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1. INTRODUCTION 

In the traditional approach to concurrent program verification, the proof that a 
program meets its specification is constructed by hand using various axioms and 
inference rules in a deductive system such as temporal logic [9, 13, 151. The task 
of proof construction is in general quite tedious, and a good deal of ingenuity 
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may be required to organize the proof in a manageable fashion. Mechanical 
theorem provers have failed to be of much help due to the inherent complexity 
of testing validity for even the simplest logics. 

We argue that proof construction is unnecessary in the case of finite-state 
concurrent systems, and can be replaced by a model-theoretic approach which 
will mechanically determine if the system meets a specification expressed in 
propositional temporal logic. The global state graph of the concurrent system 
can be viewed as a finite Kripke structure, and an efficient algorithm can be 
given to determine whether a structure is a model of a particular formula (i.e., to 
determine if the program meets its specification). The algorithm, which we call 
a model checker, is similar to the global flow analysis algorithms used in compiler 
optimization, and has complexity linear in both the size of the structure and the 
size of the specification. When the number of global states is not excessive (i.e., 
not more than a few thousand), we believe that our technique may provide a 
useful new approach to the verification of finite-state concurrent systems. 

Our approach is of wide applicability, since a large class of concurrent program- 
ming problems have finite-state solutions, and the interesting properties of many 
such problems can be specified in propositional temporal logic. For example, 
many network communication protocols (e.g., the Alternating Bit Protocol [2]) 
can be modeled at some level of abstraction by a finite state system. A typical 
requirement for such systems is that every transmitted message must ultimately 
be received; this can easily be expressed in the logic we use. 

Our specification language is a propositional, branching-time temporal logic 
called computation tree logic (CTL) and is similar to the logical systems described 
in [ 11, [3], and [4]. Since our goal is to specify concurrent systems, we must be 
able to assert that a correctness property only holds on fair execution sequences. 
It follows from the results of [4] and [5] that CTL cannot express such a property. 
The alternative of using a linear time logic is ruled out because any model checker 
for such a logic must have high complexity [ 181. We overcome this problem by 
moving fairness requirements into the semantics of CTL. Specifically, we change 
the definition of our basic modalities so that only fair paths are considered. Our 
previous model checking algorithm is modified to handle this extended logic 
without changing its complexity. 

Our paper is organized as follows: Section 2 contains the syntax and semantics 
of our logic. In Section 3 we describe the basic model checking algorithm and 
illustrate its use to establish absence of starvation for a solution to the mutual 
exclusion problem. An extension of the model checking algorithm which only 
considers fair computations is given in Section 4. Section 5 describes an experi- 
mental implementation of the extended model checking algorithm and shows 
how it can be used to verify the correctness of the Alternating Bit Protocol. In 
Section 6 we consider extensions of our logic that are more expressive and 
investigate the complexity of model checkers for these logics. The paper concludes 
with a discussion of related work and remaining open problems. 

2. THE SPECIFICATION LANGUAGE 

The formal syntax for CTL is given below. AP is the underlying set of atomic 
propositions. 
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(1) Every atomic proposition p E AP is a CTL formula. 
(2) Iffr and f2 are CTL formulas, then so are lfi, fi A f2, AXf2, EXfi, A[f, U fi], 

and E[fi U f2.1. 

The symbols A and 1 have their usual meanings. X is the nexttime operator; 
the formula AXfi(EXfi) intuitively means that fi holds in every (in some) 
immediate successor of the current program state. U is the until operator; the 
formula A[ fi U f2](E[ fi U f2]) intuitively means that for every computation path 
(for some computation path) there exists an initial prefix of the path such that 
f2 holds at the last state of the prefix and fi holds at all other states along the 
prefix. 

We define the semantics of CTL formulas with respect to a labeled state- 
transition graph. Formally, a CTL structure is a triple M = (S, R, P) where 

(1) S is a finite set of states. 
(2) R is a binary relation on S(R G S x S) which gives the possible transitions 

between states and must be total; that is, Vxl E S 3y E S[(x, y) E R]. 
(3) P:S + 2AP assigns to each state the set of atomic propositions true in that 

state. 

A path is an infinite sequence of states (so, ~1, sp, . . .) such that Vi[(s, si+l) E 
R]. For any structure M = (S, R, P) and state so E S, there is an infinite 
computation tree with root labeled so such that s + t is an arc in the tree iff 
(s, t) E R. Figure 1 shows a CTL structure and the associated computation tree 
rooted at so. 

We use the standard notation to indicate truth in a structure: M, so I= f means 
that formula f holds at state so in structure M. When the structure M is 
understood, we simply write so I= f. The relation I= is defined inductively as 
follows: 

so b=P iff p E P(s0). 

so I= If iff not(so k f). 

so I= fi A A iff so~fiandso~f2. 

so I= AXf, iff for all states t such that (so, t) E R, t I= fi. 

so i= EXfi iff for some state t such that (so, t) E R, t I= fi. 

so I= A[fi Ufil iff for all paths (so, sl, . . .), 

3i[i 1 0 A si k fz A Vj[O I j < i + sj F fi]]. 

so I= Nfl Uf21 iff for some path (so, sl, . . .), 

3i[i 2 0 A si I= f2 A Vj[O 5 j < i + si k fi]]. 

