File Number: 90P02836

Automatic Verification of Sequential Control Systems
using Temporal Logic

Keywords: automatic verification, sequential process control, temporal logic, safety

11 Moon and Gary J. Powers*
Department of Chemical Engineering

Jerry R. Burch and Edmund M. Clarke
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

November 7, 1991

Submitted to American Institute of Chemical Engineers Journal (AT ChE)

* Correspondence concerning this paper should be addressed to G. J. Powers

Abstract

Clarke et al. (1986) have developed a model based verification method and have applied it
to validation of VLSI circuits. We have used the method to automatically test the safety and
operability of discrete chemical process control systems. The technique involves: 1) a system
model describing the process and its software, 2) assertions in temporal logic expressing user-
supplied questions about the system behavior with respect to safety and operability, and 3) a model
checker that determines if the system model satisfies each of the assertions, and provides a
counterexample to locate the error if one exists. Temporal logic is used for reasoning about
occurrence of events over time. To reveal discrete event errors, we have applied the verification

method to a simple combustion system and an alarm acknowledge system.

/

11/7/91 (revision) Automatic Verification 1

introduction

As chemical processes increasingly use computers for their control, avoiding computer
control failures becomes more important. This paper describes a verification method which
automatically determines the safety and operability of sequential discrete chemical process control
systems.

Current methods for assessing the safety and reliability of chemical processes are diverse
(Dhillon, 1988). Hazard and operability studies (HAZOPs) are widely used for identifying hazards
or operability problems. This method involves preparing a list of all possible deviations from
normal operating conditions and how the deviations might occur. The consequences on the process
are assessed, and the means available to detect and correct the deviations are examined. This
method is difficult to apply to complex systems because of the large number of failure
combinations and the many interactions between components and subsystems. Fault tree analysis
(FTA) overcomes some of the limitations of HAZOP. The critical difference between the two
methods is the direction in which the analysis is performed. HAZOP involves generation of event
sequences from initiating events to final events, while FTA begins with the final event and works
backwards to initiating events. In FTA, only event sequences leading to failures of interest are
considered. The fault tree method can be quantified where data are available on failure probabilities
of primal events. These methods are systematic approaches for determining if failures or changes
in the process equipment or procedures will result in undesirable process events such as fatalities,
injuries, environmental damage or unintended process shutdown.

Checking interactions between process equipment and computer software using these
techniques presents numerous problems. First, the complexity of the control system hardware,
operating system and application code causes large combinatorial search problems for HAZOP
and FTA types of risk assessment. Second, sequential or batch processing systems introduce
additional complexity due to the large number of possible states that the process and its control

system might attain. Finally, models for predicting software integrity are commonly restricted to

11/7/91 (revision) Automatic Verification 2

the software code itself without including the process or system that is controlled by the code. Not
including the chemical process in the assessment of the software, precludes the detection of errors
that are caused by the misapplication of the code or by failures that propagate from the process
through the code. These types of software application errors are often difficult to detect and can
cause large consequence failures in the processing plant.

This paper addresses the use of an automatic formal verification method for process
control systems that involve discrete event dynamics. The objective of the study is to determine
whether a formal verification method would be able to identify effectively errors in a system which
includes both the control system and the chemical process equipment. The method requires two
inputs:

e a state transition model for the system to be verified including software and process units
manipulated by a sequential controller such as the programmable logic controller (PLC) and
e a list of questions about the possible behavior of the system.

Other less formal approaches have been used in several industries. These techniques
normally rely on testing the functionality of the control software at each stage of its development.
Field testing prior to commissioning of the control system is a critical activity that commonly
involves checking the control system while changing one input at a time, followed by larger scale
functional tests with inert material in the process.

Several recent studies have given guidelines for the safety and reliability of computer based
process control systems. The Pharmaceutical Manufacturers Association's Computer System
Validation Committee has addressed several factors to be considered for validating automated
process controls in bulk pharmaceutical operations (Chapman, 1989). Shaw (1991) has given a
checklist to reduce human errors in distributed control systems. The Institute of Electrical and
Electronics Engineers (IEEE) has provided manual guidelines for software quality assurance
plans (IEEE, 1984) and software unit testing (IEEE, 1987). The methods in these guidelines are

mostly manual and suffer from combinatorial search problems and a potential lack of

11/7/91 (revision) Automatic Verification 3

completeness. A summary of verification and validation methods through the software life cycle
has been presented by Wallace (1989). These methods have been used for software testing in
aerospace applications and computer system development. These pioneering efforts have indicated
that organized search for software and control system errors, while time consuming, can greatly
improve system integrity. In this paper, some formal verification techniques are combined with
chemical engineering models of processing systems to verify discrete event chemical processes.

