
Automatic video segmentation using

spatiotemporal T-junctions

Nicholas Apostoloff Andrew Fitzgibbon

University of Oxford Microsoft Research Ltd.

http://www.robots.ox.ac.uk/∼vgg http://research.microsoft.com/mlp

Abstract

The problem of figure–ground segmentation is of great importance in both

video editing and visual perception tasks. Classical video segmentation algo-

rithms approach the problem from one of two perspectives. At one extreme,

global approaches constrain the camera motion to simplify the image struc-

ture. At the other extreme, local approaches estimate motion in small image

regions over a small number of frames and tend to produce noisy signals that

are difficult to segment. With recent advances in image segmentation show-

ing that sparse information is often sufficient for figure–ground segmentation

it seems surprising then that with the extra temporal information of video, an

unconstrained automatic figure–ground segmentation algorithm still eludes

the research community. In this paper we present an automatic video seg-

mentation algorithm that is intermediate between these two extremes and

uses spatiotemporal features to regularize the segmentation. Detecting spa-

tiotemporal T-junctions that indicate occlusion edges, we learn an occlusion

edge model that is used within a colour contrast sensitive MRF to segment

individual frames of a video sequence. T-junctions are learnt and classified

using a support vector machine and a Gaussian mixture model is fitted to the

(foreground, background) pixel pairs sampled from the detected T-junctions.

Graph cut is then used to segment each frame of the video showing that sparse

occlusion edge information can automatically initialize the video segmenta-

tion problem.

1 Introduction

Video segmentation, or layer extraction, is a classic inverse problem in computer vision

that involves the extraction of foreground objects from a set of images [4, 17, 33]. In im-

age segmentation the goal is to segment an image into spatially coherent regions, whereas

in video segmentation the goal is segment the image into temporally coherent regions. In

both situations, the coherence is typically broken by occlusion edges and accurate detec-

tion of these occlusion boundaries is essential.

Traditionally, video segmentation algorithms are problematic because they generally

lie at the extreme of possible approaches. At one extreme, global approaches constrain

the camera motion to simplify the spatiotemporal image structure and generally work well

because the object motion and occlusion detection are mathematically well defined. For

example, epipolar plane image (EPI) analysis assumes constant horizontal camera motion

such that the spatiotemporal image structure consists of a set of straight lines whose gra-

dients depend on the depth of objects in the scene [5, 8]. Junctions between these lines



Figure 1: Automatic video segmentation using spatiotemporal T-junctions. The spa-

tiotemporal T-junctions detected on the space-time slices (left) are used to learn the oc-

clusion edge energy (top-right), where blue is low and red is high energy, and segment

each frame using graph cuts (bottom-right).

are then indicators of occlusion as they result from objects at different depths moving past

each other (figure 2). In particular, a T-junction is formed where the occluding object is

above the hat of the T and the background forms the stem of the T. At the other extreme,

local approaches estimate motion in small image regions over two or three frames for

typically arbitrary camera motion (e.g. optical flow [15]). While less constrained, local

approaches produce noisy signals that can be difficult to segment, particularly at object

boundaries. In this paper we combine local and global paradigms and assume locally lin-

ear camera motion such that the resulting spatiotemporal image structure is EPI-like. We

use a variant of the spatiotemporal T-junction detector of Apostoloff and Fitzgibbon [3]

to learn the appearance of occlusion edges that can be used to automatically initialize

the segmentation problem. This work is motivated by recent advances in single image

alpha matting where it has been shown that sparse information in the form of user brush

strokes can be sufficient for figure–ground segmentation in many situations [30]. These

results have been extended to video sequences, but to date have required considerable

user interaction [32]. We show in this paper that sparse local information in the form

of spatiotemporal T-junctions can remove the requirement for user interaction in many

cases.

