It is interesting
to observe that, although the authenticity of the protocol has
been proved by Paulson in [38], he mentions that the proof
is considerable more complex than that for the BAN opti-
mised version and that he had to introduce a relation keep-
ing track of associated pairs of session keys and responder
nonces; in our terminology this would correspond to intro-
ducing a relational component in the analysis [30]. For the
BAN optimised version (and the amendment suggested by
Paulson) our analysis guarantees static as well as dynamic
authentication in the presence of leaked old session keys.

11
Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW’'03) C nfr,r.
1063-6900/03 $17.00 © 2003 IEEE SO(IS/[CPI%?SE{R

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 28, 2008 at 05:17 from IEEE Xplore. Restrictions apply.

For the Andrew Secure RPC protocol we observe the
problem with leaks of old keys as reported in [10]; our anal-
ysis confirms that the amended version suggested in [10]
indeed solves the problem.

8. Conclusion

We have shown that protocol narrations may be formalised
as LYSA-processes such that a static analysis can pinpoint
a wide variety of errors in communication protocols.

The calculus. The design of LYSA was patterned after the
Spi-calculus but LYSA has been adapted so as to facilitate
that useful information may be obtained from a relatively
unsophisticated static analysis. Extensions of the analysis
may be able to deal directly with a more permissive calcu-
lus.

We have taken a perfect view of cryptography and only
considered attacks or phenomena that can be expressed in
LYSA. Since time is not present in LYSA we cannot deal
with the duration of time stamps, i.e. when they do not
merely serve as nonces. Since we only allow structured
data we do not deal with bit strings and type flaw attacks
based on a concatenation of two bit strings being viewed as
a single bit string; in our view the diligent use of Abstract
Syntax Notation One (ASN.1) will provide the necessary
safe guards. In subsequent work we plan to deal with per-
fect asymmetric cryptography, and a more direct treatment
of hash functions and message authentication codes so that
we can also account for digital signatures and certificates.

The security properties. We have focused on authenti-
cation properties based on origin authentication and des-
tination authentication. This notion of authentication has
the advantage that it can directly be captured by the opera-
tional semantics and therefore also by a static analysis. In
our view we capture many of the authenticity problems nor-
mally studied using a session-based approach, i.e. where
certain end-of-transactions need to match with the right
begin-of-transactions. Including the specification of secu-
rity goals in our narrations, is somewhat reminiscent of Woo
and Lam’s idea of correspondence assertions [44].

Our techniques are also able to deal with a number of
other security properties, e.g. secrecy. The present devel-
opment allows us to inspect the contents of p(z,) in or-
der to determine whether or not “secrets” may end up in
the attacker. Partitioning values in secret and public suf-
fices: if p(z,) only contains public values confidentiality is
guaranteed. Alternatively one may extend LYSA with ex-
plicit confidentiality annotations: whenever a new name is
introduced we add the set X/ C X of canonical variables
to which the name may be bound, e.g. (v N|within X)),

and at each binding occurrence we add the set of canon-
ical names N/ C N that may be bound to the variable,
e.g. (- mi[from N'],---).

Moving further in the direction of annotations we may
add beliefs in the style of BAN logic. For example, we
may decide to change the syntax of LYSA to add annota-
tions to the creation of new nonces about its intended use,
e.g. (v N[A — B]) might denote the creation of a nonce
intended to establish an authentic connection from A to B.
The main challenge will be to modify the reference monitor;
there may well be BAN-like annotations where it is unclear
how to enforce them by means of a reference monitor.

The static analysis. We have made an effort in choosing
a static analysis that is informative, that has good perfor-
mance and that is not overly complicated to explain. We
would like to extend the analysis to deal with the multi-
plicities of messages in order deal with replay attacks also
from the same round and with more general correspon-
dence properties than the non-injective agreement consid-
ered here. Also we would like to add additional information
to the analysis that would facilitate constructing the finite
counterexamples that constitute the real proof of the exis-
tence of protocol flaws (as in Table 6). Finally, we would
like to extend the analysis to be transition-oriented in or-
der to deal more directly with session-based authentication
properties in the manner of Woo and Lam [44].

References

[1] M. Abadi. Secrecy by typing in security protocols. Journal
of the ACM, 5(46):18-36, 1999.

M. Abadi. Security Protocols and their Properties. In Foun-
dations of Secure Computation. NATO Science Series, [0S
Press (2000), 39-60.

M. Abadi and B. Blanchet. Analyzing security protocols
with secrecy types and logic programs. In Proc. POPL’02,
pp 33—-44. ACM Press, 2002.