We also use the following abbreviations in writing CTL formulas: 

AF( f) = A[True U f] intuitively means that f holds in the future along every 
path from so; that is, f is inevitable. 
EF( f) = E[True U f ] means that there is some path from so that leads to a 
state at which f holds; that is, f potentially holds. 
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Fig. 1. (a) A structure. (b) The corresponding tree for start state SO. 
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(cl 
Fig. 2. (a) AGp: p is invariant. (b) AFp: p is inevitable. (c) EFp: p potentially holds. 0 = p, 0 = 1~. 

EG( f) = lAF(lf) means that there is some path from so on which f holds at 
every state. 
AG( f) = lEF(lf) means that f holds at every state on every path from so; 

that is, f holds globally. 

Figure 2 shows how some simple correctness properties would be represented 
using these operators. 
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Fig. 3. Global state transition graph for the two-process mutual exclusion problem. 

The global state transition graphs of many concurrent programs can be modeled 
as CTL structures. For example, Figure 3 shows the CTL structure for a simple 
solution to the mutual exclusion problem for two processes PI and Pz. In this 
solution each process is always in one of three regions of code: 

Ni the Noncritical region, 

Ti the Trying region, or 

Ci the Critical region. 

Note that we only record transitions between different regions of code; moves 
entirely within the same region are not considered at this level of abstraction. 
Also, each transition is due to the execution of a step of exactly one process. It 
is easy to see, in this case, that AF(C1) is true in state one and that EF(CI A CJ 
is false in state zero. 

3. MODEL CHECKER 

Assume that we wish to determine whether formula f,, is true in the finite 
structure M = (S, R, P). We design our algorithm to operate in stages: the first 
stage processes all subformulas of fO of length 1, the second stage processes all 
subformulas of length 2, and so on. At the end of the ith stage, each state will be 
labeled with the set of all subformulas of length less than or equal to i that are 
true in the state. We let the expression label(s) denote this set for state s. When 
the algorithm terminates at the end of stage n = length(f& we see that for all 
states s, M, s C= f iff f E label(s) for all subformulas f of fO. 

We use the following primitives for manipulating formulas and accessing the 
labels associated with states: 

- argl( f) and arg2(f) give the first and second arguments of a two-argument 
temporal operator; thus, if f is A[ fi U f2], then argl( f) = fi and arg2( f) = fi. 

- labeled (s, f) will return true (false) if state s is (is not) labeled with formula f. 
- add-label (s, f) adds formula f to the current label of state s. 
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Our state labeling algorithm (procedure label-graph(f)) must be able to 
handle seven cases, depending on whether f is atomic or has one of the following 
forms: lfi, fi A f2, AXf,, EXfi, A[f, U f2], or E[f, U fi]. We only consider the 
case in which f = A[fi U fi] here, since all of the other cases are either 
straightforward or similar. For the case f = A[ fi U fi], our algorithm uses a depth- 
first search to explore the state graph. The bit array marked[l: nstates] is used 
to indicate which states have been visited by the search algorithm. ST is an 
auxiliary stack variable introduced for the proof of correctness of the algorithm. 
The boolean procedure stacked(s) indicates whether state s is currently on the 
stack ST. 

procedure label-graph(f) 
begin 

. . . 

(main operator is AU) 
begin 

ST := empty-stack; 
for all s E S do marked(s) := false; 
L: forallsESdo 
if lmarked(s) then au( f, s, b) 

end 
. . . 

end 

The recursive procedure au( f, s, b) performs the search for formula f starting 
from state s. When au terminates, the boolean result parameter b will be set to 
true iff s I= f. The annotated code for procedure au is shown below: 

procedure au( f, s, b) 
begin 

(Assume that s is marked. If s is already labeled with f, we set b to true and return. 
Otherwise, if s is on the stack, then we have found a cycle in the state graph on which 
argl( f) holds but f is never fulfilled (see Lemma 3.2 in Appendix 1). Thus we set b to false 
and return. Otherwise, we have already completed a depth-first search from s, and f is 
false at s; so we must also set b to false and return in this case. Note that there is no need 
to distinguish between the last two cases, since the action is the same in each case.) 

if marked(s) then 
begin 

if labeled@, f) then 
begin b := true; return end; 

b := false; return 
end; 

(Mark state s as visited. Let f = A[f, Uf2]. If f 2 is t rue at s, f is true at s; so label s with f 
and return true. If f, is not true at s, then f is not true at s; so return false.) 

marked(s) := true; 
if labeled(s, arg2( f)) then 

begin adhlabel(s, f); b := true; return end 
else if llabeled(s, argl(f)) then 

begin b := false; return end; 

(Now we know that fi is true at s and that A is not. Check to see if f is true at all successor 
states of s. If there is some successor state sl at which f is false, then f is false at s also; 
hence remove s from the stack and return false. If f is true for all successor states, then f 
is true at s; so remove s from the stack, label s with f, and return true. (We remind the 
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reader that ST is an auxiliary variable which is used in the correctness proof given in 
Appendix 1.) 1 

push(s, ST); 
for all sl E successors(s) do 

begin 

df, sl, bl); 
if 311 then 

begin pop(ST); b := false; return end 
end; 

pop(ST); add-label(s, f); b := true; return 

end of procedure au. 

