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Abstract

Automatic vertebrae localization and identification in medical computed tomography (CT) scans is of great value for

computer-aided spine diseases diagnosis. In order to overcome the disadvantages of the approaches employing hand-crafted,

low-level features and based on field-of-view priori assumption of spine structure, an automatic method is proposed to

localize and identify vertebrae by combining deep stacked sparse autoencoder (SSAE) contextual features and structured

regression forest (SRF). The method employs SSAE to learn image deep contextual features instead of hand-crafted ones by

building larger-range input samples to improve their contextual discrimination ability. In the localization and identification

stage, it incorporates the SRF model to achieve whole spine localization, then screens those vertebrae within the image, thus

relieves the assumption that the part of spine in the field of image is visible. In the end, the output distribution of SRF and

spine CT scans properties are assembled to develop a two-stage progressive refining strategy, where the mean-shift kernel

density estimation and Otsu method instead of Markov random field (MRF) are adopted to reduce model complexity and

refine vertebrae localization results. Extensive evaluation was performed on a challenging data set of 98 spine CT scans.

Compared with the hidden Markov model and the method based on convolutional neural network (CNN), the proposed

approach could effectively and automatically locate and identify spinal targets in CT scans, and achieve higher localization

accuracy, low model complexity, and no need for any assumptions about visual field in CT scans.

Keywords Vertebrae localization · Stacked sparse autoencoder (SSAE) · Contextual feature ·

Structured regression forest (SRF) · Kernel density estimation

Introduction

Automatic vertebrae localization and identification is a

key step for spine analysis in medical CT scans [1]. It

is also pre-order for tasks such as vertebrae segmentation

[2, 3], vertebrae fracture detection [4], intervertebral disc

labelling [5], and vertebrae shape statistical analysis [3].

In addition, accurate localization and identification of

vertebrae can greatly reduce the risk of wrong-level surgery.
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However, it is highly challenging to automatically localize

and identify the vertebrae due to the high similarity of

morphological appearance, low contrast between vertebrae

and surrounding anatomic structure, spine deformation, and

limited field of view of CT scans [6].

To solve this challenging problem, several methods

currently have been proposed to localize and identify

vertebrae automatically and they can be roughly classified

into two types according to whether priori assumptions are

taken into account or have constraints about the region of the

spinal images. The first type mainly concentrates on specific

regions of the spine such as lumbar vertebrae and thoracic

regions [5, 7], or depend on the prior knowledge about

which part is visible [1, 6, 8–11]. These methods usually

achieve high localization accuracy; however, the priori

assumptions or constraints will make them less applicable

to general cases or pathological images.

The second type focuses on relieving the prior assump-

tions or the limit of visible part of the vertebral column

in the image. Klinder et al. [12] present a comprehensive
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solution to copy with the spine image with any field of

view while it is a quite complex multi-step process. And

Markov random field also is applied to the whole spinal

localization by considering the adjacent vertebra informa-

tion [13]. However, the model assumptions of their approach

may make it fail to detect these vertebrae, when larger

implants are present. Glocker et al. [14] localized and iden-

tified vertebrae in arbitrary field-of-view CT scans with

regression forest and hidden Markov model. However, their

work makes assumptions about the shape and appearance

of vertebrae, which may not be satisfied on pathological

or abnormal spinal images. To address the limitations, they

further designed a random forest classifier for avoiding

explicit parametric modelling of appearance by employing

a semi-automatic labelling strategy where sparse centroid

annotations are transformed into dense probabilistic labels

[15].

One limitation of the above-mentioned methods was that

models were trained by hand-crafted feature descriptors

such as box features or local intensity features which cannot

encode more representative feature of spinal images, so

it may fail to handle more complicated cases when spine

curvature and pathologies exist. In addition, a six-layer

feed-forward neural network is employed to model vertebra

localization into a multi-variable nonlinear regression

problem [16], and in this method, the input samples

are still built based on the hand-crafted box features.

Instead of employing low-level hand-crafted features, a joint

learning model with convolutional neural network (CNN)

is proposed to exploit high-level feature representations

by considering both the appearance of vertebrae and the

pairwise conditional dependency of neighboring vertebrae

[17]. However, this method also incorporates some complex

refinement steps to improve the localization accuracy.

Besides, a progressive optimization strategy is proposed by

combining multiple neural networks [18]. These networks

consist of a deep image-to-image network for initializing

vertebra locations, a convolutional long short-term memory

network for modelling centroid probability map sequence,

and a network for further refining and regularizing the

landmark positions. Furthermore, a combined method

[19] inherently learned to incorporate both the short-

range and long-range contextual information by 3D fully

convolutional neural network and multi-task bidirectional

recurrent neural network in a supervised manner.