M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols - The Spi calculus. Information and Computation
148, 1:1-70, 1999.

M. Abadi and M. R. Tuttle. A semantics for a logic of
authentication. In Proc. Symposium on Principles of Dis-
tributed Computing, pp. 201-216. ACM Press, 1991.

C. Bodei. Security Issues in Process Calculi. PhD the-
sis, Dpt. di Informatica, Universita di Pisa. TD-2/00, March,
2000.

C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Static
analysis for the m-calculus with applications to security. In-
Sformation and Computation, 168:68-92, 2001.

C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Flow
logic for Dolev-Yao secrecy in cryptographic processes.
FGCS, 18(6):747-756, 2002.

D. Bolignano. An approach to the formal verification of
cryptographic protocols. In Proc. Conf. on Computer and
Communications Security, pp. 106-118. ACM Press, 1996.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

12
Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW’'03) C nfr,r.
1063-6900/03 $17.00 © 2003 IEEE SO(IS/[CPI%?SE{R

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 28, 2008 at 05:17 from IEEE Xplore. Restrictions apply.

[10]

M. Burrows, M. Abadi, and R. Needham. A Logic of Au-
thentication. ACM Transactions on Computer Systems, pp.
18-36, 1990.

[32] F. Nielson, H. R. Nielson, and H. Seidl. Cryptographic anal-
ysis in cubic time. Electronic Notes of Theoretical Computer
Science, 62, 2002.

[11] I Cervesato, N.A. Durgin, P.D. Lincoln, J.C. Mitchell, and [33] F. Nielson, H. Seidl, and H. R. Nielson. A succinct solver
A. Scedrov. A Meta-notation for Protocol Analysis, In Proc. for ALFP. Nordic Journal of Computing, 9:335-372, 2002.
CSFW, 1999. [34] H. R. Nielson and F. Nielson. Flow logics for constraint

[12] G. Denker and J. Millen. CAPSL integrated protocol envi- based analysis. In Proc. CC’98, LNCS 1383, pp. 109-127.
ronment. In DARPA Information Survivability Conference, Springer,.l998. .))
pp. 207-221. IEEE Computer Society, 2000. [35] H. R. Nielson and F. Nielson. Flow Logic: a multi-

[13] D. E. Denning and G. M. Sacco. Timestamps in key distri- paradigmatic approach to static analysis. The Essence of
bution systems. CACM, 24(8):533-536, 1981. Computation: C()mple)fity, Analysis, Transformation, LNCS

[14] D. Dolev and A. Yao. On the security of public key proto- 2566. pp 223-244. Sprmger,. 2002. .)
cols. IEEE TIT, IT-29(12):198-208, 1983. [36] D. Otway and O. Rees. Efficient and timely mutual authenti-

[15] A. Durante, R. Focardi, and R. Gorrieri. A compiler for cation. ACM Operqting Systems Review, 21(1?:8f10’ 1987.
analysing cryptographic protocols using non-interference. (371 L. Pa}llson. The inductive approach to Verl'fylng crypto-
ACM ToSEM, 9(4):488-528, 2000. %;a;:;ghlc pl"OtOCOlS. Journal afC()mputer Securlty, 6:85-128,

[16] E. J. T. Fébrega, J. C. Herzog, and J. D. Guttman. Strand :)
spaces: Why is a security protocol correct? In Proc. Conf. (38] L. Pauflscl)ln. Yﬁl?tlons betwelen;;crgts:];rwdf) folrjm'al an.al—
on Security and Privacy, pp. 160-171, 1998. IEEE Press. ésesl o dt 1e alom protocol. » Cambridge University,

[17] R.Focardi and R. Gorrieri. A classification of security prop- [39] Bn% 221“’)6 z?li'P Gardiner. Security Modelling in CSP and
rties. Journal of Computer Security, 3(1)., 1995. Fi)R' final Repc;rt TR F(;rmal Sysytems EurOI%e 1995

18] D. Goll . What d by Entity Authentication. ; o i ’

L18] In P;:)Cmg,n:ﬂ (m.'::n (:)nWSicr-Efr:?t; a}’; d I;’;izacu en 122_122 [40] M. Satyanarayanan. Integrating security in a large dis-
IEEE o o 1006 Y» PP ' tributed system. ACM ToCS, 7(3):247-280, 1989.