A formal proof of the correctness of this part of the algorithm is given in 
Appendix 1. Assuming that the states of the graph are already correctly labeled 
with fi and f2, it is easy to see that the above algorithm requires time O(card(S) 
+ card(R)). The time spent by one call of procedure au, excluding the time spent 
in recursive calls, is a constant plus time proportional to the number of edges 
leaving the state s. Thus all calls to au together require time proportional to the 
number of states plus the number of edges, since au is called at most once in any 
state. 

To handle formulas of the form f = E[ fi U f ] 2 , we first find all of those states 
that are labeled with fi. We then work backwards using the converse of the 
successor relation and find all of the states that can be reached by a path in 
which each state is labeled with fi. All such states should be labeled with f. 
Formal proof of this case is left to the reader. 

We next show how to handle CTL formulas with arbitrary nesting of subfor- 
mulas. Note that if we write formula f in prefix notation and count repetitions, 
then the number of subformulas off is equal to the length off. (The length off 
is determined by counting the total number of operands and operators.) We can 
use this fact to number the subformulas off. Assume that formula f is assigned 
the integer i. If f is unary (i.e., f = (op fd), then we assign the integers i + 1 
through i + length( fi) to the subformulas of fi. If f is binary (i.e., f = (op fi fi)), 
then we assign the integers from i + 1 through i + length( fi) to the subformulas 
of fi and i + length( fi) through i + length( fi) + length( fi) to the subformulas of 
f2. Thus, in one pass through f, we can build two arrays nf [l:length( f )] and 
sf [l:length( f )] where nf [i] is the ith subformula off in the above numbering and 
sf[i] is the list of the numbers assigned to the immediate subformulas of the ith 
formula. For example, if f = (AU(NOT X)(OR Y Z)), then rzf and sf are given 
below: 

nf[l] (AU (NOT X) (OR Y 2)) sf D3 (2 4) 

nfP1 (NOT X) sf PI (3) 

nfP1 x sf [31 nil 

nfB1 (OR YZ) sf WI (5 6) 

nfk-4 y sf PI nil 

MI‘31 2 sf PI nil 
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Fig. 4. Global state transition graph after termination of the model checking algorithm. 

Given the number of a formula f we can determine in constant time the 
operator off and the numbers assigned to its arguments. We can also efficiently 
implement the procedures “labeled” and “add-label”. We associate with each 
state s a bit array L[s] of size length(f). The procedure add-label(s, fi) sets 
L[s][fi] to true, and the procedure labeled(s, fi) simply returns the current value 
of L[s][f$ 

In order to handle an arbitrary CTL formula f, we successively apply the state 
labeling algorithm described at the beginning of this section to the subformulas 
off, starting with simplest (i.e., highest numbered) and working backwards to f: 

for fi := length(f) step - 1 until 1 do 
label-graph (fi); 

Since each pass through the loop takes time O(size(S) + card(R)), we conclude 
that the entire algorithm requires O(length(f) X (card(S) + card(R))). 

THEOREM 3.1. There is an algorithm for determining whether a CTL formula f 
is true in state s of the structure M = (S, R, P) which runs in time O(length( f) x 

(card(S) + card(R))). 

We illustrate the model checking algorithm by considering the global state 
graph for the solution to the two-process mutual exclusion problem given in Figure 
3. In order to establish absence of starvation for process 1, we consider the CTL 
formula Tl A AFC, or, equivalently, lT1 V AFC,. In this case the set of 
subformulas contains -T, V AFCl, lTl, T1, AFCl, and C,. The states of the 
global transition graph will be labeled with these subformulas during execution 
of the model checking algorithm. On termination, every state will be labeled with 
lT, V AFC, as shown in Figure 4. Thus we can conclude that so E AG(Tl + 
AFC&. It follows that process 1 cannot be prevented from entering its critical 
region once it has entered its trying region. 
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4. INTRODUCING FAIRNESS INTO CTL 

In verifying concurrent systems, we are occasionally interested only in correctness 
along fair execution sequences. For example, with a system of concurrent pro- 
cesses, we may wish to consider only those computation sequences in which each 
process is executed infinitely often. When dealing with network protocols where 
processes communicate over an imperfect (or lossy) channel, we may also wish 
to restrict the set of computation sequences; in this case the unfair execution 
sequences are those in which a sender process continuously transmits messages 
without any reaching the receiver due to erratic behavior by the channel. 

Roughly speaking, a fairness condition asserts that requests for service are 
granted “sufficiently often.” Different concepts of what constitutes a “request” 
and what “sufficiently often” should mean give rise to a variety of notions of 
fairness. Indeed, many different types of fairness and approaches to dealing with 
them have been proposed in the literature; we refer the reader to [8, 11, 12, 171 
for more extensive treatments. 

In this section we show how to extend the CTL model checking algorithm to 
handle a simple but fundamental type of fairness in which certain predicates 
must hold infinitely often along every fair path. In this case it follows from [5] 
that correctness of fair executions cannot be expressed in CTL. In fact, CTL 
cannot express the property that some proposition Q should eventually hold on 
all fair executions. 