Engineers widely use discrete event control systems for on/off sequential control of batch
systems, alarms, interlocks and startup and shutdown procedures. The search for safety errors in
discrete chemical process control systems depends on models of the systems. Ho (1989) classified
the models of discrete event dynamic systems by logical, algebraic and stochastic models for both
/fimed and untimed systems. Yamalidou (1990) examined the behavior of discrete chemical
processing plants using Petri nets (untimed logical model), Minimax algebra (timed algebraic
model), and temporal logic (timed logical model). Simulation, using these discrete models, is one
way of investigating the behavior of a sequential chemical process. We could use repeated
simulations to detect possible errors in the control system. While effective for small problems,
these simulation approaches commonly have combinatorial problems when applied to complex
systems. We use a finite state machine model and temporal logic for reasoning about occurrence
of events over time.

Model checking using temporal logic has the potential for reducing the rate of growth of
the search space. The application to the verification of VLSI circuit designs and communication
protocols containing up to 1020 states has shown the power of this method (Burch, 1990). We
have combined state transition models of chemical process equipment with similar models of the
control system and its software, and developed a search method using temporal logic for finding
errors in the control system.

The method identifies errors by comparing a question about system behavior with the

model of the system. The question is given as a series of temporal logic statements. For example,

11/7/91 (revision) Automatic Verification 4

an informal question in furnace operation, "Is there any future situation in which fuel is flowing
without being burned?" may be expressed using temporal logic as "EF(fuel AND (NOT flame))"
where EF(p) is a temporal logic formula meaning "there Exists a state in the Future where p
holds". The next step is to determine whether the model of the system satisfies each questions.

We have applied the model checking method of Clarke et al. (1986) to testing chemical
process control systems. This paper includes two case studies: a combustion system involving an
air/fuel burner, a flame detector, and shutdown and startup procedures, and an alarm system using
PLC software.

The results of these studies indicate that the model checking approach can identify errors in
’ldiscrcte chemical process control systems. The main advantages of this method for testing discrete
event systems are:

e process models are included, so the interactions between software and process hardware are
tested,

e an algorithmic search is used to make the verification process more complete,

¢ alternate designs can be compared by testing them with the same set of assertions, and

o the search method is automated and has the potential for testing complex systems.

Model Checking Verification
An overview of the verification method is shown in figure 1, where the system description
and the assertions are inputs to the model checker. The system description is a state transition
model of the system to be tested. The model is derived from the process flow diagram, control
software and piping and instrumenting diagram (P&ID). Assertions are questions associated with
safety and operability coming from industrial standard checklists, process design specifications or
other methods like HAZOP or fault tree analysis. Assertions are expressed in temporal logic. The

model checker searches the state space of the system, and determines the truth of assertions.

11/7/91 (revision) Automatic Verification 5

System
Description

TRUE, FALSE or

Model Checker Counterexample

Figure 1. The overview of the model checking verification method

The next section describes the modelling of sequential systems, and is followed by a

/ description of how to express assertions, and the model checking algorithm.

System Modelling

The behavior of the process equipment, the operating procedures and the process control
software in the form of a PLC ladder diagram are converted into a labeled state transition graph.
An example of a state transition graph appears in figure 2 where a circle indicates a state, s;, and an
arrow denotes a state transition. The state variables, called atomic propositions, of the system can
take the values of TRUE or FALSE, which represent the discrete state values of on-off valves,
pumps, relays, tank levels, switches, etc. Only the variables that have the value TRUE in a given
state appear in the circle representing that state. The arrows in the state transition graph represent
the transition of the system from one state to another. The immediate successors of a state s are the

states that can be reached from s in one step.

11/7/91 (revision) Automatic Verification 6

S1
Figure 2. A state transition graph

More formally, a state transition structure M = (S, R, P) includes three components where
¢ S is a finite set of states,
¢ R is a binary relation on S which gives the possible transitions between states, and
e P(s) is the set of TRUE atomic propositions in state s, where an atomic proposition is the
state variable which denotes the property of interest and has either TRUE or FALSE value.
Using a library of models of process equipment, operating procedures and the PLC software, a
sequential system is modeled as a state uansitipn structure. The following section illustrates how to

express and check assertions in this method.

