
Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic
Specifications

E. M. CLARKE

Carnegie Mellon University

E. A. EMERSON

University of Texas, Austin

and

A. P. SISTLA

GTE Laboratories, Inc.

We give an efficient procedure for verifying that a finite-state concurrent system meets a specification

expressed in a (propositional, branching-time) temporal logic. Our algorithm has complexity linear

in both the size of the specification and the size of the global state graph for the concurrent system.

We also show how this approach can be adapted to handle fairness. We argue that our technique can

provide a practical alternative to manual proof construction or use of a mechanical theorem prover

for verifying many finite-state concurrent systems. Experimental results show that state machines

with several hundred states can be checked in a matter of seconds.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming;

D.2.4 [Software Engineering]: Program Verification; F.3.1 [Logics and Meanings of Programs]:

Specifying and Verifying, and Reasoning about Programs; F.4.1 [Mathematical Logic and Formal

Languages]: Mathematical Logic

General Terms: Verification

Additional Key Words and Phrases: Computation tree logic, finite-state concurrent systems, model

checking, temporal logic

1. INTRODUCTION

In the traditional approach to concurrent program verification, the proof that a
program meets its specification is constructed by hand using various axioms and
inference rules in a deductive system such as temporal logic [9, 13, 151. The task
of proof construction is in general quite tedious, and a good deal of ingenuity

The first and third authors were supported in part by NSF grant MCS-815553. The second author

was supported in part by a University of Texas Summer Research Award, a departmental grant from
IBM, and NSF grant MCS-8302878.

Authors’ addresses: E. M. Clarke, Department of Computer Science, Carnegie-Mellon University,

Schenley Park, Pittsburgh, PA 15213; E. A. Emerson, Computer Science Department, University of
Texas, Austin, TX 78712; and A. P. Sistla, GTE Research Laboratories, 40 Sylvan Road, Waltham,

MA 02254.

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

0 1986 ACM 0164-0925/86/0400-0244 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986, Pages 244-263.

Automatic Verification of Finite-State Concurrent Systems 245

may be required to organize the proof in a manageable fashion. Mechanical
theorem provers have failed to be of much help due to the inherent complexity
of testing validity for even the simplest logics.

We argue that proof construction is unnecessary in the case of finite-state
concurrent systems, and can be replaced by a model-theoretic approach which
will mechanically determine if the system meets a specification expressed in
propositional temporal logic. The global state graph of the concurrent system
can be viewed as a finite Kripke structure, and an efficient algorithm can be
given to determine whether a structure is a model of a particular formula (i.e., to
determine if the program meets its specification). The algorithm, which we call
a model checker, is similar to the global flow analysis algorithms used in compiler
optimization, and has complexity linear in both the size of the structure and the
size of the specification. When the number of global states is not excessive (i.e.,
not more than a few thousand), we believe that our technique may provide a
useful new approach to the verification of finite-state concurrent systems.

Our approach is of wide applicability, since a large class of concurrent program-
ming problems have finite-state solutions, and the interesting properties of many
such problems can be specified in propositional temporal logic. For example,
many network communication protocols (e.g., the Alternating Bit Protocol [2])
can be modeled at some level of abstraction by a finite state system. A typical
requirement for such systems is that every transmitted message must ultimately
be received; this can easily be expressed in the logic we use.

Our specification language is a propositional, branching-time temporal logic
called computation tree logic (CTL) and is similar to the logical systems described
in [11, [3], and [4]. Since our goal is to specify concurrent systems, we must be
able to assert that a correctness property only holds on fair execution sequences.
It follows from the results of [4] and [5] that CTL cannot express such a property.
The alternative of using a linear time logic is ruled out because any model checker
for such a logic must have high complexity [181. We overcome this problem by
moving fairness requirements into the semantics of CTL. Specifically, we change
the definition of our basic modalities so that only fair paths are considered. Our
previous model checking algorithm is modified to handle this extended logic
without changing its complexity.

Our paper is organized as follows: Section 2 contains the syntax and semantics
of our logic. In Section 3 we describe the basic model checking algorithm and
illustrate its use to establish absence of starvation for a solution to the mutual
exclusion problem. An extension of the model checking algorithm which only
considers fair computations is given in Section 4. Section 5 describes an experi-
mental implementation of the extended model checking algorithm and shows
how it can be used to verify the correctness of the Alternating Bit Protocol. In
Section 6 we consider extensions of our logic that are more expressive and
investigate the complexity of model checkers for these logics. The paper concludes
with a discussion of related work and remaining open problems.

2. THE SPECIFICATION LANGUAGE

The formal syntax for CTL is given below. AP is the underlying set of atomic
propositions.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

246 l E. M. Clarke et al.

(1) Every atomic proposition p E AP is a CTL formula.
(2) Iffr and f2 are CTL formulas, then so are lfi, fi A f2, AXf2, EXfi, A[f, U fi],

and E[fi U f2.1.

The symbols A and 1 have their usual meanings. X is the nexttime operator;
the formula AXfi(EXfi) intuitively means that fi holds in every (in some)
immediate successor of the current program state. U is the until operator; the
formula A[fi U f2](E[fi U f2]) intuitively means that for every computation path
(for some computation path) there exists an initial prefix of the path such that
f2 holds at the last state of the prefix and fi holds at all other states along the
prefix.

We define the semantics of CTL formulas with respect to a labeled state-
transition graph. Formally, a CTL structure is a triple M = (S, R, P) where

(1) S is a finite set of states.
(2) R is a binary relation on S(R G S x S) which gives the possible transitions

between states and must be total; that is, Vxl E S 3y E S[(x, y) E R].
(3) P:S + 2AP assigns to each state the set of atomic propositions true in that

state.