In order to handle fairness and still obtain an efficient model checking 
algorithm we modify the semantics of CTL. The new logic, which we call CTLF, 
has the same syntax as CTL. But a structure is now a 4-tuple (S, R, P, F) where 
S, R, P have the same meaning as in the case of CTL and F is a collection of 
predicates on S, that is, F C 2’. A path p is F-fair iff the following condition 
holds: for each g E F, there are infinitely many states on p which satisfy predicate 
g. CTLF has exactly the same semantics as CTL, except that all path quantifiers 
range over fair paths. 

LEMMA 4.1. Given any finite structure M = (S, R, P), collection F = (Gl . . . GkJ 
of subsets of S, and state so E S the following two conditions are equivalent: 

(1) There exists an F-fair path in M starting at so. 
(2) There exists a strongly connected component C of (the graph of) M such that 

(a) there is a finite path from so to a state t E C, and 
(b) for each Gi there is a state ti E C n Gi. 

PROOF. (1) + (2). Suppose the F-fair path so, sl, s2, . . . exists in M. Then for 
each Gi there is a state ti E Gi for which there exist infinitely many sj that are 
equal to ti. So for each pair tip tj there is a path (which is some finite segment of 
the original path) from ti to tje It follows that all the ti lie in the same strongly 
connected component C of M. Certainly, there is a path from so to some node t 
E C (take t = tl). Moreover, by the choice of the tip each ti E C n Gi. Thus C is 
the desired strongly connected component of (2). 

(2) + (1). Suppose the strongly connected component C exists in M. Then 
finite paths of the following forms are also present in M: (so, . . . , tl), (tl, . . . , t2), 
. . . . (tk-1, * - * , tk), and (tk, . . . , tl). We then concatenate these finite paths to get 
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a path: so, . . . , tl, . . . , tz, . . . , tk, . . . , t 1, . . . , t2, . . . , tk, . . . , tl, . . . , tz, . . . , tk, 

. . . . This path certainly starts at so. Moreover, for each i there are infinitely 
many occurrences of ti E Gi along it. Thus this path is F-fair. Cl 

We next extend our model checking algorithm to CTLF. We introduce an 
additional proposition Q, which is true at a state iff there is a fair path starting 
from that state. This can easily be done by obtaining the strongly connected 
components of the graph denoted by the structure. A strongly connected com- 
ponent. is fair if it contains at least one state from each Gi in F. By the above 
lemma every state in a fair strongly connected component is the start of an 
infinite fair path. Thus we label a state with Q iff there is a path from that state 
to some node of a fair strongly connected component. 

As usual, we design the algorithm so that after it terminates each state will be 
labeled with the subformulas off0 true in that state. For checking only fair paths, 
we consider the two interesting cases where f E sub( fo) and either f = E[ fi U fi] 
or f = A[fl U f2]. We assume that the states have already been labeled with the 
immediate subformulas off by an earlier stage of the algorithm. 

(i) f = E[ fi U f2]. f is true in a state iff the CTL formula E[ fi U ( f2 A Q)] is true 
in that state, and this can be determined using the CTL model checker. Note 
that since fair paths are infinite, the path satisfying f cannot simply stop 
with the state satisfying fz. Again, state s is labeled with f iff f is true in that 
state. 

(ii) f = A[fi U fi]. It is easy to see that A[ fi U fi] = l(E[lf2 U (Ifi A TfJ] V 
EG(lfi)). For a state s we can easily check ifs I= E[lfi U (lfi A lf2)] using 
the previous technique. To check if s I= EG(lfg), we use the following 
procedure. Let GR be the graph corresponding to the above structure. From 
GR eliminate all nodes u such that fi E label(u) and let Gfi be the resultant 
labeled graph. Find all the strongly connected components of Gh and mark 
those which are fair. Ifs is in GL and there is a path from s to a fair strongly 
component of GA, then s I= EG(lf2); otherwise, s I= %!3G(lfi). As in (i), S is 
labeled with f iff f is true in s. 

If n = max(card(S), card(R)), m = length(f) and p = card(F), then it is not 
difficult to show that the above algorithm takes time O(n x m x p). 

An obvious question is whether our approach can handle the various types of 
fairness that occur in practice. In [12], three different types of fairness properties 
have been identified as being particularly useful: these are called impartiality, 
justice, and fairness. We argue below that the first two of these properties can be 
handled by the version of the model checker that is described above and currently 
implemented. We also argue that the third property can be handled by an 
extension of the above ideas which we have not yet found necessary to implement. 

Impartiality requires that every process should be executed infinitely often. To 
deal with this property we view an execution of a system PF of concurrent 
processes as some interleaving of the execution steps of the individual processes. 
We model a system of processes by a structure (S, R, P) and labeling function 
L: R + PF, where S is the set. of global states of the system, R is the single-step 
execution relation of the system, and for each transition in R, L gives the process 
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that caused the transition. By duplicating each state in S at most card(Pr) times, 
we can model the concurrent system by a structure (S*, R*, P*, F), in which each 
state in S* is reached by the execution of at most one process, and F is a 
partitioning of S* such that each element in F is the set of states reached by the 
execution of one process; thus card(F) = card(&). The fair paths of the above 
structure correspond exactly to the impartial execution sequences of the system 
of processes. 

