
Automatic Web Data Extraction based on

Genetic Algorithms and Regular Expressions

David F. Barrero and David Camacho and Maria D. R-Moreno

1 Computer Science Department
Universidad de Alcalá

Madrid, Spain, dfbarrero@aut.uah.es
2 Computer Science Department
Universidad Autónoma de Madrid

Madrid, Spain, david.camacho@uam.es
3 Computer Science Department

Universidad de Alcalá
Madrid, Spain mdolores@aut.uah.es

Abstract. Data Extraction from the World Wide Web is a well known,
unsolved, and critical problem when complex information systems are de-
signed. These problems are related to the extraction, management and
reuse of the huge amount of Web data available. These data usually
has a high heterogeneity, volatility and low quality (i.e. format and con-
tent mistakes), so it is quite hard to build reliable systems. This chap-
ter proposes an Evolutionary Computation approach to the problem of
automatically learn software entities based on Genetic Algorithms and
Regular Expressions. These entities, also called wrappers, will be able to
extract some kind of Web data structures from examples.

Key words: Regular expressions, Genetic Algorithms, Evolutionary Com-
putation, grammatical rules

1 Introduction

Flexible and scalable mechanisms are needed for the integration of in-
formation in order to obtain the necessary data from available sources.
However, if these sources are not structured, for instance being relational-
based, or no design has been previously made by an expert (i.e. a database
designer) it is usally difficult to build, and maintain those mechanisms.
The previous situation becomes a critical issue when talking about the
World Wide Web, considered as a highly heterogeneous data source.
Web Data Extraction (WDE) is a well known and unsolved problem.
Also it is related to the extraction, management and reuse of a huge
amount of Web data available. These data usually has a high hetero-
geneity, volatility and low quality. One popular approach to address this
problem is related to the concept of wrappers. The wrappers [5] are spe-
cialized programs that automatically extract data from documents and
convert the stored information into a structured format.

The main contribution of this work is a novel approach to the WDE based
on Genetic Algorithms (GA) [3] which are used to automatically evolve
wrappers. The main difference with other closer approaches [1, 4, 6] is the
utilization of Regular Expressions using a multiagent system to generate
them and extract information [2]. A Regular Expression, or simply regex,
is a powerful way to identify a pattern in a particular text. Any regex is
written in a formal language, that is translated into a particular syntax
like POSIX or Perl, and later processed by a regex engine such as Perl,
Ruby or Tcl. Regular expressions are used by many text editors, utilities,
and programming languages to search and manipulate text based on
patterns.
This approach considers the basic (evolved) regex as the atomic extrac-
tion element. The representation, genetic operators and fitness function
are designed in order to obtain simple extraction elements that are later
used, shared, and integrated by a set of information extraction agents. A
multi-agent semantic integration plataform named Searchy [1] is used to
deploy and test the evolved regex. This approach has to find answers for
two important questions. First, how the regex can be represented taking
into account its particular features, i.e. vocabulary, syntaxis, grammar
and semantic relationships between the grammatical syntaxis and the
patterns that it can extract. Second, how once a particular individual
is found, it can be combined, or integrated, with others to build a new
data extraction (regex).
The following corresponds to the structure of this chapter. Section 2
describes the basic concepts in GA and its application to wrappers and
regular expressions. Section 3 explains how a variable length population
of agents can support the evolution of regular expressions. Section 4
shows how a specific information agent uses simple gramatical rules to
combine, and integrate, the evolved atomic regular expressions. Section
5 shows the experimental results obtained for a set of web documents.
Finally, some conclusions and future lines of work are outlined.

2 Genetic Algorithms and its application in

wrappers and regular expressions

This section briefly explains basic concepts related to GA and regex that
later will be used to automatically obtain the wrappers.

2.1 Genetic Algorithms

From the AI point of view, GA can be seen as a stochastic search al-
gorithm inspired in the biological evolution. GA code the solution of a
problem using a string called chromosome or individual, each chromo-
some represents a point in the search space [3]. If the GA is successful, the
individuals will evolve exploring the search space until a global solution
is found and the individuals will converge in that solution. The success
or failure of a GA depends on the four principal parameters: Genome
codification, genetic operators, selection strategy and fitness function.