A path is an infinite sequence of states (so, ~1, sp, . . .) such that Vi[(s, si+l) E
R]. For any structure M = (S, R, P) and state so E S, there is an infinite
computation tree with root labeled so such that s + t is an arc in the tree iff
(s, t) E R. Figure 1 shows a CTL structure and the associated computation tree
rooted at so.

We use the standard notation to indicate truth in a structure: M, so I= f means
that formula f holds at state so in structure M. When the structure M is
understood, we simply write so I= f. The relation I= is defined inductively as
follows:

so b=P iff p E P(s0).

so I= If iff not(so k f).

so I= fi A A iff so~fiandso~f2.

so I= AXf, iff for all states t such that (so, t) E R, t I= fi.

so i= EXfi iff for some state t such that (so, t) E R, t I= fi.

so I= A[fi Ufil iff for all paths (so, sl, . . .),

3i[i 1 0 A si k fz A Vj[O I j < i + sj F fi]].

so I= Nfl Uf21 iff for some path (so, sl, . . .),

3i[i 2 0 A si I= f2 A Vj[O 5 j < i + si k fi]].

We also use the following abbreviations in writing CTL formulas:

AF(f) = A[True U f] intuitively means that f holds in the future along every
path from so; that is, f is inevitable.
EF(f) = E[True U f] means that there is some path from so that leads to a
state at which f holds; that is, f potentially holds.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

Automatic Verification of Finite-State Concurrent Systems 247

/“\
Sl s2

1 I

s,~so~s2 i
. . .
. . .
. . .

(a) (b)
Fig. 1. (a) A structure. (b) The corresponding tree for start state SO.

A : : . : : ..:. : :: :
(4

(b)

(cl
Fig. 2. (a) AGp: p is invariant. (b) AFp: p is inevitable. (c) EFp: p potentially holds. 0 = p, 0 = 1~.

EG(f) = lAF(lf) means that there is some path from so on which f holds at
every state.
AG(f) = lEF(lf) means that f holds at every state on every path from so;

that is, f holds globally.

Figure 2 shows how some simple correctness properties would be represented
using these operators.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

248 - E. M. Clarke et al.

Fig. 3. Global state transition graph for the two-process mutual exclusion problem.

The global state transition graphs of many concurrent programs can be modeled
as CTL structures. For example, Figure 3 shows the CTL structure for a simple
solution to the mutual exclusion problem for two processes PI and Pz. In this
solution each process is always in one of three regions of code:

Ni the Noncritical region,

Ti the Trying region, or

Ci the Critical region.

Note that we only record transitions between different regions of code; moves
entirely within the same region are not considered at this level of abstraction.
Also, each transition is due to the execution of a step of exactly one process. It
is easy to see, in this case, that AF(C1) is true in state one and that EF(CI A CJ
is false in state zero.

3. MODEL CHECKER

Assume that we wish to determine whether formula f,, is true in the finite
structure M = (S, R, P). We design our algorithm to operate in stages: the first
stage processes all subformulas of fO of length 1, the second stage processes all
subformulas of length 2, and so on. At the end of the ith stage, each state will be
labeled with the set of all subformulas of length less than or equal to i that are
true in the state. We let the expression label(s) denote this set for state s. When
the algorithm terminates at the end of stage n = length(f& we see that for all
states s, M, s C= f iff f E label(s) for all subformulas f of fO.

We use the following primitives for manipulating formulas and accessing the
labels associated with states:

- argl(f) and arg2(f) give the first and second arguments of a two-argument
temporal operator; thus, if f is A[fi U f2], then argl(f) = fi and arg2(f) = fi.

- labeled (s, f) will return true (false) if state s is (is not) labeled with formula f.
- add-label (s, f) adds formula f to the current label of state s.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

Automatic Verification of Finite-State Concurrent Systems 249

Our state labeling algorithm (procedure label-graph(f)) must be able to
handle seven cases, depending on whether f is atomic or has one of the following
forms: lfi, fi A f2, AXf,, EXfi, A[f, U f2], or E[f, U fi]. We only consider the
case in which f = A[fi U fi] here, since all of the other cases are either
straightforward or similar. For the case f = A[fi U fi], our algorithm uses a depth-
first search to explore the state graph. The bit array marked[l: nstates] is used
to indicate which states have been visited by the search algorithm. ST is an
auxiliary stack variable introduced for the proof of correctness of the algorithm.
The boolean procedure stacked(s) indicates whether state s is currently on the
stack ST.

procedure label-graph(f)
begin

. . .

(main operator is AU)
begin

ST := empty-stack;
for all s E S do marked(s) := false;
L: forallsESdo
if lmarked(s) then au(f, s, b)

end
. . .

end

The recursive procedure au(f, s, b) performs the search for formula f starting
from state s. When au terminates, the boolean result parameter b will be set to
true iff s I= f. The annotated code for procedure au is shown below:

procedure au(f, s, b)
begin

(Assume that s is marked. If s is already labeled with f, we set b to true and return.
Otherwise, if s is on the stack, then we have found a cycle in the state graph on which
argl(f) holds but f is never fulfilled (see Lemma 3.2 in Appendix 1). Thus we set b to false
and return. Otherwise, we have already completed a depth-first search from s, and f is
false at s; so we must also set b to false and return in this case. Note that there is no need
to distinguish between the last two cases, since the action is the same in each case.)

if marked(s) then
begin

if labeled@, f) then
begin b := true; return end;

b := false; return
end;

(Mark state s as visited. Let f = A[f, Uf2]. If f 2 is t rue at s, f is true at s; so label s with f
and return true. If f, is not true at s, then f is not true at s; so return false.)

marked(s) := true;
if labeled(s, arg2(f)) then

begin adhlabel(s, f); b := true; return end
else if llabeled(s, argl(f)) then

begin b := false; return end;

(Now we know that fi is true at s and that A is not. Check to see if f is true at all successor
states of s. If there is some successor state sl at which f is false, then f is false at s also;
hence remove s from the stack and return false. If f is true for all successor states, then f
is true at s; so remove s from the stack, label s with f, and return true. (We remind the

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

250 l E. M. Clarke et al.

reader that ST is an auxiliary variable which is used in the correctness proof given in
Appendix 1.) 1

push(s, ST);
for all sl E successors(s) do

begin

df, sl, bl);
if 311 then

begin pop(ST); b := false; return end
end;

pop(ST); add-label(s, f); b := true; return

end of procedure au.