A computation is said to be just if every process is either infinitely often 
disabled or else it is infinitely often executed. Let di hold in a state iff process i 
is not enabled in that state and let ei hold in a state iff that state is reached by 
an execution of process i. It follows that a path is just iff for each process i the 
state predicate (di V eJ holds infinitely often on the path. Thus we see that 
justice can also be directly handled by the version of the model checking algorithm 
described above. 

A computation is fair iff, for each process, if the process is infinitely often 
enabled, then it will be infinitely often executed. Our current system does not 
handle this property; however, it could easily be modified to do so. We sketch 
below the changes that are necessary, and refer the reader to [7] for details. First, 
we must once again change our definition of a CTL structure. A structure will 
now be a 4-tuple (S, R, P, F) where S, R, and P have the same meaning as above; 
however, F will now consist of a collection of pairs of the form (p, q) where p, q 
are predicates. We say that a path is fair with respect to (p, q) if, whenever p 
holds infinitely often on the path, then q also holds infinitely often on the path. 
A path is fair iff it is fair with respect to every pair (p, q) in F. The semantics of 
the new logic is the same as CTL except that all path quantifiers range over 
paths that are fair according to the new definition. The model checking algorithm 
for CTLF given earlier in this section can be generalized to handle this notion of 
fairness. 

5. USING THE EXTENDED MODEL CHECKER TO VERIFY THE ALTERNATING 
BIT PROTOCOL 

In this section we consider a more complicated example to illustrate fair paths 
and to show how the Extended Model Checking (EMC) system might actually 
be used. The example that we have selected is the Alternating Bit Protocol (ABP), 
originally proposed in [2]. Proofs of correctness of this protocol have been 
constructed manually in [9] and [ll]. We show, instead, how the EMC system 
can be used to verify properties of this protocol automatically. The algorithm 
consists of two processes, a Sender process and a Receiver process, which alter- 
nately exchange messages. We assume (as in [ 161) that messages from the Sender 
to the Receiver are data messages and that messages from the Receiver to the 
Sender are acknowledgments. We further assume that each message is encoded 
so that garbled messages can be detected. Lost messages are detected by using 
time-outs and are treated in exactly the same manner as garbled messages (i.e., 
as erroneous messages). 

Ensuring that each transmitted message is correctly received can be tricky. 
For example, the acknowledgment to a message may be lost. In this case the 
Sender has no choice but to resend the original message. The Receiver must 
ACM Transactions on Programming Languages and Systems, VoI. 8, No. 2, April 1986. 



Automatic Verification of Finite-State Concurrent Systems 255 

realize that the next data message it receives is a duplicate and should be 
discarded. Additional complications may arise if this message is also garbled or 
lost. These problems are handled in the algorithm of [2] by including with each 
message a control bit called the alternation bit. 

In the EMC system, finite-state concurrent programs are specified in a re- 
stricted subset of the CSP programming language [lo], in which only boolean 
data types are permitted and all messages between processes must be signals. 
CSP programs for the Sender and Receiver processes in the ABP are shown in 
Appendix 2. To simulate garbled or lost messages we systematically replace each 
message transmission statement by a (nondeterministic) alternative statement 
that can potentially send an error message instead of the original message. Thus, 
for example, Receiver ! mess0 would be replaced by 

[True + Receiver ! mess0 
q 
True + Receiver ! err] 

A global state graph is generated from the state machines of the individual 
CSP processes by considering all possible ways in which the transitions of the 
individual processes may be interleaved. Since construction of the global state 
graph is proportional to the product of the sizes of the state machines for the 
individual processes, a simple (correctness-preserving) state minimization algo- 
rithm is employed to reduce the number of states in the graph. Explicit construc- 
tion of the global state machine can be avoided to save space by dynamically 
recomputing the successors of the current state. The global state graph for our 
version of the ABP has 251 states. 

Once the global state graph has been constructed, the algorithm of Section 4 
can be used to determine if the program satisfies its specifications. In the case of 
the ABP we require that every data message that is generated by the Sender 
process is eventually accepted by the Receiver process: 

1. AG(RcvMsg + A[RcvMsg U (TRcvMsg A A[lRcvMsg U SndMsg])]) 
2. AG(SndMsg A Smsg + A[SndMsg U (?SndMsg A A[lSndMsg U RcvMsg A 

Rmsgl)l) 
3. AG(SndMsg A ?Smsg + A[SndMsg U (TSndMsg A A[lSndMsg U RcvMsg 

A +msgl)l). 

The formulas imply that sending a message (SndMsg) strictly alternates with 
receiving a message (RcvMsg), and that if a O-message (l-message) is sent, then 
a O-message (l-message) is received. The conjunction of the formulas is not true 
of the global state graph obtained from the ABP because of infinite paths on 
which a message is lost or garbled each time that it is retransmitted. For this 
reason, we consider only those fair paths on which the initial state occurs 
infinitely often. With this restriction the algorithm of Section 4 will correctly 
determine that the state graph of the ABP satisfies its specification. See 
Appendix 3. 

The EMC system is written in a combination of Lisp and C, and has been fully 
operational since January of 1982. Recently, a counterexample facility has been 
added. When the model checker determines that a formula is false, it will attempt 
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to find a path in the graph which demonstrates that the negation of the formula 
is true. For instance, if the formula has the form AG( f), our system will produce 
a path to a state in which lf holds. This feature is quite useful for debugging 
purposes. 

