
Automatic Verification of
Competitive Stochastic Systems

Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska,
David Parker, and Aistis Simaitis

Department of Computer Science, University of Oxford, Oxford, UK

Abstract. We present automatic verification techniques for the mod-
elling and analysis of probabilistic systems that incorporate competitive
behaviour. These systems are modelled as turn-based stochastic multi-
player games, in which the players can either collaborate or compete
in order to achieve a particular goal. We define a temporal logic called
rPATL for expressing quantitative properties of stochastic multi-player
games. This logic allows us to reason about the collective ability of a set
of players to achieve a goal relating to the probability of an event’s oc-
currence or the expected amount of cost/reward accumulated. We give a
model checking algorithm for verifying properties expressed in this logic
and implement the techniques in a probabilistic model checker, based
on the PRISM tool. We demonstrate the applicability and efficiency of
our methods by deploying them to analyse and detect potential weak-
nesses in a variety of large case studies, including algorithms for energy
management and collective decision making for autonomous systems.

1 Introduction

Automatic verification techniques for probabilistic systems have been success-
fully applied in a variety of fields, from wireless communication protocols to dy-
namic power management schemes to quantum cryptography. These systems are
inherently stochastic, e.g. due to unreliable communication media, faulty com-
ponents or the use of randomisation. Automatic techniques such as probabilistic
model checking provide a means to model and analyse these systems against a
range of quantitative properties. In particular, when systems also exhibit non-
deterministic behaviour, e.g. due to concurrency, underspecification or control,
the subtle interplay between the probabilistic and nondeterministic aspects of
the system often makes a manual analysis difficult and error-prone.

When modelling open systems, the designer also has to account for the be-
haviour of components it does not control, and which could have differing or
opposing goals, giving rise to competitive behaviour. This occurs in many cases,
such as security protocols and algorithms for distributed consensus, energy man-
agement or sensor network co-ordination. In such situations, it is natural to adopt
a game-theoretic view, modelling a system as a game between different players.
Automatic verification has been successfully deployed in this context, e.g. in the
analysis of security [21] or communication protocols [20].
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In this paper, we present an extensive framework for modelling and automatic
verification of systems with both probabilistic and competitive behaviour, using
stochastic multi-player games (SMGs). We introduce a temporal logic rPATL
for expressing quantitative properties of this model and develop model checking
algorithms for it. We then build a probabilistic model checker, based on the
PRISM tool [22], which provides a high-level language for modelling SMGs and
implements rPATL model checking for their analysis. Finally, to illustrate the
applicability of our framework, we develop several large case studies in which we
identify potential weaknesses and unexpected behaviour that would have been
difficult to find with existing probabilistic verification techniques.

We model competitive stochastic systems as turn-based SMGs, where, in each
state of the model, one player chooses between several actions, the outcome of
which can be probabilistic. Turn-based games are a natural way to model many
real-life applications. One example is when modelling several components execut-
ing concurrently under the control of a particular (e.g. round-robin, randomised)
scheduler; in this case, nondeterminism in the model arises due to the choices
made by each individual component. Another example is when we choose to
explicitly model the (possibly unknown) scheduling of components as one player
and the choices of components as other players.

In order to specify properties of the systems modelled, we formulate a tem-
poral logic, rPATL. This is an extension of the logic PATL [14], which is itself
a probabilistic extension of ATL [5] – a widely used logic for reasoning about
multi-player games and multi-agent systems. rPATL allows us to state that a
coalition of players has a strategy which can ensure that either the probability
of an event’s occurrence or an expected reward measure meets some threshold,
e.g. “can processes 1 and 2 collaborate so that the probability of the protocol
terminating within 45 seconds is at least 0.95, whatever processes 3 and 4 do?”

We place particular emphasis on reward (or, equivalently, cost) related mea-
sures. This allows us to reason quantitatively about a system’s use of resources,
such as time spent or energy consumed; or, we can use rewards as an algorithm
design mechanism to validate, benchmark or synthesise strategies for compo-
nents by rewarding or penalising them for certain behaviour. rPATL can state,
for example, “can sensor 1 ensure that the expected energy used, if the algorithm
terminates, is less than 75mJ , for any actions of sensors 2, 3, and 4?”. To the
best of our knowledge, this is the first logic able to express such properties.

We include in rPATL three different cumulative expected reward operators.
Cumulative properties naturally capture many useful system properties, as has
been demonstrated for verification of other types of probabilistic models [17],
and as proves to be true for the systems we investigate. Indicative examples
from our case studies are “the maximum expected execution cost of a task in a
Microgrid” and “the minimum expected number of messages required to reach a
consensus”. Several other reward-based objectives exist that we do not consider,
including discounted rewards (useful e.g. in economics, but less so for the kind
of systems we target) and long-run average reward (also useful, but practical
implementations become complex in stochastic games [16]).
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We also devise model checking algorithms for rPATL. A practical advantage
of the logic is that, like for ATL, model checking reduces to analysing zero-
sum two-player games. rPATL properties referring to the probability of an event
are checked by solving simple stochastic two-player games, for which efficient
techniques exist [15,16]. For reward-based properties, we present new algorithms.