Key features of this paper are threefold: first, we approach the problem of motion

segmentation from a viewpoint intermediate between the local and global extremes. Our

assumption of locally linear camera motion allows EPI-like images to be searched for

spatiotemporal T-junctions. The spatiotemporal T-junction detector of Apostoloff and

Fitzgibbon [3] is improved through the use of a support vector machine. Second, in con-

trast to previous efforts in this area, we learn prior distributions on pairs of (foreground,

background) colours spanning occlusion edges instead of modelling the foreground and

background distributions separately. This means that strong occlusion edge terms can be

used within a Markov random field (MRF) to regularize the problem. Finally, we solve

the segmentation using a novel graph cut MRF that combines contrast, colour and occlu-

sion edge terms to give a global solution for the segmentation of each frame in a video

sequence.
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Figure 2: The epipolar plane image (a and b) and the T-junction template (c) used for

modelling edge occlusion events.

2 Previous approaches to video segmentation

Global approaches to motion analysis based on the epipolar plane image were pioneered

by Bolles and Baker who used it to build a 3D description of a static scene [9]. They

constrained the problem to constant horizontal camera motion, which ensures that im-

age features stay in the same scanline and move continuously over the image sequence.

Hence, an XT slice1 of a complex scene reduces to an image with a set of straight edges

whose gradient is relative to their depth in the scene (figure 2). In this case, the termina-

tion of an edge by another edge is an indicator of occlusion and presents a similar profile

to the T-junction in the spatial domain. This technique was shown to be quite powerful

at determining visible 3D structure within a scene, but was inherently limited to constant

horizontal camera motion. They extended this work to include arbitrary camera rotation

by working in the dual-space of cylindrical epipolar plane coordinates [5]. Feldmann et al.

relax the constraints of EPI analysis to circular camera movements by defining a set of

trajectories that define the depth of a point within an image volume [13]. Niyogi and

Adelson observed that walkers generate a helix-like signature in space-time and exploit

this characteristic to detect and model a persons gait from a stationary camera [26, 27].

Later Niyogi analyzed kinetic occlusion in space-time using a layering framework and a

motion energy scheme adapted from models of biological vision [24]. In a slightly less

restrictive approach Criminisi et al. exploit the structure within epipolar plane to detect

occluding edges for a dense reconstruction of the scene [12].

At the other extreme, local approaches make no assumptions on the camera path and

the motion is estimated locally over a small number of frames. A classic example of

this is optical flow where spatiotemporal image derivatives are calculated to estimate a

velocity field that adheres to the brightness consistency constraint [15]. Because these

methods are local and based on small regions that carry little information, they are often

inaccurate and noisy. To compensate for this, constraints to smooth the velocity fields

spatially [2, 15] and temporally [7] for segmentation are used. These global constraints

either limit the range of camera motion like EPI or introduce artificial smoothing that is

highly inaccurate at motion boundaries.

Early work by Wang and Adelson [33] and Irani et al. [17] showed how optic flow in-

formation could be used to automatically extract layers from an image sequence. Irani et al.

use temporal integration to localize and track moving objects by registering frames by the

1An XT or spatiotemporal image is a slice through the volume of images at a constant scanline.



dominant motion, but are limited to tracking non-articulated objects. Later, Irani showed

that flow fields of a rigid scene reside in a low-dimensional subspace and constrained the

flow field to reduce the noise in the estimate [16]. The flexible sprites approach of Jojic

and Frey automatically learns multiple layers using probabilistic 2D appearance maps in

an expectation maximization (EM) framework [19], but is limited to stationary camera

scenarios. Niyogi, Adelson and Bergen [1, 25] also present methods to detect motion

boundaries using oriented spatiotemporal energy models that detect surface texture accre-

tion and deletion.

More recently, Xiao and Shah employ graph cut over spatiotemporal volumes to ob-

tain a motion-based segmentation and derive the General Occlusion Constraint to solve

for foreground, background and occlusion segmentations [35]. Further advances in video

matting and segmentation have attempted to reduce user interaction, not remove it. Inter-

active video cutout by Wang and Cohen extends a frame-wise 2D colour over-segmentation

over time using graph cut and user interaction through a novel volumetric painting inter-

face [34]. The video cut and paste algorithm by Li et al. over-segments using colour in

2D and then propagates the segmentation through key-frames with graph cut [22].