6. EXTENDED LOGICS 

In this section we consider logics that are more expressive than CTL and 
investigate their usefulness for automatic verification of finite-state concurrent 
programs. CTL severely restricts the type of formula that can appear after a path 
quantifier-only single linear time operator, F, G, X, or U can follow a path 
quantifier. We consider several natural ways of relaxing this restriction. In each 
case we see that the resulting logic has a model checking problem of intractable 
complexity (assuming P does not equal NP). We believe that this justifies our 
decision to restrict our attention to CTL and CTLF. 

The first logic, CTL*, permits an arbitrary formula of linear time logic to 
follow a path quantifier. We distinguish two types of formulas in giving the 
syntax of CTL*: state formulas and path formulas. Any state formula is a CTL* 
formula. 

(state-formula} ::= (atomic proposition) 1 (state-formula) A (state-formula) 1 

l( state-formula) 1 E( (path-formula)) 

(path-formula) ::= (state-formula) 1 (path-formula) U (path-formula) 1 

l(path-formula) 1 (path-formula) A (path-formula) 1 

X(path-formula) 1 F(path-formula) 

We use the abbreviation Gf for 1F -of and A(f) for 33 l(f). We interpret state 
formulas over states of a structure and path formulas over paths of a structure 
in a natural way. A formula of the form E( (path formula)) is true in a state iff 
there is a path in the structure starting from that state on which the path formula 
is true. The truth of a path formula is defined in much the same way as for a 
formula in linear temporal logic if we consider all the immediate state subformulas 
as atomic propositions [5]. 

More precisely, let M = (S, R, P) be a structure and p = (s,,, sl, . . .) denote a 
path in M; p”’ will represent the suffix of p starting at si. 

The truth of a state formula is defined with respect to a state of M: s E E( (path 
formula)) iff there exists a path p in M starting from s such that (path formula) 
holds at the beginning of the path, that is, p l= (path formula). A state formula 
of the form A( (path formula)) is treated similarly. 

The truth of a path formula is defined with respect to a path in M; for example, 
if the path formula is fi U fit we require that p l= fi U f2 iff there exist an i 2 0 
such that p”’ 6 f2 and for all i such that 0 5 j < i, p(j) I= fi. If the path formula 
is a state formula, then we require that p E (state formula) iff so K (state 
formula), where so is the first state on p. The other cases are similar and are 
omitted. 

BT* denotes the subset of the above logic in which path formulas only use the 
F operator. CTL+ denotes the subset in which the temporal operators X, U, F 
are not nested. 
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Fairness can be easily handled in CTL*. For example, the following formula 
asserts that on all impartial executions of a concurrent system with n processes 
R eventually holds: 

A ((GFPI A GFP, A . . . GFP,,) ---* FR) 

Here PI, P2, . . . P,, hold in a state iff that state is reached by execution of one 
step of process PI, Pz, . . . P,, respectively. 

THEOREM 6.1. The model checking problem for CTL* is PSPAGE-complete. 

PROOF SKETCH. We wish to determine if the CTL* formula f is true in state 
s of structure M. Let g be a subformula off of the form E(g’) where g’ is a path 
formula not containing any path quantifiers. For each such g we introduce an 
atomic proposition Q,. Let f’ be the formula obtained by replacing each such 
subformula g in f by Qg. We modify M by introducing the extra atomic proposi- 
tions Q,. Each Q, is true in a state of the modified structure iff g is true in the 
corresponding state in M. The latter problem can be solved in polynomial space 

using the algorithm given in [Ml. f is true at state s in M iff f’ is true in state s 
in the modified structure. We successively repeat the above procedure, each time 
reducing the depth of nesting of the path quantifiers. It is easily seen that the 
above procedure takes polynomial space. Model checking for CTL* is PSPACE- 
hard because model checking for formulas of the form E(g’), where g’ is free of 
path quantifiers, is shown to be PSPACE-hard in [18]. Cl 

THEOREM 6.2. The model checking problem for BT* (and also for CTL+) is both 
NP-hard and co-NP-hard and is in AC. 

PROOF SKETCH. The lower bounds follow from the results in [la]. In [18] it 
was shown that the model checking problem for formulas of the form F(g’), 
where g’ is free of path quantifiers and uses the only temporal operator F, is in 
NP. Using this result and a procedure like the one in the proof of the previous 
theorem, it is easily seen that the model checking problem for BT* is in A[. A 
similar argument can be given for CTL+. 0 

7. DISCUSSION 

Much research in protocol verification has attempted to exploit the fact that 
protocols are frequently finite state. For example, in [19] (global state) reachu- 
bility tree constructions are described that permit mechanical detection of system 
deadlocks, unspecified message receptions, and nonexecutable process interac- 
tions in finite state protocols. An obvious advantage that our approach has over 
such methods is flexibility; our use of temporal logic provides a uniform notation 
for expressing a wide variety of correctness properties. Furthermore, it is unnec- 
essary to formulate protocol specifications as reachability assertions since the 
model checker can handle both safety and liveness properties with equal facility. 