Lastly, we develop and analyse several large case studies. We study algo-
rithms for smart energy management [19] and distributed consensus in a sensor
network [26]. In the first case, we use our techniques to reveal a weakness in
the algorithm: we show that users may have a high incentive to deviate from
the original algorithm, and propose modifications to solve the problem. For the
consensus algorithm, we identify unexpected trade-offs in the performance of the
algorithm when using our techniques to evaluate possible strategies for sensors.

Contributions. In summary, the contributions of this paper are:

– A comprehensive framework for analysis of competitive stochastic systems;
– A logic rPATL for specifying quantitative properties of stochastic multi-

player games including, in particular, novel operators for costs and rewards,
and their model checking algorithms;

– Implementation of a tool for modelling and rPATL model checking of SMGs;
– Development and analysis of several large new case studies.

An extended version of this paper, with proofs, is available as [12].

Related work. There exist theoretical results on probabilistic temporal logics
for a game-theoretic setting but, to our knowledge, this is the first work to con-
sider a practical implementation, modelling and automated verification of case
studies. [14] introduces the logic PATL, showing its model checking complex-
ity via probabilistic parity games. [28] studies simulation relations preserved by
PATL and [1] uses it in a theoretical framework for security protocol analysis.
[6] presents (un)decidability results for another richer logic, with emphasis on
the subtleties of nested properties. We note that all of the above, except [6], use
concurrent, rather than turn-based, games and none consider reward properties.

Probabilistic model checking for a multi-agent system (a negotiation pro-
tocol) is considered in [8], but this is done by fixing a particular probabilistic
strategy and analysing a Markov chain rather than a stochastic game. [13] de-
scribes analysis of a team formation protocol, which involves simple properties
on stochastic two-player games. There has been much research on algorithms
to solve stochastic games, e.g. [16,11,27], but these do not consider a modelling
framework, implementation or case studies. Moreover, the reward-based proper-
ties that we introduce in this paper have not been studied in depth. In [25], a
quantitative generalisation of the µ-calculus is proposed, and shown to be able
to encode stochastic parity games. We also mention the tools MCMAS [23] and
MOCHA [4], powerful model checkers for non-probabilistic multi-agent systems.

Finally, stochastic games are useful for synthesis, as in e.g. [9], which synthe-
sises concurrent programs for randomised schedulers. Also, the tool Gist [10] is
a stochastic game solver, but is targeted at synthesis problems, not modelling
and verification of competitive systems, and only supports qualitative properties.
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2 Preliminaries

We begin with some background on stochastic multi-player games. For a finite
set X, we denote by D(X) the set of discrete probability distributions over X.

Definition 1 (SMG). A (turn-based) stochastic multi-player game (SMG) is
a tuple G = 〈Π,S,A, (Si)i∈Π , ∆,AP, χ〉, where: Π is a finite set of players; S is
a finite, non-empty set of states; A is a finite, non-empty set of actions; (Si)i∈Π
is a partition of S; ∆ : S × A → D(S) is a (partial) transition function; AP is
a finite set of atomic propositions; and χ : S → 2AP is a labelling function.

In each state s ∈ S of the SMG G, the set of available actions is denoted by

A(s)
def
= {a ∈ A | ∆(s, a)6=⊥}. We assume that A(s) 6= ∅ for all s. The choice of

action to take in s is under the control of exactly one player, namely the player
i ∈ Π for which s ∈ Si. Once action a ∈ A(s) is selected, the successor state is
chosen according to the probability distribution ∆(s, a). A path of G is a possibly
infinite sequence λ = s0a0s1a1 . . . such that aj ∈ A(sj) and ∆(sj , aj)(sj+1) > 0
for all j. We use stλ to denote s0s1 . . ., and stλ(j) for sj . The set of all infinite
paths is ΩG and the set of infinite paths starting in state s is ΩG,s.

A strategy for player i ∈ Π in G is a function σi : (SA)∗Si → D(A) which,
for each path λ·s where s ∈ Si, assigns a probability distribution σi(λ·s) over
A(s). The set of all strategies for player i is denoted Σi. A strategy σi is called
memoryless if ∀λ, λ′ : σi(λ·s) = σi(λ

′·s), and deterministic if ∀λ : σi(λ·s) is a
Dirac distribution. A strategy profile σ = σ1, . . . , σ|Π| comprises a strategy for
all players in the game. Under a strategy profile σ, the behaviour of G is fully
probabilistic and we define a probability measure PrσG,s over the set of all paths
ΩG,s in standard fashion (see, e.g. [11]). Given a random variable X : ΩG,s → R,

we define the expected value of X to be EσG,s[X]
def
=
∫
ΩG,s

X dPrσG,s.