[19] L. Gon If Nee dhamyan d R Y, aha;lom Reasonine about [41] S. Schneider. Security properties and CSP. In Proc. Sym-

- Jong, B . ’) & posium on Research in Security and Privacy, pp. 174-187.
belief in cryptographic protocols. In Proc. Symposium on .
. .) IEEE Computer Society Press, 1996.
Research in Security and Privacy, pp. 234-248. IEEE Com-
. [42] P.Syverson. A taxonomy of replay attacks. In Proc. CSFW,
puter Society Press, 1990. pp. 187-191. IEEE, 1994

[20] A. D..Gordon and A. Jeffrey. Aut’hentlclty by Typing for [43] P. Syverson and P. van Oorschot. A unified cryptographic
Security Protocols. In Proc. CSFW’01. IEEE, 2001. protocol logic. TR, NRL Publication 5540-227. Naval Re-

[21] A. D. Gordon and A. Jeffrey. Types and Effects for Asym- search Lab. 1996
metric Cryptographic Protocols. In Proc. CSFW, 2002.' [44] T.Y.C.Woo and S. S. Lam. A Semantic Model for Authen-

(221 G. LOW.C' Afl attack on the Needham-Schroeder public-key tification Protocols in em Proc. of the IEEE Symposium on
authentification protocol. IPL, 56(3):131-133, 1995. Security and Privacy, pp. 178-195, 1993.

[23] G. Lowe. Casper: A compiler for the analysis of security
protocols. In Proc. CSFW "97, pp. 18-30. IEEE Press, 1997. .

[24] C. Meadows. The NRL protocol analyzer: An overview. A. Protocol Narrations
Journal of Logic Programming, 26(2):113-131, 1996.

[25] J. Millen and V. Shmatikov. Constraint solving for bounded- The analysis results reported in the paper are based on the fol-
process cryptographic protocol analysis. In Proc. Confer- lowing versions of the protocols. The corresponding LYS A speci-
ence on Computer and Communication Security, pp. 166— fications are obtained following the guidelines of Section 2.

175. ACM SIGSAC, 2001.

[26] J. K. Millen. The Interrogator: A tool for cryptographic pro- Wide Mouthed Frog. [4]
tocol security. In Proc. Symp()sium. on Security and Privacy, 1. A—S: A{B K}k,
pp. 134-141. IEEE Computer Society Press, 1984. 2. S—B: {AK)k

[27] J. C. Mitchell, M. Mitchell, and U. Stern. Automated anal- ' . ’ B

) ' : 3. A—=B: {mi, - ,mi}k
ysis of cryptographic protocols using mur¢. In Proc. Conf. L]
on Security and Privacy, pp. 141-153. IEEE Press, 1997. The initiator’s name is not encrypted:

[28] R. M. Needham and M. D. Schroeder. Using encryption for 2. S—=B: A{K}xg
authentication in large networks of computers. Communica- The responder’s name is not encrypted:
tions of the ACM, 21(12):993-999, 1978. 1. A—=S: AB{K}lk,

[29] R. M. Needham and M. D. Schroeder. Authentication revis- A version with nonces:
ited. ACM Operating Systems Review, 21(1):7-7, 1987. 1. A—B: AN,

[30] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Pro- 2. B—S: {AB,(Na,K)}r,
gram Analysis. Springer, 1999. 3. S—A: {B,(Na,K)}x,

[31] F. Nielson, H. R. Nielson, and R. R. Hansen. Validating 4. A—B: {mi, - ,mp}x
firewalls using flow logics. Theoretical Computer Science, The pair operation is modelled by an encryption with the key
283(2):381-418, 2002. PAIR as explained in Section 3.

13
Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW’03) ‘FPF
1063-6900/03 $17.00 © 2003 IEEE C(s)cl\)/g%%%}{

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 28, 2008 at 05:17 from IEEE Xplore. Restrictions apply.

Needham-Schroeder (symmetric key). [28] 4. B—A: {K' Np}x
voATS AN Coiectiﬁ _t;Ei e f’l?vij e
25— {NA7 B, K, {K’ A}KB }KA 1. Ag—> B):p A {U1 Natr
i' 2 : Jj I g;ﬁ“ 2. B—A: {uz, Na+1,Nplk
') 3. A—B: {us,Np+llx
5. A— B: {Np+l}x b B A {u K ND)
6. A— B: {m1,~~~,mk}K : : 4, s VB K
Correcting the type flaw: BA4N Cogeil(ils.: fun K N Nab
4. B—A: {uhNB}K . X . ’ » Y8))
5. A—B: {us, Np+1}x For this protocol we use unique crypto-points in the LYSA

The successor operation is modelled by an encryption with the
key succ that is known to the attacker. The type flaw is corrected
by inserting extra components (u1, uz, - - -) in the encrypted mes-
sages.