A formal proof of the correctness of this part of the algorithm is given in
Appendix 1. Assuming that the states of the graph are already correctly labeled
with fi and f2, it is easy to see that the above algorithm requires time O(card(S)
+ card(R)). The time spent by one call of procedure au, excluding the time spent
in recursive calls, is a constant plus time proportional to the number of edges
leaving the state s. Thus all calls to au together require time proportional to the
number of states plus the number of edges, since au is called at most once in any
state.

To handle formulas of the form f = E[fi U f] 2 , we first find all of those states
that are labeled with fi. We then work backwards using the converse of the
successor relation and find all of the states that can be reached by a path in
which each state is labeled with fi. All such states should be labeled with f.
Formal proof of this case is left to the reader.

We next show how to handle CTL formulas with arbitrary nesting of subfor-
mulas. Note that if we write formula f in prefix notation and count repetitions,
then the number of subformulas off is equal to the length off. (The length off
is determined by counting the total number of operands and operators.) We can
use this fact to number the subformulas off. Assume that formula f is assigned
the integer i. If f is unary (i.e., f = (op fd), then we assign the integers i + 1
through i + length(fi) to the subformulas of fi. If f is binary (i.e., f = (op fi fi)),
then we assign the integers from i + 1 through i + length(fi) to the subformulas
of fi and i + length(fi) through i + length(fi) + length(fi) to the subformulas of
f2. Thus, in one pass through f, we can build two arrays nf [l:length(f)] and
sf [l:length(f)] where nf [i] is the ith subformula off in the above numbering and
sf[i] is the list of the numbers assigned to the immediate subformulas of the ith
formula. For example, if f = (AU(NOT X)(OR Y Z)), then rzf and sf are given
below:

nf[l] (AU (NOT X) (OR Y 2)) sf D3 (2 4)

nfP1 (NOT X) sf PI (3)

nfP1 x sf [31 nil

nfB1 (OR YZ) sf WI (5 6)

nfk-4 y sf PI nil

MI‘31 2 sf PI nil

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

Automatic Verification of Finite-State Concurrent Systems 251

Fig. 4. Global state transition graph after termination of the model checking algorithm.

Given the number of a formula f we can determine in constant time the
operator off and the numbers assigned to its arguments. We can also efficiently
implement the procedures “labeled” and “add-label”. We associate with each
state s a bit array L[s] of size length(f). The procedure add-label(s, fi) sets
L[s][fi] to true, and the procedure labeled(s, fi) simply returns the current value
of L[s][f$

In order to handle an arbitrary CTL formula f, we successively apply the state
labeling algorithm described at the beginning of this section to the subformulas
off, starting with simplest (i.e., highest numbered) and working backwards to f:

for fi := length(f) step - 1 until 1 do
label-graph (fi);

Since each pass through the loop takes time O(size(S) + card(R)), we conclude
that the entire algorithm requires O(length(f) X (card(S) + card(R))).

THEOREM 3.1. There is an algorithm for determining whether a CTL formula f
is true in state s of the structure M = (S, R, P) which runs in time O(length(f) x

(card(S) + card(R))).

We illustrate the model checking algorithm by considering the global state
graph for the solution to the two-process mutual exclusion problem given in Figure
3. In order to establish absence of starvation for process 1, we consider the CTL
formula Tl A AFC, or, equivalently, lT1 V AFC,. In this case the set of
subformulas contains -T, V AFCl, lTl, T1, AFCl, and C,. The states of the
global transition graph will be labeled with these subformulas during execution
of the model checking algorithm. On termination, every state will be labeled with
lT, V AFC, as shown in Figure 4. Thus we can conclude that so E AG(Tl +
AFC&. It follows that process 1 cannot be prevented from entering its critical
region once it has entered its trying region.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

252 l E. M. Clarke et al.

4. INTRODUCING FAIRNESS INTO CTL

In verifying concurrent systems, we are occasionally interested only in correctness
along fair execution sequences. For example, with a system of concurrent pro-
cesses, we may wish to consider only those computation sequences in which each
process is executed infinitely often. When dealing with network protocols where
processes communicate over an imperfect (or lossy) channel, we may also wish
to restrict the set of computation sequences; in this case the unfair execution
sequences are those in which a sender process continuously transmits messages
without any reaching the receiver due to erratic behavior by the channel.

Roughly speaking, a fairness condition asserts that requests for service are
granted “sufficiently often.” Different concepts of what constitutes a “request”
and what “sufficiently often” should mean give rise to a variety of notions of
fairness. Indeed, many different types of fairness and approaches to dealing with
them have been proposed in the literature; we refer the reader to [8, 11, 12, 171
for more extensive treatments.

In this section we show how to extend the CTL model checking algorithm to
handle a simple but fundamental type of fairness in which certain predicates
must hold infinitely often along every fair path. In this case it follows from [5]
that correctness of fair executions cannot be expressed in CTL. In fact, CTL
cannot express the property that some proposition Q should eventually hold on
all fair executions.

In order to handle fairness and still obtain an efficient model checking
algorithm we modify the semantics of CTL. The new logic, which we call CTLF,
has the same syntax as CTL. But a structure is now a 4-tuple (S, R, P, F) where
S, R, P have the same meaning as in the case of CTL and F is a collection of
predicates on S, that is, F C 2’. A path p is F-fair iff the following condition
holds: for each g E F, there are infinitely many states on p which satisfy predicate
g. CTLF has exactly the same semantics as CTL, except that all path quantifiers
range over fair paths.