We also augment games with reward structures r : S → Q≥0, mapping each
state to a non-negative rational reward. To simplify presentation, we only use
state rewards, but note that transition/action rewards can easily be encoded by
adding an auxiliary state per transition/action to the model.

3 Property Specification: The Logic rPATL

We now present a temporal logic called rPATL (Probabilistic Alternating-time
Temporal Logic with Rewards) for expressing quantitative properties of SMGs.
Throughout the section, we assume a fixed SMG G = 〈Π,S,A, (Si)i∈Π , ∆,AP, χ〉.

Definition 2 (rPATL). The syntax of rPATL is given by the grammar:

φ ::= > | a | ¬φ | φ ∧ φ | 〈〈C〉〉P./q[ψ] | 〈〈C〉〉Rr./x[F?φ]

ψ ::= Xφ | φU≤k φ | φUφ

where a ∈ AP , C ⊆ Π, ./∈ {<,≤,≥, >}, q ∈ Q∩ [0, 1], x ∈ Q≥0, ? ∈ {0,∞, c},
r is a reward structure and k ∈ N.
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rPATL is a CTL-style branching-time temporal logic, where we distinguish state
formulae (φ) and path formulae (ψ). We adopt the coalition operator 〈〈C〉〉 of
ATL [5], combining it with the probabilistic operator P./q[·] from PCTL [18] and
a generalised variant of the reward operator Rr./x[·] from [17].

An example of typical usage of the coalition operator is 〈〈{1, 2}〉〉P≥0.5[ψ],
which means “players 1 and 2 have a strategy to ensure that the probability
of path formula ψ being satisfied is at least 0.5, regardless of the strategies of
other players”. As path formulae, we allow the standard temporal operators X
(“next”), bounded U≤k (“bounded until”) and U (“until”).

Rewards. Before presenting the semantics of rPATL, we discuss the reward
operators in the logic. We focus on expected cumulative reward, i.e. the expected
sum of rewards cumulated along a path until a state from a specified target set
T ⊆ S is reached. To cope with the variety of different properties encountered
in practice, we introduce three variants, which differ in the way they handle the
case where T is not reached. The three types are denoted by the parameter ?,
one of 0, ∞ or c. These indicate that, when T is not reached, the reward is zero,
infinite or equal to the cumulated reward along the whole path, respectively.

Each reward type is applicable in different situations. If our goal is, for exam-
ple, to minimise the expected time for algorithm completion, then it is natural to
assume a value of infinity upon non-completion (?=∞). Consider, on the other
hand, the case where we try to optimise a distributed algorithm by designing a
reward structure that incentivises certain kinds of behaviour and then maximis-
ing it over the lifetime of the algorithm’s execution. In this case, we might opt for
type ?=0 to avoid favouring situations where the algorithm does not terminate.
In other cases, e.g. when modelling algorithm’s resource consumption, we might
prefer to use type ?= c, to compute resources used regardless of termination.

We formalise these notions of rewards by defining reward functions that map
each possible path in the game G to a cumulative reward value.

Definition 3 (Reward Function). For an SMG G, a reward structure r, type
? ∈ {0,∞, c} and a set T ⊆ S of target states, the reward function rew(r, ?, T ) :
ΩG → R is a random variable defined as follows.

rew(r, ?, T )(λ)
def
=

{
g(?) if ∀j ∈ N : stλ(j) /∈ T,∑k−1
j=0 r(stλ(j)) otherwise, where k = min{j | stλ(j) ∈ T},

and where g(?) = ? if ? ∈ {0,∞} and g(?) =
∑
j∈N r(stλ(j)) if ? = c. The

expected reward from a state s ∈ S of G under a strategy profile σ is the expected
value of the reward function, EσG,s[rew(r, ?, T )].

Semantics. Now, we define the semantics of rPATL. Formulae are interpreted
over states of a game G; we write s |= φ to indicate that the state s of G satisfies

the formula φ and define Sat(φ)
def
= {s ∈ S | s |= φ} as the states satisfying φ.

The meaning of atomic propositions and logical connectives is standard. For the
〈〈C〉〉P./q and 〈〈C〉〉Rr./x operators, we give the semantics via a reduction to a
two-player game called a coalition game.