The main contribution of this paper is an automatic video segmentation algorithm

that learns the appearance of occlusion edges from spatiotemporal T-junctions and pro-

ceeds in three main steps (figure 1). First, spatiotemporal T-junctions are detected in

every scanline slice of the video cube. Second, (foreground, background) pixel pairs are

sampled from each T-junction and an occlusion edge Gaussian mixture model (GMM) is

learnt that models the transition from foreground to background. Finally, each frame is

segmented separately using graph cut with an MRF defined by both a contrast sensitive

smoothing term and the learnt occlusion edge term. This paper is structured as follows.

First, we overview the spatiotemporal T-junction detector used to learn the appearance of

occlusion edges. We then present the segmentation framework with a description of the

occlusion edge model and conclude with a discussion of the results.

3 Occlusion detection using spatiotemporal T-junctions

A natural indicator of occlusion is the T-junction—a photometric profile shaped like a

“T”, which is formed where the edge of an object occludes a change in intensity in the

background. Until recently, there have been two predominant approaches to T-junction

detection: gradient or filter based approaches, and model-based template matching. Gra-

dient based methods assume that there is a distinct gradient profile in a region close to a

junction [6, 29]. Model based methods approach the problem from a top-down perspec-

tive by fitting an explicit junction model at hypothesized junction locations [28]. Unfortu-

nately, single images can produce many false T-junctions that do not lie on an occlusion

edge; however, it is also known that T-junctions in the spatiotemporal domain are strong

indicators of occlusion events [8], and we use the recent spatiotemporal T-junction de-

tector of Apostoloff and Fitzgibbon [3]. They learn the appearance of spatiotemporal

T-junctions using oriented SIFT [23] descriptors and a relevance vector machine (RVM)

with a linear kernel [31].

T-junction detection proceeds as follows. First, the search is seeded with Harris cor-

ners [14] in each spatiotemporal slice of the video sequence. A T-junction template is

then fitted to each Harris corner that aligns the dominate gradients with the T-junction

model (figure 2). A SIFT descriptor is calculated at the oriented T-junction which cap-

tures localized gradient histogram responses and is then classified using the RVM. The

RVM is a subset of sparse Bayesian learning methods [31] that uses linear kernel mod-



Figure 3: Results: two frames of spatiotemporal T-junction detection. These spatiotem-

poral slices are from two image sequences where the actor moves into and then out of the

shot with a stationary camera (top) and a moving camera (bottom). Green lines are the

occlusion edge while red lines point towards the background.

els similar to the support vector machine (SVM) for classification [18]. It is during the

learning phase that an RVM differs significantly from an SVM and in this case where the

performance of the RVM suffers. As the learning phase of the RVM requires inverting a

dense MxM matrix (M being the number of training examples) it is inherently limited to a

small training set. The SVM on the other hand has no such limitation and all the training

examples can be used to learn the SVM. Using the SVM with over 5000 hand-labelled

training examples, we are able to select a lower classification threshold and obtain signif-

icantly more T-junctions at little cost to the speed or accuracy of the detector. Figure 3

shows the detection of T-junctions in two different spatiotemporal images.

4 Image segmentation using graph cuts

First, we provide an overview of the image segmentation algorithm of Boykov and Jolly

as it is the basis upon which we segment each frame [10].

Their algorithm segments a greyscale image C given a trimap T , which separates

pixels into foreground, background and unknown values. Given the array of N com-

posite pixels c = (c1, ...,cN), the segmentation of the image is expressed as the array

α = (α1, ...,αN) of “opacity” values at each pixel, where generally 0 ≤ α ≤ 1; however,

in the case of “hard” segmentation α ∈ {0,1} with 0 for background and 1 for foreground.

Segmentation proceeds by first defining an energy equation that contains data terms

modelling the potential for a pixel to be foreground or background, U , and pairwise po-

tentials between pixels that reflect the tendency for neighbouring pixels to be alike, V .

This is given in the form of the Gibbs energy:

E(α,Θ,c) = U(α,Θ,c)+V (α,c) (1)

where Θ defines a parametric model of the foreground and background pixel distributions.