The use of temporal logic for specifying concurrent systems has, of course, 
been extensively investigated [9, 13, 151. However, most of this work requires 
that a proof be constructed in order to show that a program actually meets its 
specification. Although this approach can, in principle, avoid the construction of 
a global state machine, it is usually necessary to consider a large number of 
possible process interactions when establishing noninterference of processes. The 
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possibility of automatically synthesizing finite-state concurrent systems from 
temporal logic specifications has been considered in [6] and [ 141, but the synthesis 
algorithms have exponential time complexity in the worst case. 

Perhaps the research that is most closely related to our own is that of Quielle 
and Sifakis [16, 171, who have independently developed a system that will 
automatically check that a finite state CSP program satisfies a specification in 
temporal logic. The logical system that is used in 1161 is not as expressive as 
CTL, however, and no attempt is made to handle fairness properties. Although 
fairness is discussed in [ 171, the approach that is used is much different from the 
one that we have adopted. Special temporal operators are introduced for asserting 
that a property must hold on fair paths, but neither a complexity analysis nor 
an efficient model-checking algorithm is given for the extended logic. 

APPENDIX 1 

To establish the correctness of the state labeling algorithm in Section 3, we must 
show that 

Vs[labeled(s, f) ++ s l= f] 

holds on termination. Without loss of generality, we consider only the case in 
which f has the form A[fi U f2]. We further assume that the states are already 
correctly labeled with the subformulas fi and f.. The first step in the proof is an 
induction on depth of recursion for the procedure au. Let I be the conjunction of 
the following eight assertions: 

Il. All states are correctly labeled with the subformulas fi and fi: 
Vs[labeled(s, fi) C, s K fi] for i = 1, 2. 

12. The states on the stack form a path in the state graph: 
Vi[l I i < length(ST) - (ST(i), ST(i + 1)) E R]. 

13. The current state parameter of au is a descendant of the state on top of the stack: 
(Top(ST), s) E R. 

14. fi A -$ holds at each state on the stack: 
Vi[l 5 i I: length(ST) + ST(i) l= fi A lf2]. 

15. Every state on the stack is marked but unlabeled: 
Vi[l 5 i I length(ST) + marked(ST(i)) A llabeled(ST(i), f)]. 

16. If a state is labeled with f, then it is also marked and f is true in that state: 
Vs[labeled(s, f) -+ marked(s) A s l= f]. 

17. If a state is marked, but neither labeled with f nor on the stack, then f must be 
false in that state: 

18. 

Vs[marked(s) A llabeled(s, f) A 13i[l 5 i 5 length(ST) A s = ST[i]] + 
s I= -y]. 

ST0 records the contents of the stack before the call on au. The final value of ST 
after the call on procedure au must be equal to the original value before the call: 
ST = ST,,. 

We claim that if I holds before execution of au( f, s, b), then I will also hold on 
termination of au. Moreover, the boolean result parameter b will be true iff f 
holds in state s. In the standard Hoare triple notation for partial correctness 
assertions the inductive hypothesis would be 

fIlau(f, s, W A lb f, s I= f)). 

Once the inductive hypothesis is proved, the correctness of our algorithm is easily 
established. If the stack is empty before the call on au, we can deduce that both 
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of the following conditions must hold: 

(a) Vs[marked(s) + [labeled@, f) + s l= f]] (from [16]). 

(b) Vs[marked(s) 4 [llabeled(s, f) + s I= lf]] (from [17, 181). 

It follows that 

Vs[marked(s) + [labeled(s, f) H s l= f]]. 

Because of the for loop L in the calling program for au, every state will 
eventually be marked. Thus, when loop L terminates, Vs[labeled(s, f) *-) s I= f] 
must hold. 

Proof of the inductive hypothesis is straightforward but tedious and is left to 
the reader. The only tricky case occurs when the state s is marked and on the 
stack. In this case procedure au simply sets b to false and returns. To see that 
this is the correct action, we make use of the following observation: 

LEMMA 3.2. Suppose there exists a path (sl, s2, . . . , s,, sk) in the state graph 
such that 1 I k I n and Vi[l I i s m 3 si I= lf2], then sk I= lA[fl Ufz]. 

APPENDIX 2. Alternating Bit Protocol 

-- Alternating Bit Protocol 
Mm 

-- Varlablos: 
-m exit1 - A bit has been sent and acknowlrdgod. 
ww exit2 - A blt has been received. 
-- Smsg - The bit that was sent. 
ww RrnSQ - The bit that was rrcrlvrd. 
-- Labels: 
mm SndMsg - The previous messago has been acknowlrdged and a now bit 
mm is ready to be sent. 
wm ikVMSQ - A bit has just been received and the acknowlodgemrnt is 
w- rrady to be sent. 
-- SlQnals: 
mm dmXY - Used to send bit X with control bit Y. 
ww kWllX - Used to acknowledQ0 a bit with control blt X. 
me err - Used to Indicate a scramblrd nrssago. 
sm 

AN :: [ 
l xitl, sxit2, Smsg, RmsQ: bool: 
SndMsg, RcvMsg: label: 
dmO0, dmO1, dmi0, dmll, err. am0, aml: slgnal: 

c 
SND. KY: procrss: 