LEMMA 4.1. Given any finite structure M = (S, R, P), collection F = (Gl . . . GkJ
of subsets of S, and state so E S the following two conditions are equivalent:

(1) There exists an F-fair path in M starting at so.
(2) There exists a strongly connected component C of (the graph of) M such that

(a) there is a finite path from so to a state t E C, and
(b) for each Gi there is a state ti E C n Gi.

PROOF. (1) + (2). Suppose the F-fair path so, sl, s2, . . . exists in M. Then for
each Gi there is a state ti E Gi for which there exist infinitely many sj that are
equal to ti. So for each pair tip tj there is a path (which is some finite segment of
the original path) from ti to tje It follows that all the ti lie in the same strongly
connected component C of M. Certainly, there is a path from so to some node t
E C (take t = tl). Moreover, by the choice of the tip each ti E C n Gi. Thus C is
the desired strongly connected component of (2).

(2) + (1). Suppose the strongly connected component C exists in M. Then
finite paths of the following forms are also present in M: (so, . . . , tl), (tl, . . . , t2),
. . . . (tk-1, * - * , tk), and (tk, . . . , tl). We then concatenate these finite paths to get

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

Automatic Verification of Finite-State Concurrent Systems 253

a path: so, . . . , tl, . . . , tz, . . . , tk, . . . , t 1, . . . , t2, . . . , tk, . . . , tl, . . . , tz, . . . , tk,

. . . . This path certainly starts at so. Moreover, for each i there are infinitely
many occurrences of ti E Gi along it. Thus this path is F-fair. Cl

We next extend our model checking algorithm to CTLF. We introduce an
additional proposition Q, which is true at a state iff there is a fair path starting
from that state. This can easily be done by obtaining the strongly connected
components of the graph denoted by the structure. A strongly connected com-
ponent. is fair if it contains at least one state from each Gi in F. By the above
lemma every state in a fair strongly connected component is the start of an
infinite fair path. Thus we label a state with Q iff there is a path from that state
to some node of a fair strongly connected component.

As usual, we design the algorithm so that after it terminates each state will be
labeled with the subformulas off0 true in that state. For checking only fair paths,
we consider the two interesting cases where f E sub(fo) and either f = E[fi U fi]
or f = A[fl U f2]. We assume that the states have already been labeled with the
immediate subformulas off by an earlier stage of the algorithm.

(i) f = E[fi U f2]. f is true in a state iff the CTL formula E[fi U (f2 A Q)] is true
in that state, and this can be determined using the CTL model checker. Note
that since fair paths are infinite, the path satisfying f cannot simply stop
with the state satisfying fz. Again, state s is labeled with f iff f is true in that
state.

(ii) f = A[fi U fi]. It is easy to see that A[fi U fi] = l(E[lf2 U (Ifi A TfJ] V
EG(lfi)). For a state s we can easily check ifs I= E[lfi U (lfi A lf2)] using
the previous technique. To check if s I= EG(lfg), we use the following
procedure. Let GR be the graph corresponding to the above structure. From
GR eliminate all nodes u such that fi E label(u) and let Gfi be the resultant
labeled graph. Find all the strongly connected components of Gh and mark
those which are fair. Ifs is in GL and there is a path from s to a fair strongly
component of GA, then s I= EG(lf2); otherwise, s I= %!3G(lfi). As in (i), S is
labeled with f iff f is true in s.

If n = max(card(S), card(R)), m = length(f) and p = card(F), then it is not
difficult to show that the above algorithm takes time O(n x m x p).

An obvious question is whether our approach can handle the various types of
fairness that occur in practice. In [12], three different types of fairness properties
have been identified as being particularly useful: these are called impartiality,
justice, and fairness. We argue below that the first two of these properties can be
handled by the version of the model checker that is described above and currently
implemented. We also argue that the third property can be handled by an
extension of the above ideas which we have not yet found necessary to implement.

Impartiality requires that every process should be executed infinitely often. To
deal with this property we view an execution of a system PF of concurrent
processes as some interleaving of the execution steps of the individual processes.
We model a system of processes by a structure (S, R, P) and labeling function
L: R + PF, where S is the set. of global states of the system, R is the single-step
execution relation of the system, and for each transition in R, L gives the process

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

254 l E. M. Clarke et al.

that caused the transition. By duplicating each state in S at most card(Pr) times,
we can model the concurrent system by a structure (S*, R*, P*, F), in which each
state in S* is reached by the execution of at most one process, and F is a
partitioning of S* such that each element in F is the set of states reached by the
execution of one process; thus card(F) = card(&). The fair paths of the above
structure correspond exactly to the impartial execution sequences of the system
of processes.

A computation is said to be just if every process is either infinitely often
disabled or else it is infinitely often executed. Let di hold in a state iff process i
is not enabled in that state and let ei hold in a state iff that state is reached by
an execution of process i. It follows that a path is just iff for each process i the
state predicate (di V eJ holds infinitely often on the path. Thus we see that
justice can also be directly handled by the version of the model checking algorithm
described above.

A computation is fair iff, for each process, if the process is infinitely often
enabled, then it will be infinitely often executed. Our current system does not
handle this property; however, it could easily be modified to do so. We sketch
below the changes that are necessary, and refer the reader to [7] for details. First,
we must once again change our definition of a CTL structure. A structure will
now be a 4-tuple (S, R, P, F) where S, R, and P have the same meaning as above;
however, F will now consist of a collection of pairs of the form (p, q) where p, q
are predicates. We say that a path is fair with respect to (p, q) if, whenever p
holds infinitely often on the path, then q also holds infinitely often on the path.
A path is fair iff it is fair with respect to every pair (p, q) in F. The semantics of
the new logic is the same as CTL except that all path quantifiers range over
paths that are fair according to the new definition. The model checking algorithm
for CTLF given earlier in this section can be generalized to handle this notion of
fairness.