Although the state-of-the-art methods have already

achieved acceptable performance in 3D spine scans,

however, the complex network models generally come

at high computational cost. Compared to the above-

mentioned methods, we argue that to further improve

vertebrae localization and identification results and reduce

computational cost, we should (1) exploit the richer

contextual high-level features such that we can better

capture more discriminative sample features representation;

(2) use a structured regression model to localize all

vertebrae in CT scans such that we can enforce the

structural information of the adjacent pixels in image

patches. Firstly, we insist on that low-level hand-crafted

features and local patch hardly represent the abundant

shape and texture features of CT images, owing to the

fact that there are repetitive nature of spine and high inter-

subject variability in spine curvature and shape due to

spine disorders and pathologies, so it is essential to explore

the deep contextual features. Secondly, we also emphasize

that the ordinary regression-based methods usually predict

the central pixel of each patch separately and ignore

the structured information of the adjacent context of an

image patch. It is evidential that structured regression

strategy could improve the result performance [20–23]

since the label space of training samples exhibits an

inherently topological structure, which renders the class

labels explicitly interdependent.

To this end, we propose a method for automatic

vertebrae localization and identification by combining deep

stacked sparse autoencoder (SSAE) contextual features

and structured regression forest (SRF). The proposed

method has the following characteristics: (1) In the feature

learning stage, we employ SSAE network to learn inherent

discriminating deep contextual features instead of low-level

hand-crafted features. (2) In the vertebrae localization and

identification stage, we incorporate a structured regression

forest by embedding structured information into standard

regression forest. Compared with the latter, the structured

prediction function maps the input space to structured label

space instead of discrete label space that it is likely to

promote the localization accuracy because of incorporating

contextual topology information. In addition, based on the

regression model, we can locate the entire spine and relieve

the dependence of prior knowledge about which part is

visible in CT scan. (3) In the refined localization stage, we

develop a two-stage progressive refining strategy with the

mean-shift kernel density estimation and the Otsu method

instead of Markov random field (MRF) to reduce model

complexity.

Method

As shown in Fig. 1, our proposed approach consists

of a training stage and a testing stage. In the training

stage, all spine CT images are normalized, then a series

of contextual patch sample points are generated on the

normalized image and fed to train a SSAE feature learning

network. Subsequently, the deep contextual features learned

by SSAE are sent to train a SRF. In the testing stage, given

a previously unseen CT scan, image testing sample points
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Fig. 1 Proposed flowchart of automatic localization and identification of vertebrae

could cast a series of (probabilistic) structured votes on the

positions of all vertebrae. Finally, we employ the proposed

two-stage progressive refining strategy to adjust the output

of the regression model to improve localization results. The

following sections will present the details related to the

data preprocessing, the contextual patch construction, the

deep contextual feature learning of the SSAE network, the

structured regression forest, and the two-stage progressive

refining strategy.

Contextual Patch Construction Stage

The proposed contextual patch construction mainly con-

sists of sample point adjustment preprocessing step and

contextual patch construction step.

(1) Sample point adjustment preprocessing step. In some

spine CT images, the local texture structure of different

image patches exists with quite high difference.

In general, patch features are highly discriminative

when sample points are close to the distinct object

regions. However, there are certain regions in most

images, like those in the background, that do not

benefit the localization and identification of vertebrae.

Considering some features such as the structure and

texture of image patch around the vertebrae region

are highly correlated, these areas would be desirably

employed as candidates for sample generation. Based

on these samples, the subsequent SSAE network could

extract more discriminative feature representation

which helps to improve model prediction accuracy.

Thus, in this step, we employ the unsupervised Otsu

method to divide the obvious difference in gray scale

between the vertebrae and surrounding anatomical

structures in the CT image, and then morphologically

separate images into binary connected blocks. Based

on this, sample points around the centroid of the larger

connected blocks are selected as candidate points.

(2) Contextual patch construction step. After sample

points are randomly selected and adjusted, we

develop a contextual patch-constructing strategy to

capture image contextual information in a larger-range

manner. Figure 2 illuminates these two steps, where

green patches represent filtered samples near to the

background and blue ones are samples to be reserved

in the left column, while four red patches and one blue

patch represent contextual patch in the right column.