6 Chen, Forejt, Kwiatkowska, Parker, Simaitis

Definition 4 (Coalition Game). For a coalition of players C ⊆ Π of SMG G,
we define the coalition game of G induced by C as the stochastic two-player game
GC = 〈{1, 2}, S,A, (S′1, S′2), ∆,AP, χ〉 where S′1 = ∪i∈CSi and S′2 = ∪i∈Π\CSi.
Definition 5 (rPATL Semantics). The satisfaction relation |= for rPATL is
defined inductively for every state s of G. The semantics of >, atomic proposi-
tions and formulae of the form ¬φ and φ1 ∧ φ2 is defined in the usual way. For
the temporal operators, we define:

s |= 〈〈C〉〉P./q[ψ] ⇔ In coalition game GC , ∃σ1 ∈ Σ1 such that ∀σ2 ∈ Σ2

Prσ1,σ2

GC ,s (ψ) ./ q

s |= 〈〈C〉〉Rr./x[F?φ]⇔ In coalition game GC , ∃σ1 ∈ Σ1 such that ∀σ2 ∈ Σ2

Eσ1,σ2

GC ,s [rew(r, ?,Sat(φ))] ./ x

where Prσ1,σ2

GC ,s (ψ)
def
= Prσ1,σ2

GC ,s ({λ ∈ ΩGC ,s | λ |= ψ}) and for any path λ in G:

λ |= Xφ ⇔ stλ(1) |= φ
λ |= φ1 U

≤k φ2 ⇔ stλ(i) |= φ2 for some i ≤ k and stλ(j) |= φ1 for 0 ≤ j < i
λ |= φ1 Uφ2 ⇔ λ |= φ1 U

≤k φ2 for some k ∈ N.

Equivalences and Extensions. We can handle “negated path formulae” in a
〈〈C〉〉P./q operator by inverting the probability threshold, e.g.:

〈〈C〉〉P≥q[¬ψ] ≡ 〈〈C〉〉P≤1−q[ψ].

This allows us to derive, for example, the G (“globally”) and R (“release”)
operators. Also, from the determinacy result of [24] for zero-sum stochastic two-
player games with Borel measurable payoffs, it follows that, e.g.:

〈〈C〉〉P≥q[ψ] ≡ ¬〈〈Π \ C〉〉P<q[ψ]. (1)

Finally, it is useful to consider “quantitative” versions of the 〈〈C〉〉P and 〈〈C〉〉R
operators, in the style of PRISM [22], which return numerical values:

〈〈C〉〉Pmax=?[ψ]
def
= Prmax,min

GC ,s (ψ)
def
= sup

σ1∈Σ1

inf
σ2∈Σ2

Prσ1,σ2

GC ,s (ψ)

〈〈C〉〉Rrmax=?[F
?φ]

def
= Emax,min

GC ,s [rew(r, ?,Sat(φ))]
def
= sup

σ1∈Σ1

inf
σ2∈Σ2

Eσ1,σ2

GC ,s [rew(r, ?,Sat(φ))].

(2)

1:s0 2:s1 3:s2 1:s3

{t}a 0.7
0.3

b 0.5 0.5

a

b

a

b

a

Fig. 1: Example SMG.

Example 1. Consider the SMG in Fig. 1.
with Π={1, 2, 3}. The player i controlling
a state s is shown as i:s in the figure, e.g.
S1={s0, s3}. We have actions A={a, b}
and e.g. ∆(s0, a)(s1)=0.7. State s3 is la-
belled with atomic proposition t. Consider
the rPATL formulae 〈〈{1, 3}〉〉P≥0.5[F t]
and 〈〈{1, 2}〉〉P≥0.5[F t]. The first is satisfied in states {s0, s2, s3}, the latter in
s3 only. Let r be a reward structure that assigns i to state si. rPATL formula
〈〈{1, 3}〉〉Rr≤2[F∞t] is true in states {s2, s3}. Formula 〈〈{1}〉〉Rr≥q[F0t] is false in all
states for any q > 0 but 〈〈{3}〉〉Rr≥q[Fct] is true in {s0, s1, s2} for any q > 0.



Automatic Verification of Competitive Stochastic Systems 7

4 Model Checking for rPATL

We now discuss model checking for rPATL, the key part of which is computa-
tion of probabilities and expected rewards for stochastic two-player games. The
complexity of the rPATL model checking problem can be stated as follows.

Theorem 1. (a) Model checking an rPATL formula with no 〈〈C〉〉Rr./x[F0φ] op-
erator and where k for U≤k is given in unary is in NP ∩ coNP.
(b) Model checking an unrestricted rPATL formula is in NEXP ∩ coNEXP.

Nevertheless, we present efficient and practically usable algorithms for model
checking rPATL, in which computation of numerical values is done by evaluating
fixpoints (up to a desired level of convergence1).