Computation Tree Logic

Computation tree logic (CTL) formulae are used to express assertions about the system
being verified. These assertions can be provided by the system analyst, standard system
specifications or error types discovered in previous designs, and are used to detect operability,
reliability and safety features. The CTL model checker program automatically tests whether the
assertions are TRUE of the system model.

The truth of a CTL formula is relative to a state transition structure. To understand how the
truth of a formula depends on a state transition structure, it is helpful to think of unwinding the

structure into an infinite tree with the initial state as the root. The tree obtained in this manner is

11/7/91 (revision) | Automatic Verification 71

called a computation tree. Paths in the tree represent possible behaviors of the system modeled by
the state transition structure. For example, figure 3 presents the tree corresponding to figure 2 with

the initial state sg. One of the paths in the tree is sg, §1, S0, 52,-.. -

S
/\
S1 " S,

|
A

-

Figure 3. The corresponding computation tree to figure 2 with initial state so

The simplest CTL formulae consist of just an atomic proposition. If p is an atomic
proposition, then the formula p is TRUE of a state s if and only if (iff) p labels s, i.e., p is an
element of P(s). Formulae can be built up using the standard operators of negation (written ~) and
and (written &). CTL is distinguished from elementary propositional logic by the modal operators
AX, EX, AU and EU, where A (for all computation paths) and E (for some computation path) are
path quantifiers, and X (next time) and U (until) are state quantifiers. With these operators, it is
possible to construct formulae whose truth in a state s depends on the labeling of states other than
s. Thus, one can construct formulae that assert restrictions on the kinds of behaviors that can start
in a given state.

For example, EX(f) is TRUE of a state s iff f is TRUE of some immediate successor of s;
AX(f) is TRUE iff f is TRUE of all immediate successors. The formula E[f1 U 2] is TRUE of a
state s iff there exists a path starting at s with the following property: there exists an initial prefix of
the path such that f2 holds at the last state of the prefix, and f1 holds at all other states along the
prefix. The formula A[f1 U f2] makes the analogous assertion about}all of the paths starting with

11/7/91 (revision) Automatic Verification 8

state s.
In summary, the formal syntax for CTL is such that
¢ Every atomic proposition p € AP is a CTL formula, and
o If f1 and f2 are CTL formulae, then so are ~f1, f1&f2, AX(f2), EX(f1), A[f1 U £2]
and E[f1 U £2].
The following abbreviations are used in writing CTL formulae:

EF(f) = E[TRUE U f] means that there is some path from sq that leads to f; i.e., f holds

potentially.

AF(f) = A[TRUE U f] means that f holds in the future along every path from the initial

state sq; i.e., f is inevitable.

EG(f) = ~AF(~f) means that there is some path from sp on which f holds at every state.

AG(f) = ~EF(~f) means that f holds at every state on every path from sg; i.e., f holds

globally.

Figure 4 shows how simple correctness properties can be represented using these
operators, where the black circle and the white circle indicate that the atomic proposition p is
TRUE and FALSE, respectively, in the corresponding states. More complex formulae can be
represented by combining the CTL operators. For example, AG AF (f) means that for all states s,
all paths starting from s contain at least one state where f is TRUE. This is the same as saying that
f is TRUE infinitely often on all paths starting from the initial state. The expression EF EG (f)

means that at some state in the future there exists a path along which f is TRUE at every state.

11/7/91 (revision) Automatic Verification 9

Figure 4. The CTL operators e=p,0o=~p
(a) EF(p): p potentially holds (b) AF(p): p is inevitable
(c) EG(p): p holds at every state in some path (d) AG(p): p is invariant

The model checker automatically tests whether an assertion is satisfied in the system
model. The algorithm processes a formula bottom up, checking the shortest subformulae before
the subformulae that contain them. For each CTL operator, there is an algorithm for determining
the truth of a formula constructed with the operator, given that the truth of the subformulae has
already been determined. The model checker is the combination of these algorithms, together with
an algorithm for producing a counterexample trace in response to a FALSE formula. The
counterexample trace is a sequence of states that demonstrates why the formula is FALSE. This
feature is quite useful for locating the cause of errors in the system being verified. A more
thorough description of the model checker program is given by Clarke et al. (1986 and 1987).