Here, we only exemplify three points of all blue

samples as example for illustrating the constructing

process of the contextual patch, where there are five

sparse patches with the same size in a larger range

to capture the contextual information. It can alleviate

the influence of the repeating structures in vertebrae

regions.

Deep Contextual Feature Learning Using SSAE

Instead of employing low-level hand-crafted features, some

supervised CNN-based feature learning methods [16–19]

have obtained competitive results for vertebrae localization

and identification. In contrast to CNNs that apply a series of

convolution-pooling-subsampling operations to learn deep

feature representations, SSAE employs a full connection

of units for deep feature learning. SSAE contains multiple

hidden layers and millions of trainable parameters that

enable it to capture highly nonlinear mapping between

input and output; thus, recently, it has been widely used in

image recognition fields. Some existing results indicate that

the architecture of SSAE is essential for achieving better
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Fig. 2 Diagram of sample point adjustment step and contextual patch construction step

performance in some specific tasks [24], which motivates us

to investigate the SSAE-based feature learning for vertebrae

localization and identification.

SSAE essentially is a neural network consisting of

multiple layers of sparse autoencoders (AEs) in which the

outputs of each layer are connected to the inputs of the

successive layer [24, 25]. AE is an unsupervised learning

algorithm that implements feature encoding by setting the

target values to be equal to the inputs. If some specific

structures are implied between the input samples, such as

some input features are related to each other, then the

autoencoder algorithm can capture a useful “hierarchical

grouping” or “part-whole decomposition” of the input. In

the autoencoder algorithm, the number of hidden units

generally is less than the number of the input layer units.

But when the number of hidden units is larger (or even

larger than the dimension of the input vector), if we impose

sparse constraints on the hidden layer to make only a

few neurons activated, the network will be forced to learn

a compressed representation of the input to discover an

interesting structure in the data. Let hj denote the activation

of hidden units j in the autoencoder and T denote the

number of training data, and the average activation ratio of

hidden unit j could be written

ρ̂ =
1

T

∑T

t=1
hj (t). (1)

Typically, the average activity is limited to a small value

close to zero, that is, the hidden unit’s activations must

mostly be near to 0. To achieve this, we will choose the

following optimization function

KL(ρ||ρ̂j ) = ρlog
ρ

ρ̂
+ (1 − ρ)log

1 − ρ

1 − ρ̂j

, (2)

where ρ is a sparsity parameter, typically a small value

close to zero. The formula is sparse parameter (usually a

very small value, for example, 0.05). The above functions

essentially rely on the penalty term of Kullback-Leibler

divergence to enforce activity of hidden unit is close to 0.
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Combined with the reconstruction error of the autoencoder

algorithm, the overall cost function can be written as

Js(W, b) =
1

2T

∑T

t=1
||x̂t − ŷt ||

2
2 + λ||W ||2

+β
∑N

j=1
KL(ρ||ρ̂j ), (3)

where x̂t denotes the t th contextual patch in the training

set; ŷt is the reconstructed representation with input of

x̂t . The second term is a regularization term with weight

decay control parameter λ. It aims to avoid overfitting

by preventing the magnitude of the neuron weights (W )

from increasing dramatically. β is a sparsity parameter

on N neurons in the hidden layer. In general, SSAE is

greedily layer-wise trained to obtain optimized parameters.

Figure 3 shows the SSAE network structure for extracting

the proposed contextual patch features. Given an input

training image, firstly numerous sample points denoted with

blue boxes are generated in 3D CT scans, and then the 2D

contextual patches are constructed corresponding to these

points. Next, these contextual patches are rearranged into

1D vectors to feed into the SSAE network. As a result, the

trained network aims to learn a compressed representation

of the input by limiting sparsity to small value close to

0. Compared with AE, SSAE enjoys all the benefits of

any deep network of greater expressive power and tends to

discover more abstract higher-order features; thus, it is more

likely to help the subsequent structured regression forest to

localize and identify each vertebra.

Structured Regression Forests

The random forest approach provides a promising perspec-

tive for localizing and identifying the vertebrae from spine

images [14]. However, the standard random forest usually

ignores the structural information of the adjacent context

of an image patch since it commonly predicts the cen-

tral position of each patch separately. For many computer

vision problems, the standard model is limited because the

label space of training samples exhibits an inherently topo-

logical structure, which renders the class labels explicitly

interdependent. To overcome this limitation, a simple and

effective way is presented to integrate ideas of structured

learning into the standard random forest framework for the

task of semantic image labeling [20], then the structured

random forest (SRF) strategy is extended to apply to bound-

ary detection [23], medical image myocardium delineation

[21], and hand detection and hand part labeling [22].