5. USING THE EXTENDED MODEL CHECKER TO VERIFY THE ALTERNATING
BIT PROTOCOL

In this section we consider a more complicated example to illustrate fair paths
and to show how the Extended Model Checking (EMC) system might actually
be used. The example that we have selected is the Alternating Bit Protocol (ABP),
originally proposed in [2]. Proofs of correctness of this protocol have been
constructed manually in [9] and [ll]. We show, instead, how the EMC system
can be used to verify properties of this protocol automatically. The algorithm
consists of two processes, a Sender process and a Receiver process, which alter-
nately exchange messages. We assume (as in [161) that messages from the Sender
to the Receiver are data messages and that messages from the Receiver to the
Sender are acknowledgments. We further assume that each message is encoded
so that garbled messages can be detected. Lost messages are detected by using
time-outs and are treated in exactly the same manner as garbled messages (i.e.,
as erroneous messages).

Ensuring that each transmitted message is correctly received can be tricky.
For example, the acknowledgment to a message may be lost. In this case the
Sender has no choice but to resend the original message. The Receiver must
ACM Transactions on Programming Languages and Systems, VoI. 8, No. 2, April 1986.

Automatic Verification of Finite-State Concurrent Systems 255

realize that the next data message it receives is a duplicate and should be
discarded. Additional complications may arise if this message is also garbled or
lost. These problems are handled in the algorithm of [2] by including with each
message a control bit called the alternation bit.

In the EMC system, finite-state concurrent programs are specified in a re-
stricted subset of the CSP programming language [lo], in which only boolean
data types are permitted and all messages between processes must be signals.
CSP programs for the Sender and Receiver processes in the ABP are shown in
Appendix 2. To simulate garbled or lost messages we systematically replace each
message transmission statement by a (nondeterministic) alternative statement
that can potentially send an error message instead of the original message. Thus,
for example, Receiver ! mess0 would be replaced by

[True + Receiver ! mess0
q
True + Receiver ! err]

A global state graph is generated from the state machines of the individual
CSP processes by considering all possible ways in which the transitions of the
individual processes may be interleaved. Since construction of the global state
graph is proportional to the product of the sizes of the state machines for the
individual processes, a simple (correctness-preserving) state minimization algo-
rithm is employed to reduce the number of states in the graph. Explicit construc-
tion of the global state machine can be avoided to save space by dynamically
recomputing the successors of the current state. The global state graph for our
version of the ABP has 251 states.

Once the global state graph has been constructed, the algorithm of Section 4
can be used to determine if the program satisfies its specifications. In the case of
the ABP we require that every data message that is generated by the Sender
process is eventually accepted by the Receiver process:

1. AG(RcvMsg + A[RcvMsg U (TRcvMsg A A[lRcvMsg U SndMsg])])
2. AG(SndMsg A Smsg + A[SndMsg U (?SndMsg A A[lSndMsg U RcvMsg A

Rmsgl)l)
3. AG(SndMsg A ?Smsg + A[SndMsg U (TSndMsg A A[lSndMsg U RcvMsg

A +msgl)l).

The formulas imply that sending a message (SndMsg) strictly alternates with
receiving a message (RcvMsg), and that if a O-message (l-message) is sent, then
a O-message (l-message) is received. The conjunction of the formulas is not true
of the global state graph obtained from the ABP because of infinite paths on
which a message is lost or garbled each time that it is retransmitted. For this
reason, we consider only those fair paths on which the initial state occurs
infinitely often. With this restriction the algorithm of Section 4 will correctly
determine that the state graph of the ABP satisfies its specification. See
Appendix 3.

The EMC system is written in a combination of Lisp and C, and has been fully
operational since January of 1982. Recently, a counterexample facility has been
added. When the model checker determines that a formula is false, it will attempt

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

256 l E. M. Clarke et al.

to find a path in the graph which demonstrates that the negation of the formula
is true. For instance, if the formula has the form AG(f), our system will produce
a path to a state in which lf holds. This feature is quite useful for debugging
purposes.

6. EXTENDED LOGICS

In this section we consider logics that are more expressive than CTL and
investigate their usefulness for automatic verification of finite-state concurrent
programs. CTL severely restricts the type of formula that can appear after a path
quantifier-only single linear time operator, F, G, X, or U can follow a path
quantifier. We consider several natural ways of relaxing this restriction. In each
case we see that the resulting logic has a model checking problem of intractable
complexity (assuming P does not equal NP). We believe that this justifies our
decision to restrict our attention to CTL and CTLF.

The first logic, CTL*, permits an arbitrary formula of linear time logic to
follow a path quantifier. We distinguish two types of formulas in giving the
syntax of CTL*: state formulas and path formulas. Any state formula is a CTL*
formula.

(state-formula} ::= (atomic proposition) 1 (state-formula) A (state-formula) 1

l(state-formula) 1 E((path-formula))

(path-formula) ::= (state-formula) 1 (path-formula) U (path-formula) 1

l(path-formula) 1 (path-formula) A (path-formula) 1

X(path-formula) 1 F(path-formula)

We use the abbreviation Gf for 1F -of and A(f) for 33 l(f). We interpret state
formulas over states of a structure and path formulas over paths of a structure
in a natural way. A formula of the form E((path formula)) is true in a state iff
there is a path in the structure starting from that state on which the path formula
is true. The truth of a path formula is defined in much the same way as for a
formula in linear temporal logic if we consider all the immediate state subformulas
as atomic propositions [5].

More precisely, let M = (S, R, P) be a structure and p = (s,,, sl, . . .) denote a
path in M; p”’ will represent the suffix of p starting at si.