In the work of Boykov and Jolly, Θ represents two normalized histograms that describe

the foreground and background greyscale pixel distributions in the trimap image and are

defined as Θ = {h(c;α),α ∈ {0,1}}. The data term U thus becomes

U(α,Θ,c) =
N

∑
n=1

D(αn,Θ,cn) (2)

where D(αn,Θ,cn) = − log(h(cn,αn)).



The smoothness term V defines an 8-connected MRF with contrast sensitive edges:

V (α,c) = γ1 ∑
(i, j)∈P

euc(i, j)−1[αi 6= α j]exp{−(ci − c j)
2/2σ2} (3)

where P is the subset of all 8-connected pixel edges in the image, euc(i, j) is the Euclidean

distance between pixels i and j, the weight γ1 was set to 50 and σ is derived from the mean

of the image gradient: σ2 =<
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Having defined the energy model, they then use the minimum cut algorithm [10, 20] to

minimize the energy function and obtain a segmentation. This energy minimization forms

the basis of our hard segmentation framework; however, it differs in three ways. First,

like the method of Rother et al. we extend the algorithm to colour images and model the

foreground and background pixel distributions with Gaussian mixture models (GMM).

Second, we remove user interaction completely by learning the colour models from the

spatiotemporal T-junctions. Third, we add an additional term to the energy equation

that encapsulates the occlusion edge statistics that are learnt from the spatiotemporal T-

junctions.

5 Video segmentation using learnt occlusion edges

5.1 Modelling colour

In a similar fashion to Rother et al., we extend the segmentation algorithm of Boykov and

Jolly to colour images and model the foreground and background pixel distributions with

Gaussian mixture models instead of greyscale histograms.

Now, c is the array of colour pixels, and the foreground and background parametric

models become RGB GMMs such that D(αn,Θ,cn) =− log(p(cn|αn,Θ)) and p(•|αn,Θ)
is the foreground or background GMM when αn is 1 or 0 respectively (unlike Rother et al.

who model each pixel as being drawn from a single foreground and background Gaus-

sian):

p(cn|αn,Θ) = ∑
k

π(k,αn)
exp(−(cn −µ(k,αn))

⊤Σ(k,αn)
−1(cn −µ(k,αn))/2)

√

(2π)3|Σ(k,αn)|
(4)

where π(k,αn), µ(k,αn) and Σ(k,αn) are the mixing coefficient, mean and covariance

matrix of cluster k from the foreground or background GMM (depending on the value of

αn) and are contained in the parameterization Θ.

The smoothness term V remains essentially unchanged as

V (α,c) = γ1 ∑
(i, j)∈P

euc(i, j)−1[αi 6= α j]exp{−||ci − c j||
2/2σ2}. (5)

5.2 Modelling occlusion edges

As figure 4 shows, the contrast sensitive smoothness term of equation 5 is responds to

all image edges and can cause unwanted noise in the final segmentation. To mitigate this

we include an additional pairwise potential between neighbouring pixels that discourages

transitions from foreground to background or vice versa if node colours do not match the

learnt occlusion edge model. The energy now becomes

E(α,Θ,c) = U(α,Θ,c)+V (α,c)+W (α,Θ,c) (6)



Figure 4: Modelling occlusion edges. From left to right the first row contains the original

image, the segmentation using only the data and contrast terms and the segmentation with

all terms. The second row contains the data term (red corresponds to high foreground

probability and blue to high background probability), the contrast term and the occlusion

edge term. Notice that the errors in the first segmentation are corrected with the addition

of the occlusion edge term since edges that do not match the occlusion edge colour profiles

are discouraged.

where W is similar in form to V in that it operates over all 8-connected edges in the image;

however, it is no longer undirected and is learnt from the detected T-junctions

W (α,Θ,c) = ∑
(i, j)∈P

euc(i, j)−1{− [αi == 1&α j == 0] log(pFB (ci,c j|Θ))

− [αi == 0&α j == 1] log(pFB (c j,ci|Θ))}+K

where K is a constant that ensures all the summed terms are positive (≈ 15 in most cases)

while the first term models foreground to background transitions and the second term

accounts for background to foreground transitions. This effectively discourages edges

that do not match the learnt model but allows the contrast term to determine the precise

location of the edge.2

The distribution pFB(ci,c j|Θ) is modelled as a 6D GMM and is learnt from (fore-

ground, background) RGB pixel pairs sampled from the spatiotemporal T-junctions.