Our structured label construction is proposed to identify

every vertebra because of the following consideration. Gen-

erally, the human spine contains 26 individual vertebrae,

where the regular 24 from the cervical (C1-C7), thoracic

(T1-T12), lumbar (L1-L5), and sacrum (S1-S2) vertebrae

regions. Therefore, the 3D voxel coordinates of the 26 ver-

tebrae centroids can be defined as the 78 dimensions regres-

sive vector. Let C = {ci}
26
i=1 denote 26 vertebrae centroid

coordinates where ci = {xi, yi, zi} represents individual

vertebrae voxel coordinates. Given annotated CT scans, the

construction process of the proposed structured label for

training samples is illustrated in Fig. 4. The details in Fig. 4

are described as follows, firstly we divide the central blue

patch of the contextual patch into ω × ω subregion, then we

compute its relative displacements to all available vertebrae

centroids given by employing y
(i)(j)
p = (cj − p(i))T , j =

1, 2, · · · n for each subregion centroid p(i) . In this way,

each sample will aggregate a structured label vector with

capacity of ω2 in which training sample can be expressed

as χ = {xp, yp} where xp denotes SSAE deep con-

textual feature and yp = {y1
p, y2

p, · · · , yn
p} is structured

label.
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Fig. 3 Two-hidden-layer SSAE network for learning contextual patch features
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The sample points are obtained from the 3D CT scans to

construct contextual feature. For example, given the 3D cen-

ter coordinates p = {px, py, pz} of a patch p, we can cal-

culate label yp = (c1 − p)T , (c2 − p)T , · · · , (c26 − p)T

corresponding to this point. Although sample label is calcu-

lated in 3D space, we only extract 2D image patch at the YZ

plane corresponding to this point for constructing the con-

textual image patch feature. Based on the above strategy, we

can achieve the vertebrae localization and identification in

3D CT scans.

The structured label construction provides an adaptive

configuration in regression forests (RF) for predicting each

vertebra. RF intrinsically is a supervised learning technique

for the probabilistic estimation of continuous variables and

has demonstrated good performance on the localization of

anatomical structures in CT volumes [15]. A forest is an

ensemble of several binary regression trees, where each tree

t learns its own predictor pt (y|χ). Given a training set

S(t) = {(x(i), y(i))}
n
i=1 obtained from the SSAE network,

training a regression tree is done by recursively subdividing

training samples into the left and right child nodes. A local

split function is determined at each internal node based

on arriving examples. For each tree, the part of training

samples S(t) = {(x(i), y(i))}
n
i=1 is randomly selected from

the training set to train the tree, and the stopping criterion is

used to determine each node whether or not it is a leaf node.

For a split node, the splitting aims to optimize and determine

parameter of splitting function. Here, the node split function

is defined as

fθm;θτ (x) =
{

1; if θm·x≥θτ

0; otherwise (4)

where θm is an M-dimensional binary vector with m term

nonzero at random-selected m indexes, and θτ ∈ R is a

threshold determining whether the samples is divided into

the left or right node. The split is defined by the formula

(5), and the training purpose is to determine the optimal

parameter by greedy learning.

SL(j) = {(x(i), y(i) : fθm;θτ (x) = 1)};

SR(j) = {(x(i), y(i) : fθm;θτ (x) = 0)}.
(5)

Here, SL(j) and SR(j) denote left and right child training

subset, respectively.

Based on the information theory, the smaller the

expectation of the data, the larger the information gain,

and the higher the purity of the data, then the objective of

optimizing the node splitting parameters can be determined

by maximizing the information gain; thus, objective

function could is defined

I (Sj , θ) = H(Sj ) −
∑

i∈{L,R}

|Si
j |

|Sj |
H(Si

j ), (6)

where H is a measure of entropy [26]. Splitting parameters

are determined by following a random and greedy

optimization strategy. That is, selecting m terms in feature

vector randomly, we will evaluate the information gain

according to a set of different thresholds from a uniform

distribution. The parameter pair {θm, θτ } corresponding

to the largest information gain is considered the optimal

parameter of split function fθm;θτ
. That is

θj = arg maxθ∈Ŵj
I (Sj , θ). (7)

For the multivariable regression task of the vertebrae

localization, the priori distribution model stored in each

node can be modeled into 78-dimensional multivariate

normal distribution p(y|x)


= N78(ȳ,

∑

), where ȳ

corresponds to the mean and
∑

is the covariance matrix

of all training samples that reaches the node. Based on
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multivariate normal distribution, the information gain in

Eq. 7 could be rewritten as

I (Sj , θ) =
∑

x∈Sj

log(|
∑

y

(x)|) −
∑

i∈{L,R}

∑

x∈Si
j

log(|
∑

y

(x)|).