Genome codification is a key subject in any GA. Each chromosome con-
tains genetic information that codes a solution, therefore it will need a
mechanism to mappings between the solution (phenotype) and the gen-
tic code (genotype). Fig. 1 represents an example of binary fixed-length
coding. The individual represented is the string [rc]at. Each attribute in
the individual (i.e. each character in the string) is coded by four bits in
the chromosome. The piece of chromosome that codes one attribute is
called gen. Thus, in the example one gen codes one character using four
bits.

Fig. 1: Chromosome coding example

Once the coding has been defined, it is necessary to modify the genetic
code of the population in order to explore the solution space. Genome
modifications are done by the genetic operators. There are two main
types of genetic operations: recombination and mutation. Recombina-
tion, also known as crossover, aims to imitate biological sexual repro-
duction. It consists of interchanging the genetic code of two individuals.
A simple recombination algorithm is the one-point crossover, that is, it
interchanges two chunks of chromosomes cutting them in a random point.
Another key genetic operator is mutation, it introduces random changes
in the genome that can generate new attributes in the phenotype not
presented previously.

It is necessary to introduce a selection strategy in order to improve the
population in the successive iterations of the GA (generations). It is
analogous to the biological natural selection. The goal of the selection
strategy is to generate a selective pressure, this means to force good
chromosomes to have more probabilities to reproduce than bad ones.
However, there is not a clear non-ambiguous meaning for ”good” and
”bad” yet.

Goodness and badness are two fuzzy concepts that cannot be used in a
scientific context without a precise definition. GA defines good and bad
using a fitness function. It is a basic piece of any GA, and it is usually
one of the most challenging problems that must be faced in order to
successfully implement a GA. In some cases defining a fitness function
is a trivial issue; however in other problems the definition of the fitness
function is more complex. This is the case of the regex evolution.

2.2 Regular expressions

Regular expressions [8] conform a powerful tool to define string patterns.
Then, using regex makes possible to manipulate strings according to a
potentially quite complex pattern. An extended and well known use of
regex is to define sets of files in many user interfaces. The string rm
*.jpg means in a UNIX shell delete all the files whose name ends in .jpg.
Actually *.jpg is a regex representing the set of all strings that ends in
.jpg.
Many practical applications have been found for regex, especially in the
UNIX community, that has achieved a long experience using this tool.
Indeed, regex is a basic feature of shell commands like ls grep and some
programming languages largely used by the UNIX community like Perl
or AWK.
Regex is a powerful tool, with a wide range of applications but generation
of regex is a tedious, error prone and time consuming task, especially
when dealing with complex patterns that require complex regex. Reading
and understanding a regex, even if it is not very complex, is far from being
an easy task. In order to ease regex generation, several assistant tools
have been developed, but writing regex is still a problematic task. An
automatic way to generate regex using Machine Learning techniques is a
desirable goal that could likely exploit the potential that regex provides.
Our approach proposses two stages for the generation of regex. In a first
stage a multiagent system is used to evolve a variable length regex able
to extract data from documents that follow a known pattern. Then, a
second stage that uses two or more evolved specialized regex to compose
a complex regex able to extract and integrate several types of data.

3 How agents support data mining: Variable

length population

The first stage of the data extraction mechanism proposed in this paper
deals with the automatic generation of a basic regex. The aim is to use
supervised learning to automatically generate a regex in an evolutionary
fashion. A multiagent system (MAS) is used in order to generate basic
regex able to extract information to conform a pattern, such as phone
numbers or URLs. The agents share a training set composed by positive
and negative examples that are used to guide the evolutionary process
until the regex is generated.
Extraction capabilities from a regex are closely related to its length, and
the length of the regex is determined by the length of the chromosome.
Traditional fixed-length GA introduce an arbitrary constrain to the size
of the evolved regex that should be avoided for many reasons. The GA
should be able to self adapt its genome length without human interven-
tion. One solution might be the use of variable-length genomes, though
our interest is an intrinsic parallel solution like a MAS.
Regex are generated by a MAS that unfolds a variable length genome,
where subsets of agents use a fixed length genome, as it is shown in fig. 2.
Each agent runs a GA containing a population whose individuals own

a chromosome of fixed length, and can evolve by its own with a high
degree of independence that conform a microevolution. Agents are not
isolated thus their populations are influenced by other populations by
means of emigration: a part of the population can emigrate from one
agent to another agent every generation, so the evolution of one subpop-
ulation is affected by the evolution of other agents. The result is that
the total population of the MAS presents a macroevolution. Microevolu-
tion and macroevolution are different problems that must be addressed
individually.