The basic algorithm for model checking an rPATL formula φ on an SMG
G proceeds as for other branching-time logics, determining the set Sat(φ) re-
cursively. Furthermore, as can be seen from the semantics, computing this set
for atomic propositions or logical connectives is trivial. Thus, we only consider
the 〈〈C〉〉P./q and 〈〈C〉〉Rr./x operators. Like for the logic PCTL, model checking
of these reduces to computation of optimal probabilities or expected rewards,
respectively, on the coalition game GC . For example, if . ∈ {≥, >}, then:

s |= 〈〈C〉〉P.q[ψ] ⇔ Prmax,min
GC ,s (ψ) . q

s |= 〈〈C〉〉Rr.x[F?φ] ⇔ Emax,min
GC ,s [rew(r, ?,Sat(φ))] . x.

Analogously, for operators ≤ and <, we simply swap min and max in the above.
The following sections describe how to compute these values.

4.1 Computing Probabilities

Below, we show how to compute the probabilities Prmax,min
GC ,s (ψ) where ψ is each

of the temporal operators X, U≤k and U. We omit the dual case since, thanks
to determinacy (see equation (1)), we have that Prmin,max

GC ,s (ψ) = Prmax,min
GΠ\C ,s (ψ).

The following results follow in near identical fashion to the corresponding results
for Markov decision processes [7]. We let opts denote max if s ∈ S1 and min if
s ∈ S2. For the X operator and state s ∈ S:

Prmax,min
GC ,s (Xφ) = optsa∈A(s)

∑
s′∈Sat(φ)

∆(s, a)(s′).

Probabilities for the U≤k operator can be computed recursively. We have that
Prmax,min
GC ,s (φ1 U

≤k φ2) is equal to: 1 if s ∈ Sat(φ2); 0 if s 6∈ (Sat(φ1) ∪ Sat(φ2));
0 if k=0 and s ∈ Sat(φ1)\Sat(φ2); and otherwise:

Prmax,min
GC ,s (φ1 U

≤k φ2) = optsa∈A(s)

∑
s′∈S

∆(s, a)(s′) · Prmax,min
GC ,s′ (φ1 U

≤k−1 φ2).

The unbounded case can be computed via value iteration [15], i.e. using:

Prmax,min
GC ,s (φ1 Uφ2) = limk→∞ Prmax,min

GC ,s (φ1 U
≤k φ2).

1 This is the usual approach taken in probabilistic verification tools.
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In practice, this computation is terminated with a suitable convergence check
(see, e.g. [17]). In addition, we mention that for the case Fφ ≡ >Uφ, the com-
putation can also be reduced to quadratic programming [16].

4.2 Computing Rewards

Now, we show how to compute the optimal values Emax,min
GC ,s [rew(r, ?,Sat(φ))] for

different types of ?. As above, we omit the dual case where max and min are
swapped. In this section, we fix a coalition game GC , a reward structure r, and
a target set T = Sat(φ). We first make the following modifications to GC :

– labels are added to target and positive reward states: AP := AP ∪{t, arew},
∀s ∈ T : χ(s) := χ(s) ∪ {t} and ∀s ∈ S . r(s) > 0 : χ(s) := χ(s) ∪ {arew};

– target states are made absorbing: ∀s ∈ T : A(s) := {a}, ∆(s, a)(s)=1, r(s)=0.

Our algorithms, like the ones for similar properties on simpler models [7], rely
on computing fixpoints of certain sets of equations. As in the previous section,
we assume that this is done by value iteration with an appropriate convergence
criterion. We again let opts denote max if s ∈ S1 and min if s ∈ S2.

An important observation here is that optimal expected rewards for ? ∈
{∞, c} can be achieved by memoryless, deterministic strategies. For ? = 0, how-
ever, finite-memory strategies are needed. See [12] for details.

The case ? = c. First, we use the results of [3] to identify the states from which
the expected reward is infinite:

I := {s ∈ S | ∃σ1∈Σ1 ∀σ2∈Σ2 Prσ1,σ2

GC ,s (inf (arew )) > 0}

where inf (arew ) is the set of all paths that visit a state satisfying arew infinitely
often. We remove the states of I from GC . For the other states, we compute the
least fixpoint of the following equations:

f(s) =

{
0 if s ∈ T
r(s) + optsa∈A(s)

∑
s′∈S ∆(s, a)(s′) · f(s′) otherwise

(3)

The case ? = ∞. Again, we start by identifying and removing states with
infinite expected reward; in this case: I := {s ∈ S | s |= 〈〈{1}〉〉P<1[F t ]}. Then,
for all other states s, we compute the greatest fixpoint, over R, of equations (3).
The need for the greatest fixpoint arises because, in the presence of zero-reward
cycles, multiple fixpoints may exist. The computation is over R since, e.g. the
function mapping all non-target states to ∞ may also be a fixpoint. To find the
greatest fixpoint over R, we first compute an over-approximation by changing
all zero rewards to any ε > 0 and then evaluating the least fixpoint of (3) for
the modified reward. Starting from the new initial values, value iteration now
converges from above to the correct fixpoint [12]. For the simpler case of MDPs,
an alternative approach based on removal of zero-reward end-components is
possible [2], but this cannot be adapted efficiently to stochastic games.