(8)

In the normal distribution model, the definition of

entropy is proportional to logarithm of the determinant of

the covariance matrix, namely differential entropy HN =

log
∣

∣

∑
∣

∣ . Plugging this into Eq. 7 fully defines the objective

function for regression tree training [14]. Minimizing the

trace of the covariance matrix tends to aggregate similar

samples in the training set, that is, the variance of the

corresponding offset vectors is minimized. And the samples

in the leaf node tend to come from similar anatomical

regions that lead to spatially consistent clusters of the offset

vectors. Following the above strategy, we can achieve the

goal of optimizing tree parameters, and the regression forest

is the integration of multiple trained trees.

Forest Testing In general, given a previously unseen CT

scan, a series of deep SSAE contextual features from image

sample points are applied for predicting the positions of all

vertebrae based on an empirical distribution at the leaf node.

In fact, each sample is pushed through all trained trees. Each

sample feature is split recursively into the left and right child

nodes until the point reaches a leaf node. The corresponding

predictor function stored in a leaf node will give single-

predicted offset vector for all vertebrae positions. Compared

to standard regression forest, each sample label in SRF

is attached to a structured label. Based on the proposed

structured labels strategy, we have redesigned the prediction

model in leaf nodes. Considering that each training sample

contains a structured label with a capacity of ω × ω, we

design an effective average modelling way to preserve the

structural properties in the prediction. That is

P t (y|x) =
1

N

∑N

j=1
P t (y(j)|x), (9)

where P t (y(j)|x) is prior distribution at the leaf node. When

given a test point, it will obtain one average structured

prediction vector with a capacity of ω × ω instead of a

single-prediction vector.

The final probabilistic prediction of the regression forest

is determined by simple averaging over tree predictions to

obtain the structural result corresponding to the unlabelled

sample point. That is

P(y|x) =
1

T

∑T

t=1
P t (y|x). (10)

Given an unseen CT scan, the structured regression forest

model can obtain 26 three-dimensional point clusters

corresponding to the all vertebrae, and those clusters will be

used for the subsequent refinement localization stage.

Refinement Stage

The First Refinement Stage The posterior of centroids

obtained from the regression forest could be directly used

to generate the MAP estimate. However, this does not yield

very accurate results because of the prediction properties

of the structured regression forest. Thus, it is necessary to

design a refinement stage to more accurate localizations.

Based on the prediction of structured regression forest, we

develop a two-stage progressive strategy to refine vertebrae

localization by means of the mean-shift kernel density

estimation [27] and the Otsu segmentation approach.

Given a series of point clusters from the regression

forest, we employ the mean-shift algorithm to estimate the

centroids of 26 vertebrae. Mean-shift is a kernel density

estimation algorithm which the estimation value is gradually

converging along the density gradient direction, and the last

convergence locates at local probability density maximum

position. Let xi(i = 0, 1, · · · , n) be n samples and K(x) =

ck,dk(
∥

∥x2
∥

∥) denotes kernel function, and the kernel density

of the point x in the space is defined as

f̂ (x) =
1

nhd

∑n

i=1
K(

x − xi

h
), (11)

where ck,d is the normalization parameter so that the

integral of the kernel function is 1. To obtain the point of

maximum density in the point sets, computing derivative of

Eq. 12, let g(x) = −k′(x) and G(x) = ck,dg(
∥

∥x2
∥

∥) , the

gradient is computed as follows:

∇̂fh,k(x) =
2ck,d

nhd+2 [
n
∑

i=1

g(|| x−xi

h
||

2
)]×

[

∑n
i=1 xig(

∥

∥

∥

x−xi
h

∥

∥

∥

2
)

∑n
i=1 g(

∥

∥

∥

x−xi
h

∥

∥

∥

2
)

− x] .

(12)

Assuming that all weights of the sampling points are 1/n

and the bandwidth matrix is proportional to the unit matrix

Hi = h2I , then the iteration formula of the mean-shift can

be expressed as

xi+1 =

∑n
i=1 g(

∥

∥(x − xi)h
−1

∥

∥

2
)xi

∑n
i=1 g(

∥

∥(x − xi)h−1
∥

∥

2
)

. (13)

Given the multivariate normal kernel function G(x) and

admissible error ǫ, the iterative steps of the mean-shift

algorithm for evaluating the vertebral centroid are described

as follows:

Step 1. Initialize search sphere area O of the radius h in

the each point cluster.