3.1 Macroevolution

The MAS is actually a way to implement variable-length GA, in which
the sets of agents containing populations of different length evolve as a
whole. The mechanism that makes this macroevolution possible is the
population interchange among agents. An agent containing a population
with a chromosome of length n always clones a number of individuals
to a population with a chromosome size n + k, where k is the gen size
(see fig. 2). Thus, the genetic operation that modifies the length of the
chromosome is performed when the individual is emigrating, adding a
new chunk in a random position of the chromosome. The chunk that
is inserted into the genome is a non-coding region, i.e., a chunk that
codes an empty character and therefore, it does not affect the phenotype.
Otherwise the potentially good genetic properties of the individual might
be lost.

Subpopulation 1

Subpopulation 2

Subpopulation 3

Generation
 1

Generation
 2

Generation
 3

Generation
 4

Chromosome
length

L=n

L=n+k

L=n+2k

Fig. 2: Population interchange among agents

An important issue is the selection process of the individuals that emi-
grate and the selection of the individuals that are replaced in the target
population. Both selections are done using a tournament, however, there
is a difference. The tournament of the individuals that emigrate is won
by the individual with the best fitness, meanwhile the tournament be-
tween the individuals to be replaced is won by the individual with the

worst fitness. In this way, individuals with high fitness in a population
have more chances to emigrate than individuals with a bad fitness. On
the other hand, chromosomes with low fitness will likely be replaced by
better immigrant chromosomes.
Each agent in the MAS contains chromosomes of different sizes and they
send or receive a bunch of individuals each generation, which unfolds a
population using the same parameters, strategy and fitness function.

3.2 Microevolution

A classical fixed-length GA is run within each agent, evolving a popu-
lation of chromosomes in a microevolution.It can be described in terms
of genome codification, genetic operators, selection strategy and fitness
function.
The GA implemented in the MAS uses a binary genome divided in sev-
eral gens of fixed length. Each gen represents a symbol from an alphabet
composed by a set of valid constructed regular expressions. It is impor-
tant to point out that the alphabet is not composed by single characters,
but by any valid regex. These simple regular expressions are the build-
ing blocks of all the evolved regex and cannot be divided, so, we will call
them atomic regex.
Genetic operators used in the evolution of regular expressions are the
mutation and crossover. Since the codifications rely in a binary repre-
sentation the mutation operator is the common inverse operation mean-
while the recombination is performed with a one-point crossover. These
genetic operators do not modify the genome length; chromosomes mod-
ify their length only when an individual is migrating to another agent.
The selection mechanism used is the tournament selection.
From a formal point of view, the fitness function is defined as follows.
Given a set of positive examples, P , with M elements, and a set of neg-
ative examples, Q, with N negative examples, let p ∈ P be an element
of P , and q ∈ Q an element of Q, we define Ω = {ω0, ω1, ..., ωn | ωi ∈
P ∪Q, n = N + M} as the set of elements contained by P and Q; there-
fore any element of P or Q belongs also to Ω. Let the set of all regular
expressions be R, and r an element of R. Then, we can define a func-
tion ϕr, ϕr(ω) : Ω × R −→ N as the number of characters of ω that are
matched by the regex r.
Finally the fitness function F : Q −→ R ∈ [−1, 1] is defined as:

F(r) =
1

M

X

pi∈P

ϕr(pi)

| pi |
−

1

N

X

qi∈Q

Mr(qi) (1)

where | ωi | is the number of characters of ωi and Mr(qi) is:

Mr(qi) =

1 if ϕr(qi) > 0
0 if ϕr(qi) = 0

(2)

Since true positives are calculated based on the characters, and false
positives have no intermediate values, the fitness function presents an
intrinsic bias: it is more sensible to false positives than to true positives.
It is important to point out that the maximum fitness that an individual

can achieve is 1 and it is given when all the positive examples have been
completely retrieved and no negative example has been matched. If a
chromosome obtains a fitness of 1, it will be named an ideal chromosome.
From the evolution of each specialized MAS we obtain a basic regex able
to extract strings matching a pattern. Each MAS requires a training
set and, eventually, an appropriate alphabet of atomic regex. Once the
basic regex has evolved, it is possible to build more complex regex in the
second stage of the extraction process.