Automatic Verification of Competitive Stochastic Systems 9

The case ? = 0. As mentioned above, it does not suffice to consider memoryless
strategies in this case. The optimal strategy may depend on the reward accumu-

lated so far, r(λ)
def
=
∑
s∈stλ r(s) for history λ. However, this is only needed until

a certain reward bound B is reached, after which the optimal strategy picks
actions that maximise the probability of reaching T (if multiple such actions
exist, it picks the one with the highest expected reward). The bound B can be

computed efficiently using algorithms for ? = c and Prmax,min
GC ,s (ψ) and, in the

worst case, can be exponential in the size of G (see [12]).
For clarity, we assume that rewards are integers. Let R(s,k) be the maximum

expectation of rew(r, 0, T ) in state s after history λ with r(λ) = k:

R(s,k)
def
= max

σ1∈Σ1

min
σ2∈Σ2

k · Prσ1,σ2

GC ,s (F t) + Eσ1,σ2

GC ,s [rew(r, 0, T )],

and rmax = maxs∈S r(s). The algorithm works as follows:

1. Using the results of [3], identify the states that have infinite reward:

I := {s ∈ S | ∃σ1∈Σ1 ∀σ2∈Σ2 Prσ1,σ2

GC ,s (inf t(arew )) > 0}}

where inf t(arew ) is the set of all paths that visit a state satisfying P>0[F t])∧
arew infinitely often. Remove all states of I from the game.

2. For B ≤ k ≤ B + rmax − 1 and for each state s:

(a) Assign new reward r′(s) = r(s) · Prmax,min
GC ,s (F t);

(b) Remove from A(s) actions a that are sub-optimal for Prmax,min
GC ,s (F t), i.e.:∑

s′∈S ∆(s, a)(s′) · Prmax,min
GC ,s′ (F t) < Prmax,min

GC ,s (F t)

(c) Compute R(s,k) using the algorithm for rew(r′, c, T ):

R(s,k) = k · Prmax,min
GC ,s (F t) + Emax,min

GC ,s [rew(r′, c, T )].

3. Find, for all 0 ≤ k < B and states s, the least fixpoint of the equations:

R(s,k) =

{
k if s ∈ T
optsa∈A(s)

∑
s′∈S ∆(s, a)(s′) ·R(s′,k+r(s)) otherwise.

4. The required values are then Emax,min
GC ,s [rew(r, 0, T )] = R(s,0).

5 Implementation and Case Studies

Based on the techniques in this paper, we have built a probabilistic model checker
for stochastic multi-player games as an extension of the PRISM tool [22]. For
modelling of SMGs, we have extended the PRISM modelling language. This
allows multiple parallel components (called modules) which can either operate
asynchronously or by synchronising over common action labels. Now, a model
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Case study SMG statistics Model checking
[parameters] Players States Transitions Prop. type Constr. (s) Model ch. (s)

mdsm
[N ]

5 5 743,904 2,145,120
〈〈C〉〉Rrmax=?[F

0φ]
14.5 61.9

6 6 2,384,369 7,260,756 55.0 221.7
7 7 6,241,312 19,678,246 210.7 1,054.8

cdmsn
[N ]

3 3 1,240 1,240
〈〈C〉〉P./q[ F≤k φ]

0.2 0.2
4 4 11,645 83,252 0.8 0.8
5 5 100,032 843,775 3.2 6.4

investor
[vmax]

10 2 10,868 34,264
〈〈C〉〉Rrmin=?[F

cφ]
1.4 0.7

100 2 750,893 2,474,254 9.8 121.8
200 2 2,931,643 9,688,354 45.9 820.8

team-form
[N ]

3 3 17,041 20,904
〈〈C〉〉Pmax=?[Fφ]

0.3 0.5
4 4 184,753 226,736 4.2 2.1
5 5 2,366,305 2,893,536 36.9 12.9

Table 1: Performance statistics for a representative set of models

also includes a set of players, each of which controls transitions for a disjoint
subset of the modules and/or action labels. Essentially, we retain the existing
PRISM language semantics (for Markov decision processes), but, in every state,
each nondeterministic choice belongs to one player. For the current work, we
detect and disallow the possibility of concurrent decisions between players.

Our tool constructs an SMG from a model description and then executes the
algorithms from Sec. 4 to check rPATL formulae. Currently, we have developed
an explicit-state model checking implementation, which we show to be efficient
and scalable for various large models. It would also be relatively straightforward
to adapt PRISM’s symbolic model checking engines for our purpose, if required.