The following two examples illustrate the method, and demonstrate its usefulness in the
verification of discrete chemical process control systems. The first is a combustion system at the

design level, and the second is an alarm acknowledge system at the detailed software level.

11/7/91 (revision) Automatic Verification 10

Case Studies

A Combustion System
This example illustrates the model checking verification method by testing a chemical
process using a state transition graph and CTL assertions. Figure 5 shows a combustion system,

where v1 and v2 are normally closed solenoid valves, d1 is a flame detector and Ig1 is an ignitor.

_ - -==-=-| controller

\
\
\

air ';‘ . . ”,

fuel i

I
I
i
I
, i \
I
I
|
1
i

Figure 5. A combustion system
Assume that a designer has proposed one operating sequence as shown in figure 6. The goal of
this analysis is to detect a safety error in the operating sequence before the designer implements the
corresponding control system. A combined model of the valves, the detector, the ignitor and the
operating sequence is presented by the state transition graph shown in figure 7. This graph is the

input to the model checker as the system description.

1. Start with initial condition
2. Open the air valve (vi=1)
3. Open the fuel valve (v2=1)
4. Turn on the ignitor (Ig1=1)
5. Turn off the ignitor (Ig1=0)
6. If there exists flame (d1=1),
then go to step 7
else go to step 4
7. If shutdown button is on or flame disappears,
then stop
else go to step 7

Figure 6. The operating sequence No. 1 for a combustion system

11/7/91 (revision) Automatic Verification 11

<=

2

air
<3 air fuel

Y

Q air, ig, fuel
v

s5 air, fuel >
< s6 air, fuel >

VRRVARY

air, fuel, flame

@ air, fuel, flame, shut

air, fuel

b

510 >

Figure 7. The state transition graph for the operating sequence No. 1

11/7/91 (revision) Automatic Verification 12

A trace of the CTL model checker execution of the system description is shown in figure 8
where lines in bold represent inputs from the user. The first test assertion is
EF(air & fuel & flame)

i.e., "Is it TRUE that there exists a state in the future where air, fuel and flame coexist?" as shown
in line 4. This test determines whether a situation arises where air, fuel and flame are present at the
same time in the model. The answer is TRUE as shown in line 5, i.e., such a situation can occur,
so the burner works in at least one case as specified by the assertion.

Now let us check if a steady unsafe state exists in which fuel is flowing without flame. The
assertion for testing this condition is
EF EG (fuel & ~flame)
‘ /i.e., "Is there any path that it is TRUE all along the path that fuel exists and flame does not exist?".
The negation of this assertion is used to get a counterexample as shown in line 7 of figure 8. The
answer to this test is FALSE because a potentially unsafe infinite loop exists at states 4, 5, 6, 4, 5,
6, The location of the loop is determined automatically by the model checker, and displayed in
lines 21 through 26. The method for locating the loop is based on proposing the counterexample
given in line 10. The continuation of the counterexample development for line 10 is given in lines

16 through 19. Hence, the CTL model checker shows that the operating sequence No. 1 implies a
potentially unsafe condition. This path is for the condition where the fuel will not ignite and
operating sequence No. 1 continues to turn on the ignitor in an attempt to achieve ignition. The
location of the unsafe condition might suggest process or software changes. The current methods
do not automatically revise the system design.

Let us consider another design proposal, operating sequence No. 2 as shown in figure 9.
This procedure uses a different sequence based on detecting the flame to control the ignition of the
fuel. The corresponding state transition graph is shown in figure 10. The answer to the safety
question ~EF EG (fuel & ~flame) for this sequence is TRUE as shown in the execution file, figure

11 in lines 7 and 8. The unsafe path found in operating sequence No. 1 is not present in the revised

11/7/91 (revision) Automatic Verification 13

system No. 2.

This combustion system example illustrates that once a state transition graph (system
description) and assertions are defined, then the CTL model checker can be used to automatically
determine the truth of the assertions in the model. Other assertions about system operability and
reliability could be tested in the same manner. The next example includes another application of

this verification method to test the correctness of software used in a process control alarm system.

11/7/91 (revision)

Automatic Verification 14

©OONONDWON =

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2

CTL MODEL CHECKER
Taking input from high_op1.emc...

|= EF (air & fuel & flame).
The assertion is TRUE.

|= ~EF EG (fuel & -~flame).
The assertion is FALSE.

o EF EG (fuel & ~flame)

1 is true in state 1 because of the path:
2 State 1:

3 State 2: air

4 State 3: air fuel

5

6 AF ~(fuel & ~flame)

7 is false in state 3 because
8 EG ~~(fuel & ~flame)

] is true in state 3.