The truth of a state formula is defined with respect to a state of M: s E E((path
formula)) iff there exists a path p in M starting from s such that (path formula)
holds at the beginning of the path, that is, p l= (path formula). A state formula
of the form A((path formula)) is treated similarly.

The truth of a path formula is defined with respect to a path in M; for example,
if the path formula is fi U fit we require that p l= fi U f2 iff there exist an i 2 0
such that p”’ 6 f2 and for all i such that 0 5 j < i, p(j) I= fi. If the path formula
is a state formula, then we require that p E (state formula) iff so K (state
formula), where so is the first state on p. The other cases are similar and are
omitted.

BT* denotes the subset of the above logic in which path formulas only use the
F operator. CTL+ denotes the subset in which the temporal operators X, U, F
are not nested.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

Automatic Verification of Finite-State Concurrent Systems l 257

Fairness can be easily handled in CTL*. For example, the following formula
asserts that on all impartial executions of a concurrent system with n processes
R eventually holds:

A ((GFPI A GFP, A . . . GFP,,) ---* FR)

Here PI, P2, . . . P,, hold in a state iff that state is reached by execution of one
step of process PI, Pz, . . . P,, respectively.

THEOREM 6.1. The model checking problem for CTL* is PSPAGE-complete.

PROOF SKETCH. We wish to determine if the CTL* formula f is true in state
s of structure M. Let g be a subformula off of the form E(g’) where g’ is a path
formula not containing any path quantifiers. For each such g we introduce an
atomic proposition Q,. Let f’ be the formula obtained by replacing each such
subformula g in f by Qg. We modify M by introducing the extra atomic proposi-
tions Q,. Each Q, is true in a state of the modified structure iff g is true in the
corresponding state in M. The latter problem can be solved in polynomial space

using the algorithm given in [Ml. f is true at state s in M iff f’ is true in state s
in the modified structure. We successively repeat the above procedure, each time
reducing the depth of nesting of the path quantifiers. It is easily seen that the
above procedure takes polynomial space. Model checking for CTL* is PSPACE-
hard because model checking for formulas of the form E(g’), where g’ is free of
path quantifiers, is shown to be PSPACE-hard in [18]. Cl

THEOREM 6.2. The model checking problem for BT* (and also for CTL+) is both
NP-hard and co-NP-hard and is in AC.

PROOF SKETCH. The lower bounds follow from the results in [la]. In [18] it
was shown that the model checking problem for formulas of the form F(g’),
where g’ is free of path quantifiers and uses the only temporal operator F, is in
NP. Using this result and a procedure like the one in the proof of the previous
theorem, it is easily seen that the model checking problem for BT* is in A[. A
similar argument can be given for CTL+. 0

7. DISCUSSION

Much research in protocol verification has attempted to exploit the fact that
protocols are frequently finite state. For example, in [19] (global state) reachu-
bility tree constructions are described that permit mechanical detection of system
deadlocks, unspecified message receptions, and nonexecutable process interac-
tions in finite state protocols. An obvious advantage that our approach has over
such methods is flexibility; our use of temporal logic provides a uniform notation
for expressing a wide variety of correctness properties. Furthermore, it is unnec-
essary to formulate protocol specifications as reachability assertions since the
model checker can handle both safety and liveness properties with equal facility.

The use of temporal logic for specifying concurrent systems has, of course,
been extensively investigated [9, 13, 151. However, most of this work requires
that a proof be constructed in order to show that a program actually meets its
specification. Although this approach can, in principle, avoid the construction of
a global state machine, it is usually necessary to consider a large number of
possible process interactions when establishing noninterference of processes. The

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

258 l E. M. Clarke et al.

possibility of automatically synthesizing finite-state concurrent systems from
temporal logic specifications has been considered in [6] and [141, but the synthesis
algorithms have exponential time complexity in the worst case.

Perhaps the research that is most closely related to our own is that of Quielle
and Sifakis [16, 171, who have independently developed a system that will
automatically check that a finite state CSP program satisfies a specification in
temporal logic. The logical system that is used in 1161 is not as expressive as
CTL, however, and no attempt is made to handle fairness properties. Although
fairness is discussed in [171, the approach that is used is much different from the
one that we have adopted. Special temporal operators are introduced for asserting
that a property must hold on fair paths, but neither a complexity analysis nor
an efficient model-checking algorithm is given for the extended logic.

APPENDIX 1

To establish the correctness of the state labeling algorithm in Section 3, we must
show that

Vs[labeled(s, f) ++ s l= f]

holds on termination. Without loss of generality, we consider only the case in
which f has the form A[fi U f2]. We further assume that the states are already
correctly labeled with the subformulas fi and f.. The first step in the proof is an
induction on depth of recursion for the procedure au. Let I be the conjunction of
the following eight assertions:

Il. All states are correctly labeled with the subformulas fi and fi:
Vs[labeled(s, fi) C, s K fi] for i = 1, 2.

12. The states on the stack form a path in the state graph:
Vi[l I i < length(ST) - (ST(i), ST(i + 1)) E R].

13. The current state parameter of au is a descendant of the state on top of the stack:
(Top(ST), s) E R.

14. fi A -$ holds at each state on the stack:
Vi[l 5 i I: length(ST) + ST(i) l= fi A lf2].

15. Every state on the stack is marked but unlabeled:
Vi[l 5 i I length(ST) + marked(ST(i)) A llabeled(ST(i), f)].

16. If a state is labeled with f, then it is also marked and f is true in that state:
Vs[labeled(s, f) -+ marked(s) A s l= f].

17. If a state is marked, but neither labeled with f nor on the stack, then f must be
false in that state:

18.

Vs[marked(s) A llabeled(s, f) A 13i[l 5 i 5 length(ST) A s = ST[i]] +
s I= -y].

ST0 records the contents of the stack before the call on au. The final value of ST
after the call on procedure au must be equal to the original value before the call:
ST = ST,,.