5.1 Experimental Results

We have applied our tool to the analysis of several large case studies: two de-
veloped solely for this work, and two others adapted from existing models. Ex-
perimental results from the new case studies are described in detail in the next
sections. First, we show some statistics regarding the performance of our tool on
a representative sample of models from the four case studies: Microgrid Demand-
Side Management (mdsm) and Collective Decision Making for Sensor Networks
(cdmsn), which will be discussed shortly; the Futures Market Investor (investor)
example of [25]; and the team formation protocol (team-form) of [13]. Tab. 1
shows model statistics (number of players, states and transitions) and the time
for model construction and checking a sample property on a 2.80GHz PC with
32GB RAM. All models and properties used are available online [29].

5.2 MDSM: Microgrid Demand-Side Management

Microgrid is an increasingly popular model for the future energy markets where
neighbourhoods use electricity generation from local sources (e.g. wind/solar
power) to satisfy local demand. The success of microgrids is highly dependent
on demand-side management : active management of demand by users to avoid
peaks. Thus, the infrastructure has to incentivise co-operation and discourage
abuse. In this case study, we use rPATL model checking to analyse the MDSM
infrastructure of [19] and identify an important incentive-related weakness.
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The algorithm. The system in [19] consists of N households (HHs) connected
to a single distribution manager (DM). At every time-step, the DM randomly
contacts a HH for submission of a load for execution. The probability of the HH
generating a load is determined by a daily demand curve from [19]. The duration
of a load is random between 1 and D time-steps. The cost of executing a load
for a single step is the number of tasks currently running. Hence, the total cost
increases quadratically with HHs executing more loads in a single step.

Each household follows a very simple algorithm, the essence of which is that,
when it generates a load, if the cost is below an agreed limit clim, it executes
it, otherwise it only does so with a pre-agreed probability Pstart. In [19], the
value for each household in a time-step is measured by V= loads executing

cost of execution and
it is shown (through simulations) that, provided every household sticks to this
algorithm, the peak demand and the total cost of energy are reduced significantly
while still providing a good (expected) value V for each household.

Modelling and analysis. We modelled the system as an SMG with N players,
one per household. We vary N ∈ {2, . . . , 7} and fix D=4 and clim=1.5. We
analyse a period of 3 days, each of 16 time-steps (using a piecewise approximation
of the daily demand curve). First, as a benchmark, we assume that all households
follow the algorithm of [19]. We define a reward structure ri for the value V for
household i at each step, and let rC =

∑
i∈C ri be the total reward for coalition

C. To compute the expected value per household, we use the rPATL query:

1
|C| 〈〈C〉〉R

rC
max=?[F

0 time=max time ]

fixing, for now, C to be the set Π of all N players (households). We use this to
determine the optimal value of Pstart achievable by a memoryless strategy for
each player, which we will then fix. These results are shown by the bold lines
in Fig. 2. We also plot (as a dotted line) the values obtained if no demand-side
management is applied.

Next, we consider the situation where the set of households C is allowed
to deviate from the pre-agreed strategy, by choosing to ignore the limit clim
if they wish. We check the same rPATL query as above, but now varying C
to be coalitions of different sizes, C ∈ {{1}, . . . ,Π}. The resulting values are
also plotted in Fig. 2a, shown as horizontal dashes of width proportional to |C|:
the shortest dash represents individual deviation, the longest is a collaboration
of all HHs. The former shows the maximum value that can be achieved by
following the optimal collaborative strategy, and in itself presents a benchmark
for the performance of the original algorithm. The key result is that deviations
by individuals or small coalitions guarantee a better expected value for the HHs
than any larger collaboration: a highly undesired weakness for an MDSM system.

Fixing the algorithm. We propose a simple punishment mechanism that ad-
dresses the problem: we allow the DM to cancel one job per step if the cost
exceeds clim. The intuition is that, if a HH is constantly abusing the system,
its job could be cancelled. This modification inverts the incentives (see Fig. 2b).
The best option now is full collaboration and small coalitions who deviate cannot
guarantee better expected values any more.
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(a) Original version.
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(b) Version with punishment.

Fig. 2: Expected value per household for MDSM. The bold line shows all house-
holds following the algorithm of [19]; the dotted line shows the case without
DSM. Horizontal dashes show deviations by collaborations of increasing size
(shortest dash: individual deviation; longest dash: deviation of all households).

5.3 CDMSN: Collective Decision Making for Sensor Networks

Sensor networks comprise a set of low-power, autonomous devices which must
act collaboratively in order to achieve a particular goal. In this case study, we
illustrate the use of rPATL model checking to aid the analysis and design of such
systems by studying a distributed consensus algorithm for sensor networks [26].

The algorithm. There are N sensors and a set of targets K = {k1, k2, . . . },
each with quality Qk ∈ [0, 1]. The goal is for the sensors to agree on a target
with maximum Qk. Each sensor i stores a preferred target pi ∈ K, its quality
Qpi and an integer li ∈ {1, . . . , L} to represent confidence in the preference. The
algorithm has parameters η and λ, measuring the influence of target quality for
the decision, and a parameter γ measuring the influence of the confidence level.