0 An example of such a path is:
1 State 3: air fuel

2 State 4: air fuel ig

3 State 5: air fuel

4 State 6: air fuel

5 State 4: air fuel ig

6

Figure 8. The CTL model checker execution for the operating sequence No. 1

NnHEWND =

~NOo

. Start with initial condition
. Open the air valve (vi=1)
. Turn on the ignitor {ig1=1)
. Open the fuel vaive (v2=1)
. if there exists flame (d1=1),
then go to step 6
else turn off the ignitor (Ig1=0) and
close the fuel valve (v2=0) and
go to step 3
. Turn off the ignitor (Ig1=0)
. If shutdown button is on or flame disappears,
then stop
else go to step 7

Figure 9. The operating sequence No. 2 for a combustion system

11/7/91 (revision) Automatic Verification 15

Tt ainigfuel >
l T~

<6 airig,fuel >
S5 air, ig, fuel, flame >

s7 air, fuel, flame

@ air, fuel, flame, shut _>

Figure 10. The state transition graph for the operating sequence No. 2

11/7/91 (revision) Automatic Verification 16

CTL MODEL CHECKER
Taking input from high_op2.emc...

|= EF (air & fuel & fiame).
The assertion is TRUE.

|= ~EF EG (fuel & ~flame).
The assertion is TRUE.

NS WON =

Figure 11. The CTL model checker execution for the operating sequence No. 2

An Alarm Acknowledge System

This example uses a programmable logic controller (PLC) to demonstrate an application of
the verification method at the software level. PLCs are used extensively in chemical industry in a
wide variety of applications. Programming languages for PLCs include ladder diagrams, boolean
expressions, Grafcet, etc. Among these languages, the ladder diagram is the most popular.
Laduzinsky (1990) indicated 70% of the PLC programmers preferred this language.

Consider the alarm system shown in figure 12, where the high level and the high
temperature alarms of a storage tank are activated by a PLC, and the horn is acknowledged by an
operator. A ladder diagram used for the PLC is shown in figure 13. The vertical rails of the
diagram indicate the power source and sink, while the horizontal lines, called rungs, indicate the
possible current (or signal) flow. Various symbols for buttons, contacts and coils can be placed on
the rungs of the ladder. If the appropriate contacts are activated, a coil is energized and its associate
relays are closed if they are normally open relays. For example, closing the high level contact

(HiL) in rung 1 activates the relay coil L1 in rung 1, and causes closing of the relay L1 in rung 3.

11/7/91 (revision) Automatic Verification 17

T IF_’ —» Horn
C /
g
. y

Rung 1 |— | O
HiL L1
Rung 2 I O._
HiT L2
Rung3 — | S+ O
L1 Ack horn
L2 | A" Normally
Closed
i | Contact
horn
Rung 4 o o O__
PB Ack
1 |
Ack
Power Rail Ground Rail

Figure 13. The ladder diagram for the alarm acknoWledge system

11/7/91 (revision) Automatic Verification 18

The ladder diagram in figure 13 includes two sensors (high level and high temperature),
one pushbutton (PB) and one horn. The horn and the acknowledge relay (Ack) are latched in rung
3 and rung 4 respectively, i.e., once a value is changed the value is retained. The contact Ack in
rung 3 is normally closed and other contacts are normally open. The initial condition of the circuit
is that all variables are FALSE, i.e., normally open contacts are open and normally closed contacts
are closed. If the high level sensor is activated, relay L1 actuates in rung 1 and the horn in rung 3
sounds. If the pushbutton is pressed, the Ack relay is closed in rung 4, and the horn is turned off in
rung 3. Many possible states can be reached in this system. The possible paths associated with a
process model are expressed by the state transition graph as shown in figure 14. Two rules are
used to convert the ladder diagram into the state transition graph: 1) Variables that cause branching

'in the graph are the independent inputs in the ladder diagram. The change of the independent
variable (HiL, HiT or PB) between two states is shown on the arrow of the graph. 2) After each
independent variable is changed, the ladder diagram and process models are used to update all the
dependent variables. A simple process model of the operator's behavior for pressing the
acknowledge pushbutton is "Press the button once only after the horn is turned on.". With those
rules and the process model, the state transition graph is made, then converted into a Lisp-like
input file as a system description for the CTL model checker.