We claim that if I holds before execution of au(f, s, b), then I will also hold on
termination of au. Moreover, the boolean result parameter b will be true iff f
holds in state s. In the standard Hoare triple notation for partial correctness
assertions the inductive hypothesis would be

fIlau(f, s, W A lb f, s I= f)).

Once the inductive hypothesis is proved, the correctness of our algorithm is easily
established. If the stack is empty before the call on au, we can deduce that both

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

Automatic Verification of Finite-State Concurrent Systems l 259

of the following conditions must hold:

(a) Vs[marked(s) + [labeled@, f) + s l= f]] (from [16]).

(b) Vs[marked(s) 4 [llabeled(s, f) + s I= lf]] (from [17, 181).

It follows that

Vs[marked(s) + [labeled(s, f) H s l= f]].

Because of the for loop L in the calling program for au, every state will
eventually be marked. Thus, when loop L terminates, Vs[labeled(s, f) *-) s I= f]
must hold.

Proof of the inductive hypothesis is straightforward but tedious and is left to
the reader. The only tricky case occurs when the state s is marked and on the
stack. In this case procedure au simply sets b to false and returns. To see that
this is the correct action, we make use of the following observation:

LEMMA 3.2. Suppose there exists a path (sl, s2, . . . , s,, sk) in the state graph
such that 1 I k I n and Vi[l I i s m 3 si I= lf2], then sk I= lA[fl Ufz].

APPENDIX 2. Alternating Bit Protocol

-- Alternating Bit Protocol
Mm

-- Varlablos:
-m exit1 - A bit has been sent and acknowlrdgod.
ww exit2 - A blt has been received.
-- Smsg - The bit that was sent.
ww RrnSQ - The bit that was rrcrlvrd.
-- Labels:
mm SndMsg - The previous messago has been acknowlrdged and a now bit
mm is ready to be sent.
wm ikVMSQ - A bit has just been received and the acknowlodgemrnt is
w- rrady to be sent.
-- SlQnals:
mm dmXY - Used to send bit X with control bit Y.
ww kWllX - Used to acknowledQ0 a bit with control blt X.
me err - Used to Indicate a scramblrd nrssago.
sm

AN :: [
l xitl, sxit2, Smsg, RmsQ: bool:
SndMsg, RcvMsg: label:
dmO0, dmO1, dmi0, dmll, err. am0, aml: slgnal:

c
SND. KY: procrss:

-- SOndlnQ procrsa
-m

SND

II
em

-- Rocrlvlng procrsr
NW

RCV
1

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1986.

260 l E. M. Clarke et al.

Sending Process

SND :: [‘[trur ->
exit1 := falro;
-- Randomly choose a blt to sand.
[true -> Smsg := true

Cl
trur -> Snsg := falro

3:
<<SndMsg>>
-- Send a bit rlth control bit 0.
[Smsg -> RCV I dml0

Cl
-Sasg -> RCV 1 da00

3:
-- Walt for acknowlrdgemont of the mrrsago (anO).
-- If any other signal Is rocolvod, rotranrmlt the
-- data messago.
.[-rxlti -> [RCV 1 am0 -> rxltl := true

Cl
RCV 1 am1 -> [Smsg -> RCV I dml0

Cl

Cl
-Smsg -> RCV I dmO0]

RCV 1 err -> [Smrg -> RCV I dml0

kg -> RCV I dmO0 f

!fltl := fal*.'
-- Randomly chlorr a blt to sand.
[;;ue -> Sarg :- true

trur -> Smrg :- falro

I:
<<SndMsg>>
-- Sand a bit with control bit 1.
[Smsg -> RCV I dmll

Cl
-Smrg -> RCV I dmO1

I:
-- Walt for acknowlrdgamrnt of the mossago (aal).
-- If any other rignal Is rocolvod, rrtranrmlt the
-- data mossago.
l [-oxIt -> [RCV ? ml -> rxltl := true

Cl
RCV 4 u0 -> [Smrg -> RCV I da11

Cl

Cl
-Smsg -> RCV I dnO1]

RCV ? err -> [Smsg -> RCV I dmll

%a, -> RCV I dmO1 J

3
I

3
I

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

Automatic Verification of Finite-State Concurrent Systems 261

Receiving Process

RCV :: [‘[true ->
exit2 :- false;
-- Wait for a data message with control bit 0.
-- If any other messsgr Is recolvod, rrtranrllit
-- thw acknowledgrment of the last message (ml).
l [-exit2 -> [SND 'I dml0 -> oxltt := two:

f-g := trur

Cl
SND P dmO0 -> rxitt :. trust

Rm8g := false

k/D ? dmll

Cl -
> SND 1 @ml

SND '1 dmO1 -> SND I in1

iiD ? err 0 > SND I am1
3

3:
<<RcvMsg>>
-- Send an acknowl~dgemrnt, At thlr point,
-- Rmsg contains thr bit that was transmlttrd,
SND I am0:
oxIt := falro:
-- Walt for a data message with control bit 1.
-- If any other mwrragw Is rocolvod, retransmit
-- thr acknowlrdgwmrnt of thr last morrago (am0).
l [exit2 -> [SND 7 dmll -> rxlt2 := true:

f-g := true

Cl
SND ? dmO1 -> oxlt2 := true:

Rmsg := faire

Cl
SND P dml0 -> SND I am0

Cl
SND 7 dmO0 -> SND I aa

fiD 1 err

I -
> SND I u0

I:
<<RcvMsg>>
-- Send an acknowlodgemrnt. At thl8 point.
-- Rmsg contains thr blt that wa8 tranrrlttod.
SND I am1

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

262 9 E. M. Clarke et al.

APPENDIX 3. Transcript of Model Checker Execution

(Time is measured in l/60 of a second. The first component measures total user
CPU time. The second component measures total system CPU time.)