Step 2. Calculate the mean mh,G(x) of all points in the

sphere area according to the iterative formula
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Fig. 5 First stage of refining the

vertebrae localization, where the

dot clusters represent SRF

output and light green dots

represent mean-shift estimated

results

Mean-Shift

refinement

where the density in mh,G(x) is greater than the

density of the sphere center O.

Step 3. Calculate the density difference between the

sphere center O and the mean mh,G(x). If
∥

∥mh,G(x) − x
∥

∥ ≤ ε , let the loop be end.

Otherwise, go to step 4. Here,
∥

∥mh,G(x) − x
∥

∥ is

the mean-shift vector toward to the direction of the

probability density increases.

Step 4. Assign the mean mh,G(x) and the coordinate

position of mh,G(x) to the sphere center O , and

execute step 2.

Figure 5 shows the sketch of mean-shift kernel density

estimation. For the 26-point clusters obtained from the

structured regression forest, this algorithm can determine

the density maximum point in turn to obtain the centroids of

the 26 vertebrae.

The Second Refinement Stage The mean-shift refinement

step is beneficial to locate the approximate positions of

the corresponding vertebrae. However, these points may

deviate from the centroids of the corresponding vertebrae.

We can perform the second refinement stage by segmenting

the local image around the predicted point of each vertebra

using the local Otsu approach, and then seek local binary

connected component. The previously localized points are

then replaced by the centroid of the local biggest binary

connected component close to the predicted points. The

detail is shown in Fig. 6, where the green dots denote the

mean-shift estimated point, and the red dots denote the final

refined point. It can be seen that most red dots have almost

approached to the real centroids of vertebrae.

Experimental Results and Discussion

This proposal algorithm was evaluated on the available data

set consisting of 98 spine-focused CT scans that include

slightly pathological cases and normal CT scans. Based

on vertebrae localization and identification results, we can

predict the 3D centroid coordinates of 26 vertebrae in

each CT scan. However, some vertebrae are missing in

most CT scans, and the proposed algorithm still obtains

the localization coordinates of 26 vertebrae without any

priori assumption about the visibility of each vertebra in

CT scan. Considering the above property, we only leave the

localization points in the CT scan visual field as the result of

the mean-shift refinement output. In the following we will

describe the data sets and experiments in details.

Data Sets

The evaluated data set contains 98 CT scans, including 63

normal scans and 35 abdominal ones. Sixty scans were from

SpineWeb data set1 (43 normal and 17 abnormal) and the

rest of the scans were from local data set (20 normal and

18 abnormal). The centroids of all visible vertebrae in both

data sets were annotated by two experts as the ground truth.

In a few scans, the whole spine is visible, while in most

scans, the view is limited to 5∼21 vertebrae. The inter-

axial distance varies from 0.5 to 3.5 mm. Considering the

complexity of the data set, the spatial resolution is adjusted

to 1 mm3/voxel by bilinear interpolation and orientation

is RAI (right anterior inferior) for all images in the pre-

processing stage. During the experiment, we split the 98 CT

scans into two non-overlapping sets with 49 scans each in

which one of sets is obtain by randomly selecting 31 cases

from 63 normal CT scans and 18 cases from 35 abnormal

CT scans. Based on the above-mentioned way, each set is

used once for both training and the remaining set is used

for testing. Thus, we can report errors for all 98 scans and a

total of 1078 vertebrae.

Experimental Setup and Parameter Setting

In the experiment, a two-fold cross-validation was designed,

and the model parameters were separately set in each

fold experiment. Considering the acceptable bias of SSAE

network after partial parameter reuse, we enforced the same

1http://spineweb.digitalimaginggroup.ca/
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Fig. 6 Second stage of refining

the vertebrae localization, where

green dots represent mean-shift

output and red dots represent the

points based on Otsu refinement Second stage

refinement

settings of the layer number of network and node number of

layer for each fold.

The parameters of the proposed algorithm exist in

three modules, i.e., the SSAE network, the structured

regression forest (SRF), and the two-stage refinement.

Firstly, 49 training scans were selected to determine these

parameters. In order to investigate the impact of different

SSAE architectures and patch sizes on experimental results,

four different patch sizes corresponding to different SSAE

architectures were designed. In order to reduce the local

context redundancy of the image patch in the experimental

stage, we rearranged patch into 1D vector by sampling

interval of 2. Through an exhaustive search strategy, the

desired activation, regularization, and sparsity parameters

were set to ρ = 0.05, λ = 0.005, and β = 5.5. The

weights of SSAE are randomly initialized and the training

optimization strategy is performed using gradient descent.