One of the many possible desired operating sequences in the system is:

1) Once high level or high temperature is detected, then the horn is turned on.

2) Once the horn sounds, then the operator presses the acknowledge button.

3) Once the button is pressed, then the system is acknowledged and the horn goes off.

4) Repeat the above.
The system can be tested for this sequence by asking appropriate questions to the model checker.
Figure 15 shows a partial trace of the model checker execution which tests the operability of the
system.

The verification of the first operating sequence is described below. The CTL expression,

11/7/91 (revision) Automatic Verification 19

shown in line 4 of figure 15,

AG(HIL -> AF homn)
checks all possible states in the system. It examines whether the horn sounds whenever the high
level is detected. The result of this test as performed by the CTL model checker is FALSE as
shown in lines 5 through 31. The counterexample shows that while the system is acknowledged,
the horn is not turned on even if the high level is detected. This situation is normal. The above
assertion is too strong. To exclude this case and to continue verifying the first operating sequence,
the following assertion is used in line 33.

AG(HIL & ~Ack -> AF horn)
This examines whether the horn sounds whenever high level is detected (HiL) and the system is
not acknowledged. The answer is TRUE as shown in line 34. This means that under the condition,
the high level detector and the horn behave correctly as a user required. Lines 36 and 37,

AG(HIT & ~Ack -> AF horn)
show that if the temperature inside the storage tank is high under the condition, the horn sounds.
By testing the above two assertions (lines 33 -37), the first operating sequence is tested and the
result is that the system behaves correctly as specified.

The second operating sequence is verified in line 39.

AG(horn -> AX(horn | ~horn & PB))
which means that after the horn sounds, either it stays on, or it is turned off only if the pushbutton
is pressed. The result, TRUE, means that the horn goes off only under the specified condition.

The third operating sequence, "Once the operator presses the acknowledge button, the

system is acknowledged and the horn goes off.", is verified as shown in lines 42 and 43.

AG(PB -> AF(Ack & ~homn))
The result shows that the pushbutton is always able to return the system to the acknowledged state,
and to silence the horn.

The next several assertions (lines 45-end) demonstrate examples of the system not

11/7/91 (revision) Automatic Verification 20

following a user's requirement (the fourth operating sequence). The assertion in line 45,

EF(hom & EF(~horn & EF horn))
tests whether the horn works for sequences of inputs. The result shows that once the horn is turned
on and off, then the system does not recover to the initial state. This is clearly a problem for the
integrity of this system because if a high level alarm comes in after the high temperature alarm is
acknowledged, the homn does not sound. Lines 50 through 101 are used to locate the cause of this
failure. Line 50,

AG(~hom -> EF horn)
checks all states to detect if it is possible for the horn to sound later. The result of the test shows
that there is no such path. As shown in lines 53 through 70, after the horn operates once (states 1,
/3, 8) there is no path in which the horn is turned on again. The assertion in line 72,

AG(~HiL & ~HiT & ~PB -> AF ~Ack)
asks if the high level and the high temperature sensors are reading normal and the pushbutton is
not pressed, then eventually the acknowledge function should be returned to the initial condition
(reset). The result shows that the system does not reset because of the infinite loop (states 1, 3, 8,
12,9,11,9,..).

In order for the horn to work properly for this situation, the ladder diagram should be
revised. Figure 16 illustrates a possible solution by adding a normally closed reset button in the
fourth rung of the ladder diagram. Figure 17 shows the corresponding state transition graph for the
revised ladder diagram. A simple operator model for controlling the reset button is used:

reset = Ack & ~HiL & ~HIiT & ~PB
which means that if the alarm has been acknowledged and all the alarm causing variables (HiL.,
HiT) are FALSE and the acknowledge pushbutton is not presseed, then the operator should press
the reset button, otherwise do not press the reset button. This model is included in the new state
transition graph.

The same assertions are used to check the revised alarm system as shown in figure 18. The

11/7/91 (revision) Automatic Verification 21

two assertions in lines 33 and 36 of figure 15 are combined and simplified as shown in line 4 of
figure 18. The execution of the CTL model checker with the same assertions in lines 4 to 20,
indicates that the revised system does not have the reset error. This revised system has been tested
for the other previous assertions and found to be satisfactory. This series of tests and revisions is

one strategy for verifying and improving the integrity of sequential process control systems.