A sensor has three actions: sleep, explore and communicate. As proposed
by [26], each sensor repeatedly sleeps for a random time t and then either explores
(with probability Pexp) or communicates. For the explore action, sensor i picks
a target k ∈ K uniformly at random and with probability Pk = Qηk/(Q

η
k +Qηp1)

switches its preference (pi) to k and resets confidence to 1. To communicate,
it compares its preference with that of a random sensor j. If they agree, both
confidences are increased. If not, with probability Ps = Qλpj l

γ
j /(Q

λ
pj l

γ
j +Qλpi l

γ
i ),

sensor i switches preference to pj , resets confidence to 1 and increases sensor j’s
confidence; with probability 1−Ps, the roles of sensors i and j are swapped.

Modelling and analysis. We have modelled the system as an SMG with
N players, one per sensor. We consider models with N=3, 4, 5, three targets
K={k1, k2, k3} with qualities Qk1=1, Qk2=0.5, Qk3=0.25 and two confidence
levels li ∈ {1, 2}. As in [26], we assume a random scheduling and fix parameters
η=1 and λ=1. In [26], two key properties of the algorithm are studied: speed of
convergence and robustness. We consider the same two issues and evaluate al-
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(c) N = 5

Fig. 3: Expected running time until the selection of the best quality target for
different models and increasing sizes of coalition C. Dotted lines show optimal
performance that can be achieved using the original algorithm from [26].

ternative strategies for sensors (i.e. allowing sensors to execute any action when
active). We also assume that only a subset C of the sensors are under our control,
e.g., because the others are faulty. We use rPATL (with coalition C) to optimise
performance, under the worst-case assumption about the other sensors.

First, we study the speed of convergence and the influence of parameter γ
upon it. Fig. 3 shows the expected running time to reach the best decision (i.e.
select k1) for various values of γ and sizes of the coalition C. We use the reward
structure: r(s) = 1 for all s ∈ S and rPATL query:

〈〈C〉〉Rrmin=?[F
∞ ∧|Π|

i=1 pi = k1 ] .

Fig. 3 also shows the performance of the original algorithm [26] (line ‘det’). We
make several important observations. First, if we lose control of a few sensors,
we can still guarantee convergence time comparable to the original algorithm,
indicating the fault tolerance potential of the system. On the other hand, the
original version performs almost as well as the optimal case for large coalitions.

Secondly, we consider robustness: the ability to recover from a ‘bad decision’

(i.e.,
∧|Π|
i=1 pi = k3) to a ‘good state’ in n steps. We provide two interpretations

of a ‘good state’ and show that the results for them are quite different.

(1) A ‘good state’: there exists a strategy for coalition C to make all sensors,
with probability > 0.9, select k1 within 10 steps. So robustness in rPATL is:

〈〈C〉〉Pmax=?[F
≤n 〈〈C〉〉P>0.9[F≤10

∧|Π|
i=1 pi = k1]] .

(2) A ‘good state’: there exists a strategy for coalition C to make all sensors
select k1 while using less than 0.5mJ of energy. We use a reward structure
rC representing energy usage by sensors in C: power consumption is 10mW
for each communication and 1mW for each exploration, and each activity
takes 0.1s. Then, robustness in rPATL is:

〈〈C〉〉Pmax=?[F
≤n 〈〈C〉〉RrC<50[Fc

∧|Π|
i=1 pi = k1]] .
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(a) Probability to select k1 within 10
steps is greater than 0.9.
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(b) Expected energy usage for coalition
to select k1 is less than 0.5mJ .

Fig. 4: Minimum probability to recover from a state where all sensors prefer the
lowest quality target, k3, within n steps for different coalition sizes. Graphs (a)
and (b) show results for two types of recovery state (see captions). γ = 2.

Fig. 4 shows, for each definition and for a range of values of n, the worst-case
(minimum) value for the rPATL query from all possible ‘bad states’. For (1),
the results are intuitive: the larger the coalition, the faster it recovers. For (2),
however, the one-sensor coalition outperforms all others. Also, we see that, in the
early stages of recovery, 2-sensor coalitions outperform larger ones. This shows
that small coalitions can be more resource efficient in achieving certain goals.

6 Conclusions

We have designed and implemented a framework for automatic verification of
systems with both probabilistic and competitive behaviour, based on stochastic
multi-player games. We proposed a new temporal logic rPATL, designed model
checking algorithms, implemented them in a tool and then used our techniques
to identify unexpected behaviour in several large case studies.

There are many interesting directions for future work, such as investigating
extensions of our techniques to incorporate partial-information strategies or more
complex solution concepts such as Nash, subgame-perfect or secure equilibria.
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