4 Composition of basic regex

We use the grammatical rules provided by the regex notation in a compo-
sition agent to integrate the basic evolved regex from the first stage. The
composition agent uses a manually created rule database to integrate two
or more basic regex. The agent applies the grammatical rules to the in-
put regex obtaining a set of composed, potentially complex, regex. They
might be not suitable to extract information properly, so, regex created
by the grammatical rules have to be filtered in order to select the valid
ones. We use the traditional data mining F-measure to automatically
evaluate its extraction capabilities and select the composed regex.

Fig. 3: Composition agent architecture

A graphical representation of the composition process can be seen in
fig. 3, where an example of regex composition is depicted. The com-
position agent takes two basic regex from the output of two evolutive
MAS (see section 3.2) and applies a set of grammatical rules stored in a
database to generate a set of composed regex.

Suppose that the composition agent takes http://\w+.\.\w+.com and
\(\d+\)\d+-\d+ as basic regex, and the aim is to compose them using a
subset of regex operators, for example, |, (,), + and ?, then it is possible
to define a database of grammatical rules in the composition agent such
as:

Rule 1: X|Y

Rule 2: XY

Rule 3: X+Y?

Rule 4: (Y)+|((X)+|foo)

Where X and Y are http://\w+.\.\w+.com and \(\d+\)\d+-\d+. The
composition agent applies the grammatical rules to the input regex gen-
erating the following set of composed regex:

Composed 1: http://\w+\.\w+\.com|\(\d+\)\d+-\d+

Composed 2: http://\w+\.\w+\.com\(\d+\)\d+-\d+

Composed 3: http://\w+\.\w+\.com+\(\d+\)\d+-\d+?

Composed 4: (\(\d+\)\d+-\d+)+\((http://\w+\.\w+\.com)+|foo)

Since the regex composition has used a brute force approach, not all the
composed rules are supposed to be able to correctly extract data. There-
fore, it is necessary to select at least one valid regex. This is done by
the regex retrieval capacity that evaluates the generated regex calculat-
ing the F-measure using a dataset composed by several documents (see
equation 1.3). This measure is based on the weighted harmonic mean
from classical Information Retrieval Precision (P) and Recall (R) val-
ues. Of course, other extraction quality measures such as Fβ or E are
also valid. Based on these quantitative measures, automatic estimation
of the best composed regex is possible.

Fmeasure =
2PR

P + R
(3)

5 Experimental evaluation

The experimental evaluation has been divided into three stages with
different goals. The first stage is the setup of the experiment, in which
several tests were carried out in order to set the basic GA parameters,
necessary for the second stage in which the regex evolution uses a MAS.
Finally, some grammatical rules are used with the evolved regex and they
are automatically evaluated in order to obtain a final composed regex.
Some initial experiments were carried out to acquire knowledge about
the behaviour of the regex evolution. In order to achieve this goal a

single GA was used with the same configuration required by the MAS.
Due to the lack of space, only the most significant results are enumerated
without further discussion.
Despite the differences between phone and URL, both evolved regex have
similar behaviours, in this way it is possible to extrapolate experimental
results. The best results are achieved with mutation probabilities be-
tween 0.01 and 0.02 thus an average mutation probability of 0.015 was
fixed to carry out the rest of the experiments. Tournament size has shown
to have a remarkable impact to obtain a faster convergence while avoid-
ing local maximum. Experiments have demonstrated that a tournament
size of three is a good balance. Variation in the size of the population
shows the usual GA behaviour, a population with fifty individuals is a
good trade-off between convergence speed and computational resources.