HiL -
HIT

\ '} N PB
AR & o >

y y

HiL,PB bR HiT,PB
7 |1,Ack S8 |2 Ack o

pe HiL Hi
HIT
HiLHIT,PB

HiL

HIT

i

Figure 14. The state transition graph for the alarm acknowledge system

11/7/91 (revision)

Automatic Verification 22

CTL MODEL CHECKER
Taking input from alarmi.emc...

|= AG(HIL -> AF horn).
The assertion is FALSE.

EF ~(HiL -> AF horn)
is true in state 1 because of the path:
State 1:
10 State 2: HiL L1 horn
11 State 7: HiL L1 PB Ack

OCOANONHLEWN

28 An example of such a path is:

29 State 4: PB Ack

30 State 7: HiL L1 PB Ack

31

32

33 |= AG(HIL & ~Ack -> AF horn).

34 The assertion is TRUE.

35

36 |= AG(HIT & ~Ack -> AF hom).

37 The assertion is TRUE.

38

39 |= AG (horn -> AX (horn | ~horn & PB)).
40 The assertion is TRUE.

41

42 |= AG(PB -> AF(Ack & ~horn)).

43 The assertion is TRUE.

44

45 |= EF(horn & EF(~hom & EF hom)).
46 The assertion is FALSE.

47

49

12
13 HiL -> AF horn
14 is false in state 7 if:
¥5 1) ~HiL
116 is false in state 7, AND
17 2) AF hom
18 is false in state 7.
19
20 ~HiL
21 is false in state 7 because the following propositions are true:
22 HiL
23
24 AF homn
25 is false in state 7 because
26 EG ~homn
27 is true in state 7.

48 There is no counterexample for EF (homn & EF (~horn & EF horn)) |

11/7/91 (revision)

50
51
52
53
54
55
56
57
58
59
60
61
62
63

65

95
96
97
98
99

|= AG(~horn -> EF horn).
The assertion is FALSE.

EF ~(~hom -> EF horn)
is true in state 1 because of the path:
State 1:
State 3: hom HiT L2
State 8: HiT L2 PB Ack

~horn -> EF horn
is false in state 8 if:
1) ~~homn
is false in state 8, AND
2) EF horn
is false in state 8.

~~horn

is false in state 8 because the following propositions are true:

~horn
There is no counterexample for EF horn

|= AG(~HIL & ~HIT & ~PB -> AF ~Ack).
The assertion is FALSE.

EF ~(~HiL & ~HIiT & ~PB -> AF ~Ack)
is true in state 1 because of the path:
State 1:
State 3: horn HIT L2
State 8: HiT L2 PB Ack
State 12: HiT L2 Ack
State 9: Ack

~HiL & ~HIT & ~PB -> AF ~Ack
is false in state 9 if:
1) ~(~HiL & ~HiT & ~PB)
is false in state 9, AND
2) AF ~Ack
is false in state 9.

~(~HiL & ~HiT & ~PB)

is false in state 9 because the following propositions are true:

~HiL ~HiT ~PB

AF ~Ack
is false in state 9 because
EG ~~Ack
is true in state 9.
An example of such a path is:
State 11: HiL L1 Ack

100 State 9: Ack
101

Automatic Verification 23

Figure 15. The CTL model checker execution for the alarm acknowledge system

11/7/91 (revision) Automatic Verification 24

reset PB Ack

HiL

HIT
. HiT
HiL s3 PB
s2 L1,hom L2.,horn HiL s4 Ack
_ HiT
, HiL PB

HIT ‘; -)
®| LD

Y Y
<7 HiL,PB HiT,PB s9 reset
L1,Ack L2,Ack
PB

H|L HiT,PB
L1 L2,Ack

@ fi

Figure 17. The state transition graph for the revised alarm acknowledge system

11/7/91 (revision) Automatic Verification 25

CTL MODEL CHECKER
Taking input from alarm2.emc...

1
2
3
4 |= AG((HIL | HIT) & ~Ack -> AF horn).
5 The assertion is TRUE.
6
7
8

|= AG (horn -» AX (horn | ~horn & PB)).
The assertion is TRUE.

9

10 |= AG(PB -> AF(Ack & ~horn)).