Amended Needham-Schroeder.
1. A—-B: A

[29]

specification in order to get a more precise account of the errors
reported by the analysis.

B. Proofs

Substitution result.

2. B—A: {ANhlx, e pEFE:Yand |E'| € p(|z]) imply p E E[E’'/x] : 9.
3. A—S: AB,Na,{A Nplk, e (p,k) Erm P :tpand |E'| € p(|z]) imply
4. S—A: {Na,B,KAK,Np, Alky}r, (p,k) Erm PIE' /2] 1 .
5. A— B: {K,Np,A}k, . . .
6. B—A: {Np}x Both proofs are by a straightforward structural induction.
7. A— B: {NB+1}K
8. A—B: {mi, - ,mi}k Congruence result.
Correcting the type flaw: o If P=Qthen (p,k) Frm P : ¢ iff (p, k) Erm Q : .
6. B— A: N,
7 A : B- ?:1’ NB i_ﬁ} The proof amounts to a straightforward inspection of each of
' ' B BT the clauses defining P = Q.
Otway-Rees. [36
y 56 Theorem 1: Subject reduction theorem. We prove the
1. A—B: N, {Na,N,A B}k, more general result
2. B—S: N7{NA7N7A>B}KA7{NB7N7A7B}KB .
3. S—B: N,{Na,K}x,,{Ng,K}x, * (p,r) Frm P i pand P —r Q imply (p, k) f=rm Q @ 93
4. B—A: N{Na K, furthermore, if ¢ = @) then P —grm Q.
5 A—B: {mh ey mk}K by induction on the inference P —x @ (as given in Table 1).
In case (Com) we assume (p,k) | (F1, -+, FEx). P |
Yahalom. [10] (E1,--- ,Ej;xjq1,--+ ,@r). Q : ¢ which amounts to:
1. A—B: A/N4x k .
2. B—S: B,{A,Na,Ns}, Ni=1p = Ei: v $))
3. S—A: {B,K,Na,Ngtr,, {A K}r, Wi, Ve A Vi€l = (Vi Vi) € (D)
4. A—B: {A K}k, {NB}lk (p,k) Erm P : 9 3)
- A= B {ma,e muitk Nerp B, 4
BAN optimised version: V(Vi, Vi) €k /\J"—1 Vi eV, 5)
1. A—B: ANj E Ve olle .
2. B—S: B,Np,{A Na}lk, = M= Vi€ pllm) A (pym) ru @20
3. S—A: NpAB K Nabicao {A, K, Notrp Furthermore we assume that A7_, | E;| = |E;| and we have
4. A—B: {A K, Ne}kgy,{NB}K
5. A—B: {mi,-- ,milx to prove (p,) | P | Q[Ej+1/%j41, -+, Ex/zx]. From (1)
' ' o we get APy |E;| € 9; since Af_; fv(E;) = () and then (2)
Paulson’s amendment [38]: gives (| E1],---,|Ex]) € s From (4) and the assumption
3. S—A: Np{B,K,Natk,,{A B, K,Np}rpy N_i LE:] = |E]] we get Al_, |Ei] EY;. Now (6) gives
4. A—B: {A B K Nplks,{Np}x Ay |Bi] € p(|z:]) and (p, k) =rm Q : 4. The substitution
result then gives (p, k) Ervm Q[Ej+1/Tj+1, - , Ex/xi] : ¢ and
Andrew Secure RPC. [40] together with (3) this gives the required result. The second part of
the result holds trivially.
1. A—=B: A/ {Na}x Yy
2. B—A: {Natl,Nslx In case (Decr) we assume (p, k) = decr)z/pt ({j.E‘17 o Ek}ZEO
5 A—B: {Nstilx [dest £]) as {2, I}; z1, wi Yl [orig £]in P : o
14
Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW’03) ‘FPF
1063-6900/03 $17.00 © 2003 IEEE C(s)cl\)/g%%%}{

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 28, 2008 at 05:17 from IEEE Xplore. Restrictions apply.

which amounts to:

/\fzo P ': Ei v (6)
WVo, Vi, oo, Vit Ao Vi € 0 @)
= {Vi,--+ Vi }y, [dest £] € 0
N_op = E;: 0] ®)
v{Vi,-- Vk}v [dest £] € 9 : N, Vi EV;)
= A Vi p(las) A
(-RM(L, L' 0, L) = (£,0') €) A
(k) Fru P9
Furthermore we assume AJ_, |E;| = [Ej]| and we have to

prove (p,k) E P[Ej+1/xj+17 -+, Ey/zk]. From (6) and
AR fv(Ez) = 0 we get Al_y |E;] € 0; and then (7) gives
{|E1],"- LEkJ}V [dest £] € ©. From AJ_ o LEi] = |Ei]
and (8) we get AJ_, | E;] E¥} and then (9) gives A, |E;] €
p(lzi]) and (p, k) Frm P : 9. Using the substitution result we
get the required result. For the second part of the result we ob-
serve that =RM(¢, L', ¢, L) = (£,¢") € v follows from (9) and
since 9 = () it must be the case that RM(¢, L', ¢', £). Thus the
conditions of the rule (Decr) are fulfilled for —grpm.

The cases (Par) and (Res) follow directly from the induction
hypothesis. The case (Congr) also uses the congruence result.

Theorem 2: Static check for reference monitor.

e Assume (k) E=rm P : (). Then, there exist no Q, Q" such
that P —* Q — Q" and P —g&y Q +rm.

To prove this suppose per absurdum that such Q and Q' ex-
ist. The subject reduction result applied to P —* @ gives
(p,k) Erm Q : 0. The generalised subject reduction result ap-
plied to Q — Q' gives Q —rm Q' which is a contradiction.

Theorem 3: Correctness of Dolev-Yao condition. A pro-
cess @ has extended type ({ze }, Nt U {ne}, A, Aenc) Whenever
the canonical variables are in {ze}, the canonical names are in
|Nf] U{ne}, all the arities used for sending or receiving are in Ay
and all the arities used for encryption or decryption are in Agnc. By
structural induction on @ (see Section 5) we prove:

o If (p,k,1) satisfies Fry of type (Nf, A, Agnc) then
(p,k) Erm Q : ¢ for all attackers @ of extended type
({ze}, Nf U {ne}, As, Agnc).

The most interesting case is
decrypt E as {FEu,---
and here we need to find ¢ and ¥y, - - -

(a) p|:E:19/\/\f:0p|:E:19i

and for all {Vi, -+, Vi }{, [dest £] € 0 with AJ_,V; E ¥, that:
(b) AE —it1 Vi € p(lzi))
(©) “RM(4, L', 0, L) =
@ (p,k) Fru P9

We choose ¥ as the least set such that p = E : 9 and prove that
¥ C p(ze); intuitively, if E has free variables z1,- - , zm then
¥ consists of all values |E[Vi/z1,---,Vin/2m]| where V; €

when @ is the process
7”}%} [origC] in P

,¥; and show

7EJ1 LTj41y:

= (6,0) €

this takes care of (a). Next consider {V1,- - 7Vk}f/o [dest £] €
¢ and assume that Vj E 9. Since Yo C p(ze), as above,
we have Vj E p(ze) and by FRw we get Vi € p(ze) and
SRM(6, L, 0. L) = (4,0)¢€ 1/). Since |x;] = ze this
takes care of (b) and (c); furthermore P has type ({ze}, Nf U
{ne}, Ax, Aenc) and the induction hypothesis then takes care of
(d).

The remaining cases are similar.

Theorem 4: Existence of “Hardest Attacker”.

e There exists an attacker Qpara of type (ANf, Asx, Agnc) such
that the formula (p, k) Frm Qhara : ¥ is equivalent to the
formula Fipy of type (Nf, Ax, Agnc).

Qnard 15 ! (Jkea, QT | ke ag, Q5 | [reag, Q5 | |keA Q4' | Qs)
where QF is obtained from the i’th cornponent of Fiy. We as-
sume that there are variables z, zo, 21, - - - having canonical repre-
sentative zo and that 1 € A, (as discussed in Section 5) and (for

Ne = {n1,~~ nm}) we then take:
Q1 (521, ,21).0
Qs =(;2).(zo) decrypt z as {; z1, - 7zk}£[‘) [origC]in0
Q5 = (G z0)- - (G 2n)- {21, 7zk}zo[deSt Ch1G2).0
Q4:(a Zl) () <217 7Zk>0
Qs = <n->0|< 1.0 | {nm).0[(;2).0

p(ze). We perform a similar development for o, --- ,¥; and
15
Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW’03) mr
1063-6900/03 $17.00 © 2003 IEEE C(S)Cl;/[é’ﬁg%%R

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 28, 2008 at 05:17 from IEEE Xplore. Restrictions apply.