-- SOndlnQ procrsa 
-m 

SND 

II 
em 

-- Rocrlvlng procrsr 
NW 

RCV 
1 
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Sending Process 

SND :: [ ‘[ trur -> 
exit1 := falro; 
-- Randomly choose a blt to sand. 
[ true -> Smsg := true 

Cl 
trur -> Snsg := falro 

3: 
<<SndMsg>> 
-- Send a bit rlth control bit 0. 
[ Smsg -> RCV I dml0 

Cl 
-Sasg -> RCV 1 da00 

3: 
-- Walt for acknowlrdgemont of the mrrsago (anO). 
-- If any other signal Is rocolvod, rotranrmlt the 
-- data messago. 
.[ -rxlti -> [ RCV 1 am0 -> rxltl := true 

Cl 
RCV 1 am1 -> [ Smsg -> RCV I dml0 

Cl 

Cl 
-Smsg -> RCV I dmO0 ] 

RCV 1 err -> [ Smrg -> RCV I dml0 

kg -> RCV I dmO0 f 

!fltl := fal*.' 
-- Randomly chlorr a blt to sand. 
[ ;;ue -> Sarg :- true 

trur -> Smrg :- falro 

I: 
<<SndMsg>> 
-- Sand a bit with control bit 1. 
[ Smsg -> RCV I dmll 

Cl 
-Smrg -> RCV I dmO1 

I: 
-- Walt for acknowlrdgamrnt of the mossago (aal). 
-- If any other rignal Is rocolvod, rrtranrmlt the 
-- data mossago. 
l [ -oxIt -> [ RCV ? ml -> rxltl := true 

Cl 
RCV 4 u0 -> [ Smrg -> RCV I da11 

Cl 

Cl 
-Smsg -> RCV I dnO1 ] 

RCV ? err -> [ Smsg -> RCV I dmll 

%a, -> RCV I dmO1 J 

3 
I 

3 
I 
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Receiving Process 

RCV :: [ ‘[ true -> 
exit2 :- false; 
-- Wait for a data message with control bit 0. 
-- If any other messsgr Is recolvod, rrtranrllit 
-- thw acknowledgrment of the last message (ml). 
l [ -exit2 -> [ SND 'I dml0 -> oxltt := two: 

f-g := trur 

Cl 
SND P dmO0 -> rxitt :. trust 

Rm8g := false 

k/D ? dmll 

Cl - 
> SND 1 @ml 

SND '1 dmO1 -> SND I in1 

iiD ? err 0 > SND I am1 
3 

3: 
<<RcvMsg>> 
-- Send an acknowl~dgemrnt, At thlr point, 
-- Rmsg contains thr bit that was transmlttrd, 
SND I am0: 
oxIt := falro: 
-- Walt for a data message with control bit 1. 
-- If any other mwrragw Is rocolvod, retransmit 
-- thr acknowlrdgwmrnt of thr last morrago (am0). 
l [ exit2 -> [ SND 7 dmll -> rxlt2 := true: 

f-g := true 

Cl 
SND ? dmO1 -> oxlt2 := true: 

Rmsg := faire 

Cl 
SND P dml0 -> SND I am0 

Cl 
SND 7 dmO0 -> SND I aa 

fiD 1 err 

I - 
> SND I u0 

I: 
<<RcvMsg>> 
-- Send an acknowlodgemrnt. At thl8 point. 
-- Rmsg contains thr blt that wa8 tranrrlttod. 
SND I am1 
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APPENDIX 3. Transcript of Model Checker Execution 

(Time is measured in l/60 of a second. The first component measures total user 
CPU time. The second component measures total system CPU time.) 

X l mc rltblt.1 
CTL MOOEL CHECKER (C vrrrion 2.0) 

Taking input from altbit.l... 
Falrnrss constraint: . 

time: (316 32) 

I= A6 (RcvMsg -> A[RcvMsg U (-RcvWsg & A[-RcvMsg U SndMsg I)]). 
Thm l qucrtlon Is FALSE. 

tine: (399 44) 

I= AG (SndMsg 21 Smsg -> A(SndWsg U (-SndMsg & A[-SndMsg U RcvMsg 21 Rasg])]). 
The equation is FALSE. 

tlAo: (469 00) 

I= AG (SndMsg 21 -Smsg-> A[SndMsg U (-SndMsg & A[-SndMsg U RcvMsg 21 -Rmsg])]). 
Tk l quetion Is FALSE. 

tin.: (829 72) 

I= (rrstrrt) 
Fairnrss constraint: SndMsg. 
Fairnrss constraint: RcvWsg. 
Fairnrss constraint: . 

two: (663 76) 

I= AG (RcvMsg -> A[RCVMSQ U (-RcvMsg L At-RcvMsg U SndMsg])]). 
The l qurtion is TRUE. 

tine: (696 79) 

I= A6 (SndMsg 21 Smsg -> A[SndYsg U (-SndMsg C A[-SndHsg U RcvMsg L Rmg])]). 
The l qurtion Is TRUE. 

the: (043 91) 

I- AG (SndMsg & -Sms9-> A[SndMsg U (-Sndhly I A[-SndMsg U RcvMsg L -Rmsg])]). 
The rquatlon Is TRUE. 

tine: (694 33) 

I= l 

End of Session. 
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