11 The assertion is TRUE.

12

13 |= EF(horn & EF(~hom & EF horn)).

14 The assertion is TRUE.

15

16 |= AG(~horn -> EF horn).

17 The assertion is TRUE.

18

19 |= AG(~HIL & ~HIT & ~PB -> AF ~Ack).

20 The assertion is TRUE.

JFigure 18. The CTL model checker execution for the revised alarm acknowledge system

Conclusion

The integrity of chemical processing systems depends in part on the correctness of
automatic control systems used in their operation. In the traditional approach to the verification of
control systems, a series of manual tests is used to find errors in the system. Our work describes
an automatic verification method that combines process models and the model checking method to
identify errors in sequential chemical process control systems. This method consists of three
components: Process models which describe systems, assertions which represent questions about
the system, and a model checker which automatically determines whether the system operates as
specified by assertions. The method has been used to verify an operating procedure in a
combustion system and a ladder diagram in an alarm acknowledge system. These examples
demonstrate that the method is able to express chemical engineering specifications and model the
interactions between process equipment and the control software. The method currently is limited
to the verification of discrete event systems and depends on the development of process models. In
addition, the generation of appropriate CTL assertions to assure system integrity depends on the

user's interpretation of the system and has not been automated in this research.

11/7/91 (revision) Automatic Verification 26

Applications to industrially relevant problems will require:
¢ a more extensive library of state transition process models that include timers, delays,
counters, etc.,
¢ a more complete list of temporal logic assertions for the general testing of discrete chemical
process control system safety and operability,
¢ a high level language for stating assertions, and
e a strategy for identifying the source of errors so that appropriate design changes could be

proposed and evaluated.

e

~ Acknowledgment
Financial support from the National Science Foundation (Grants DMC-8616889 and CCR-
8722633) is gratefully acknowledged.

11/7/91 (revision)

Notation

&=

XxeS=

Subscripts

1=

all paths (CTL operator)
the set of atomic proposition
there exists a path (or some paths) (CTL operator)

= CITL formula

globally (CTL operator)
state transition structure

= atomic proposition
= set of atomic proposition
= transition relation

set of states

state i

until (CTL operator)

next time (CTL operator)
NOT

AND

OR

element x is a member of set S

state number i

Automatic Verification 27

11/7/91 (revision) Automatic Verification 28

Literature Cited

Burch, J. R., E. M. Clarke, K. L. McMillan, D. L. Dill and J. Hwang, "Symbolic Model
Checking: 1020 states and beyond", Proceedings of the Fifth Annual Symposium on Logic in
Computer Science (June 1990).

Chapman, K. G. and J. R. Harris, "Computer System Validation - Staying Current: Introduction”,
Biopharm, 30 (May 1989).

Clarke, E. M., E. A. Emerson and A. P. Sistla, "Automatic Verification of Finite-State Concurrent
Systems using Temporal Logic Specifications", ACM Trans. on Programming Lang. and Sys.,
8, (2), 244 (April 1986)

Clarke, E. M., O. Grumberg, "Research on Automatic Verification of Finite State Concurrent
Systems", Ann. Rev. Comput. Sci., 2, 269 (1987).

Dhillon, B. S. and S.N. Rayapati, "Chemical-System Reliability: A Review", IEEE trans. on

" reliability, 37, (2), 199 (June 1988).

Ho, Y. C., "Dynamics of Discrete Event Systems", Proceedings of the IEEE, 77, (1), 3 (January
1989).

IEEE Std 730-1984, "IEEE Standard for Software Quality Assurance Plans", IEEE Inc. 345 E.
47th St., New York, NY 10017 (1984).

IEEE Std 1008-1987, "IEEE Standard for Software Unit Testing", IEEE Inc. 345 E. 47th St,,
New York, NY 10017 (1987).

Laduzinsky, A. J., "PLCs Develop New Hardware and Software Personalities”, Control
Engineering, 53 (February 1990).

Shaw, J. A., "Design your DCS to reduce Operator Error", Chemical Engineering Progress, 87,
(2), 61 (February 1991).

Wallace, D. R. and R.U. Fujii, "Software Verification and Validation: An Overview", IEEE
Software, 6, (3), 10 (1989).

Yamalidou, E. C., E. P. Patsidou and J. C. Kantor, "Modeling Discrete-Event Dynamical
Systems for Chemical Process Control", Computers & Chemical Engineering, 14, (3), 281
(1990).