The detailed parameter configuration and comparison

results are summarized in Table 1.

It can be observed from Table 1 that the identification

rates are gradually higher with the increase of patch size

and the highest result is obtained when patch size is 32 ×

32. In general, SSAE with deeper hidden layer tends to

learn high-level feature representation, while more trainable

parameters are practically less tunable. Considering the

balance between computation cost and identification rate,

the number of units in each layer of SSAE is set as 640,

320, and 200, respectively, and patch size is determined as

32 × 32.

The edge length D of the contextual features is set as 100

according to the input patch size. The SRF parameters are

fixed throughout all experiments (forest training (θτ is the

0 ∼ 1 uniform distribution of interval 0.0025, m of the θm

is 5, 40 tree, depth 25)). The bandwidth h of mean-shift is

limited to 32. The number of training samples extracted was

53,900, the maximum number of samples for each CT scan

was 1 250, and the number of samples for test image was

500.

Results and Discussion

We compared our results with closely related methods

RF+HMM [15], J-CNN [17], by employing two evaluation

metrics: identification rate and localization error.

Localization Error is defined as the distance (in mm) of each

predicted vertebra location from its manual annotation. The

results are summarized in Table 2. It is seen from Table 2

that the mean localization errors of our method is about

10.08 mm for all vertebrae. The highest errors are within the

thoracic vertebrae region with a median of about 12.45 mm

and the cervical region obtains the lowest errors of about

6.56 mm. The reason for the above result is that the visual

appearance is more discriminative and is in strong image

Table 1 Comparison results with different input patch sizes and hidden layer depth of SSAE in this study

Patch size Layer 1 Layer 2 Layer 3 Layer 4 Identification rate(%)

16 × 16 Input size 320 – – – 66.82

Hidden size 100 – – –

24 × 24 Input size 720 360 – – 78.26

Hidden size 360 150 – –

32 × 32 Input size 1280 640 320 – 82.11

Hidden size 640 320 200 –

40 × 40 Input size 2000 1200 600 320 80.97

Hidden size 1200 600 320 200
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Table 2 Localization error and identification rate statistics of vertebrae in spine

Vertebrae SRF localization (mm) Refinement localization (mm) Identification

Region Counts Median Mean Std Median Mean Std Correct Rate

All 1078 12.14 14.41 9.51 11.27 10.08 7.97 886 0.822

Cervical 171 8.74 11.21 9.45 6.56 8.54 7.45 148 0.866

Thoracic 514 14.92 17.52 9.87 12.45 11.69 9.28 392 0.763

Lumbar 349 11.23 13.32 10.21 10.33 9.74 7.33 307 0.880

contrast in the cervical vertebrae region, while partial miss

and deformation of the thoracic vertebra. Compared with

the thoracic region, the lumbar region with the most samples

obtains a lower localization errors of about 10.33 mm.

Identification Error is defined as follows: if the localization

error is less than 20 mm corresponding to the vertebra,

we call the identification correct. The statistical results of

the identification errors are reported in Table 2. The last

two columns of Table 2 showed an overall success rate

of 82.19%, the highest of 87.97% in the lumbar region

and the lowest of 76.26% of the thoracic vertebrae region.

This significant difference in the varying regions has the

close relationship with the number of samples participating

in the training data and the stability of regional structure

representation.

Figure 7 showed some typical examples of localization

and identification results. Compared with the traditional

Box feature [15] and the coarse localization using histogram

of oriented gradient (HOG) feature [17] before the

refinement step, the proposed method can obtain the

coarse location close to centroids of the corresponding

vertebrae. Thus, it is likely to replace the complex hidden

Markov [15] and the J-CNN [17] with the simple two-stage

progressive refining strategy with the mean-shift kernel

density estimation and the Otsu method.