6 Learning occlusion edges

From each spatiotemporal T-junction, we extract all pixels in a 10 pixel radius of the

T-junction that are a minimum of 2 pixels away from the occluding edge (to mitigate

alignment errors and pixel blending). The pixels on the occlusion surface are labelled as

foreground F and are paired with the background pixels B opposite them over the occlud-

ing edge to form a 6D vector
[

F
B

]

. We then learn a 6D Gaussian mixture model using

variational Bayesian model selection [11] initializing the algorithm with 20 Gaussians,

each parameterized by the covariance Σ and mean µ

Σ =

[

ΣF ΣFB

ΣBF ΣB

]

; µ =

[

µF

µB

]

. (7)

2To mitigate the effect of pixel blending at edges we initially used long range edges within the graph that

stretched over 2 and 3 pixels instead of the 8-connected neighbours; however, this led to a chequerboard pattern

appearing in the result. As a result, we break the strict independence of the MRF and model the colour at pixels

i and j by the colours at 3 pixels beyond them in the same direction as the edge joining them.



Figure 5: Results: learnt occlusion edge models. Sampling pixels from either side of the

T-junctions detected in the input sequence (left and middle) produces the GMM occlusion

edge model shown on the right. Each column is a single 6D Gaussian with the first row

sampled from the foreground marginal and the second row sampled from the background

marginal. The width of each column is proportional to the mixing coefficient of that

Gaussian.

The parameters µF , ΣF , µB and ΣB are also used as the mean and covariances of the

foreground and background colour models respectively. Furthermore, the covariances

between F and B (ΣFB and ΣBF ) are set to zero to ensure that the occlusion edge energy

function W is graph representable [21].3 For the sequence in figure 5 we can see the learnt

(foreground, background) pairings. For example, column 2 in the right images shows the

learnt occlusion edge transition from the actor’s dark brown hair to the blue of the picture

in the background, while column 8 shows the transition from his light blue shirt to the

brown background.

7 Results and conclusions

Figure 6 shows two simple scenarios with a stationary camera and an actor moving into

and then out of the field of view, and a third scenario with a moving camera and a mov-

ing actor. Almost perfect segmentation is achieved in the stationary camera scenarios

even though the background contains many sharp edges that can degrade segmentation

performance. The third scenario is particularly difficult given that the background con-

tains many objects of a similar colour to the foreground; however, the algorithm obtains

a satisfactory segmentation for most frames.

We have shown that the colour information learnt by detecting spatiotemporal T-

junctions can segment a number of simple video sequences and that by modelling ex-

plicitly the occlusion edge transitions, erroneous objects can be removed from the final

segmentation. Of course, the current implementation is limited to sequences where the

dominant motion is horizontal; however, we have implemented a straightforward exten-

sion that first computes the camera trajectory over short sub-sequences, approximates it

by a translation, and then rectifies the images such that it is horizontal.

Although this paper presented a simple model of occlusion edges, they were shown to

be powerful enough to regularize the segmentation in many cases. Further extensions to

improve performance could include more complicated models of edge transitions such as

the patch-based approaches that are becoming popular in image-based prior methods.

The authors would like to acknowledge Carsten Rother for his helpful insights on this

subject.

3A pairwise energy function E of two binary variables is regular and hence graph representable if E(0,0)+
E(1,1) ≤ E(0,1) + E(1,0). This is a necessary condition to ensure that the global energy function can be

minimized exactly.



Figure 6: Results: fully automatic video segmentation. The first two sequences have a

stationary camera and moving actors while the third has a moving camera and a moving

actor.
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