X l mc rltblt.1
CTL MOOEL CHECKER (C vrrrion 2.0)

Taking input from altbit.l...
Falrnrss constraint: .

time: (316 32)

I= A6 (RcvMsg -> A[RcvMsg U (-RcvWsg & A[-RcvMsg U SndMsg I)]).
Thm l qucrtlon Is FALSE.

tine: (399 44)

I= AG (SndMsg 21 Smsg -> A(SndWsg U (-SndMsg & A[-SndMsg U RcvMsg 21 Rasg])]).
The equation is FALSE.

tlAo: (469 00)

I= AG (SndMsg 21 -Smsg-> A[SndMsg U (-SndMsg & A[-SndMsg U RcvMsg 21 -Rmsg])]).
Tk l quetion Is FALSE.

tin.: (829 72)

I= (rrstrrt)
Fairnrss constraint: SndMsg.
Fairnrss constraint: RcvWsg.
Fairnrss constraint: .

two: (663 76)

I= AG (RcvMsg -> A[RCVMSQ U (-RcvMsg L At-RcvMsg U SndMsg])]).
The l qurtion is TRUE.

tine: (696 79)

I= A6 (SndMsg 21 Smsg -> A[SndYsg U (-SndMsg C A[-SndHsg U RcvMsg L Rmg])]).
The l qurtion Is TRUE.

the: (043 91)

I- AG (SndMsg & -Sms9-> A[SndMsg U (-Sndhly I A[-SndMsg U RcvMsg L -Rmsg])]).
The rquatlon Is TRUE.

tine: (694 33)

I= l

End of Session.

ACKNOWLEDGMENTS

The authors wish to acknowledge the help of M. Brinn, K. Sorenson, and David
Dill in implementing an experimental prototype of the system described in
Section 5.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

Automatic Verification of Finite-State Concurrent Systems l 263

REFERENCES

1. BEN-ARI, M., PNUELI, A., AND MANNA, Z. The temporal logic of branching time. Acta Znf 20
(1983), 207-226.

2. BARTLET, K. A., SCANTLEBURY, R. A., AND WILKINSON, P. T. A note on reliable full-duplex
transmission over half-duplex links. Commun. ACM 12,5 (1969), 260-261.

3. CLARKE, E. M., AND EMERSON, E. A. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Proceedings of the Workshop on Logic of Programs (Yorktown
Heights, N.Y.), Lecture Notes in Computer Science, 131, Springer Verlag, New York, 1981.

4. EMERSON, E. A., AND CLARKE, E. M. Characterizing properties of parallel programs as tixpoints.
In Proceedings of the 7th International Colloquium on Automata, Languages and Programming.
Lecture Notes in Computer Science, 85, Springer Verlag, New York, 1981.

5. EMERSON, E. A., AND HALPERN, J. Y. “Sometimes” and “not never” revisited: On branching
versus linear time temporal logic. In Proceedings of the Annual ACM Symposium on Principles
of Programming Languages (Austin, Tex., Jan. 1982). To appear in J. ACM.

6. EMERSON, E. A., AND CLARKE, E. M. Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Program. 2 (1982), 241-266.

7. EMERSON, E. A., AND LEI, C. L. Modalities for model checking: Branching time strikes back.
In Proceedings 12th ACM Symposium on Principles of Programming Languages (New Orleans,
Jan. 1985), 84-95.

8. GABBAY, D., PNUELI, A., SHELAH, S., AND STAVI, J. The temporal analysis of fairness. In
Proceedings 7th ACM Symposium on Principles of Programming Languages (Las Vegas, Jan.
1980), 163-173.

9. HAILPERN, B. T. Verifying concurrent processes using temporal logic. In Lecture Notes in
Computer Science, 129, Springer Verlag, New York, 1982.

10. HOARE, C. A. R. Communicating sequential processes. Commun. ACM 21, 8 (Aug. 1978),
666-677.

11. LAMPORT, L. “Sometimes” is sometimes “not never.” In Proceedings 7th Annual ACM Sympo-
sium on Principles of Programming Languages (Las Vegas, Jan. 1980), 174-185.

12. LEHMANN, D., PNUELI, A., AND STAVI, J. Impartiality, justice, and fairness: The ethics of
concurrent termination. In Automata, Languages, and Programming. Lecture Notes in Computer
Science 115, Springer Verlag, New York, 1981, 265-277.

13. MANNA, Z., AND PNUELI, A. Verification of concurrent programs: The temporal framework. In
The Correctness Problem in Computer Science, R. S. Boyer and J. S. Moore, Eds., Academic
Press, London, 1981, 215-273.

14. MANNA, Z., AND WOLPER, P. Synthesis of communicating processes from temporal logic
specifications. ACM Trans. Program. Long. Syst. 6,1 (Jan. 1984), 68-93.

15. OWICKI, S., AND LAMPORT, L. Proving liveness properties of concurrent programs. ACM Trans.
Program. Lang. Syst. 4, 3 (July 1982), 455-495.

16. QUIELLE, J. P., AND SIFAKIS, J. Specification and verification of concurrent systems in CESAR.
In Proceedings of the 5th International Symposium on Programming. Lecture Notes in Computer
Science 137, Springer Verlag, New York, 1981,337-350.

17. QUIELLE, J. P., AND SIFAKIS, J. Fairness and related properties in transition systems. 292,
IMAG, Univ. of Grenoble, Mar. 1982.

18. SISTLA, A. P., AND CLARKE, E. M. Complexity of propositional linear temporal logics. J. ACM
32,3 (July 1985), 733-749.

19. ZAFIROPULO, P., WEST, C., RUDIN, H., COWAN, D., AND BRAND, D. Towards analyzing and
synthesizing protocols. IEEE Trans. Commun. COM-28,4 (Apr. 1980), 651-671.

Received September 1983; revised November 1984 and November 1985; accepted November 1985

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 2, April 1986.