Comparison with Related Methods In order to conduct a

comprehensive assessment for the proposed method, we

employ it to compare with two typical methods of vertebra

localization and identification (RF+HMM [15] and J-CNN

[17]) by the consistent localization errors and identification

errors and results are shown in Figs. 8 and 9, where

Fig. 8 is the identification rate for the three methods in

individual vertebrae, while Fig. 9 reports the localization

errors statistics on each type of vertebrae. In most cases,

the proposed method achieved smaller mean errors than

the other two methods, while mean errors are between

Fig. 7 Experimental results where the first row represents the annotated centroids of vertebrae. The purple lines with yellow dots are the prediction

of regression forest and the blue lines with green dots are the output results after refinement step in the second row
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Fig. 8 Identification accuracies

on individual vertebra of testing
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RF+HMM and J-CNN in a few cases. We further evaluated

the mean localization errors for three methods before

the refinement step, and evaluated results show that the

proposed method is 14.41 ± 9.51 mm (mean ± std),

RF+HMM is 19.05 ± 11.87 mm, and J-CNN is 17.11 ±

13.52 mm. This result demonstrates that the SSAE deep

contextual feature has stronger representative ability than

traditional Box and HOG features, and structured regression

forest has superiority than standard regression forest. In

addition, it is shown from Fig. 9 that the resulting accuracies

of the three methods in the T3 to T11 section significantly

are lower than those in other parts, which is mainly due to

spine curvature and pathologies.

It should be noted that the localization accuracies in

the thoracic vertebrae region have no obvious advantage in

comparison to other regions.This is because of the large

similarity of the vertebrae structures, spine curvature, and

pathology reasons. However, the proposed method still

obtained better results than other methods in this region.

In the following work, we will explore more discriminating

features with long-range contextual information to improve

the localization accuracy of thoracic vertebrae part.

The proposed method has lower computational complex-

ity than RF-HMM and J-CNN. Specifically, for RF-HMM,

the three components are time-consuming. Firstly, the ver-

tebra appearance model of HMM needs to compute mean

and variance images for per vertebra. And, several itera-

tions of nonlinear registration are performed to increase the

sharpness of the mean images. Secondly, joint shape and

appearance model of HMM and MAP inference need to

be computed via dynamic programming for multiple sam-

pled location candidates. In addition, HMM and RF model

parameters also need to be optimized by using the same data

set, that is to say, it also costs certain time. So HMM and RF

will have a heavier computation cost than SSAE and SRF.

For J-CNN method, it includes three components,

namely coarse vertebra candidate localization stage, J-

CNN for vertebrae identification stage, and localization

refinement with shape regression modelling stage. Firstly,

coarse localization component can be divided into 3D

Fig. 9 Localization errors for

each type of vertebra
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HOG feature construction part and classification forest

part, where the classification forest part is relatively time-

consuming. Secondly, the vertebrae identification feature

is mainly learnt by CNN, whose time cost is comparable

to SSAE. Thirdly, the regression model in this method

needs to fit a quadratic polynomial curve to refine vertebrae

localization. So these three-stage complex models in J-CNN

could accumulate remarkable computational complexities.

In contrast to RF-HMM and J-CNN, the proposed

method mainly consists of three components (SSAE, SRF,

and mean-shift), in which the time-consuming part mainly

are SSAE and SRF, while the mean-shift component is

simple and fast. In terms of quantization performance, the

proposed algorithm runs less than 56 s in one test image

while RF-HMM is about 110 s and 87 s to J-CNN. In the

test stage, the proposed method employs the mean-shift to

simplify the model complexity compared with HMM and

CNN, thus speeding up the test time.

This algorithm was implemented mainly by MATLAB

2017R and the interference codes were programmed by

Python 3.5 on an Intel i5 3.3Gz CPU, 16G DDR3 memory

PC. The algorithm training time was about 299 min, of

which the most time-consuming part is SSAE network

training, which was about 184 min and the test stage took

about 56 s.

Conclusion

This paper has presented a novel automatic approach by

combining the deep SSAE contextual features and the

structured regression forest (SRF) to achieve vertebrae

localization and identification in CT scans. This algorithm

does not make any priori assumption about the vision

field of input images. The proposed approach utilized

deep contextual feature representations learned from the

SSAE network instead of low-level hand-crafted features

and employed the structured regression forest (SRF) to

consolidate structured information between image patches

to improve the identification rate. Moreover, we also

developed a two-stage progressive refining strategy with the

mean-shift kernel density estimation and the Otsu method

to further improve performance of vertebrae localization

and identification. Experimental results demonstrated that

the proposed method achieved better performance than

RF+HMM and J-CNN.

In our future work, we will further investigate the

influence of hidden neural units of SSAE to all vertebrae

localization and identification in CT volumes. In addition,

considering that the proposed method achieves better

localization and identification on more conventional or

slightly pathological data, however, maybe does not adapt

well to high variability case. To solve this problem,

further investigation will also be carried out w.r.t. highly

pathological cases of spine such as high-grade scoliosis and

kyphosis.
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