5.1 Results: regex evolution

The second experimental stage aims to use a MAS with subsets of agents
where populations of chromosomes with different lengths are evolving.
Six subsets of agents have been used with chromosomes sizes of 6, 9,
12, 15, 18 and 21 bits organized in chunks of three bits. The emigration
strategy has been set as described in section 3.2. Agents in the MAS run
a GA with the parameters obtained in the experiment setup phase and
following the same experimental procedure.
Fig. 4 depicts the evolution of the average fitness of each subset of agents
for the phone numbers regex evolution. Since the results for the URL
regex evolution are analogous, no figure is included. It should be noticed
the close relationship between the convergence speed and the chromo-
some size. The longer is the chromosome, the longer it takes to converge
because the chromosome codes a solution in a bigger search space. An-
other fact that influences the difference in the convergence speed is found
in the limited speed of propagation of good chromosomes along the MAS.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100

A
ve

ra
ge

 fi
tn

es
s

Generation

6
9

12
15
18
21

Fig. 4: Average fitness for the phone number regex evolution

Fig. 4 shows an interesting fact in relation to the different fitness con-
vergente values in the agents for the phone number evolution. shows is
the different fitness convergence values in the agents for the phone num-
ber regex evolution. A population with a chromosome length of 6 bits
presents a fast convergence to 0.54. With 6 bits only very small pheno-
types can be represented, just two symbols, so only part of the examples
can be extracted, achieving a maximum fitness of 0.54. This fact is also
found in populations of size 9, but with less dramatic effects. The popu-
lations with chromosomes of length 12 present a very important growth
in the fitness. The reason is that the shortest ideal regex must be coded
with at least 12 bits.

Table 1: Evolved regular expressions

Evolved regex (URL) Fitness Evolved regex (Phone) Fitness

http://-http://http:// 0 \w+ 0
conwww\.http://com-www\.com 0 \(\d+\) 0.33
/\w+\. 0.55 \(\d+\)\d+ 0.58
http://\w+\.\w+\ 0.8 \(\d+\)\d+-\d+ 1
http://\w+\.\w+\.com 1

5.2 Results: regex composition

Two basic regex have been selected for the third evaluation stage, where
they are composed and its extraction capabilities are measured using
precision, recall and F-measure.
A dataset was needed to measure the precision and recall. The experi-
ment used a dataset composed by ten documents from different origins
containing URLs and phone numbers, mixed and alone. Table 3 shows
basic information about the dataset and its records. Documents one, two
and three are composed by examples extracted from the training set. The
rest of documents are web pages retrieved from the Web; however doc-
uments five and six were transformed to a plain text format in order to
remove all the URLs.
The calculus of precision and recall use the total number of records in
the document, i.e., the sum of URLs and phone numbers, regardless the
evaluated regex. It means that the result is strongly biased against regex
that are not able to extract both URLs and phone numbers. It should
be noticed also that an extracted string is true if and only if it matches
exactly the records, otherwise it has been computed as a false positive.
Results, as can be seen in table 2, are quite satisfactory for the pre-
processed documents, i.e., documents one to five, but measures get worse
for real raw documents. X has a perfect precision; meanwhile Y has a
poor average precision of 0.41. It can be explained looking at Y . This
regex has the form http://\w+\.\w+\.com, which means that it only
extracts the protocol and the host name from the URLs, but it cannot
extract the path, a common part of URLs found in the Web.

A special case is the regex XY, a direct concatenation of X and Y. This
regex extracts URLs followed directly by a phone number; obviously, such
situation is not likely to happen. So, it is unable to extract any record
(for this reason these results are not shown in the table). After all, the
best balance between precision and recall is achieved by the composed
regex (X) | (Y), with a precision of 0.63 and a recall of 0.62.

Table 2: Extraction capacity of basic and composed regex. It is calculated using tra-
ditional precision (Prec.) and Recall values. The table shows the Retrieved elements
(Retr) and the True Positives (TPos) detected.

X Y (X)|(Y)
Retr TPos Prec. Recall Retr TPos Prec. Recall Retr TPos Prec. Recall

Document 1 5 5 1 1 0 0 - - 5 5 1 1
Document 2 0 0 - - 5 5 1 1 5 5 1 1
Document 3 5 5 1 0.5 5 5 1 0.5 10 10 1 1
Document 4 99 99 1 1 0 0 - - 99 99 1 1
Document 5 10 10 1 1 0 0 - - 10 10 1 1
Document 6 0 0 - - 43 6 0.14 0.12 43 6 0.14 0.12
Document 7 20 20 1 0.21 773 12 0.16 0.12 97 32 0.33 0.33
Document 8 37 37 1 0.05 668 76 0.11 0.11 705 113 0.16 0.16
Document 9 24 24 1 0.13 88 1 0.01 0.01 112 25 0.22 0.14
Document 10 0 0 - - 49 23 0.47 0.45 49 23 0.47 0.45

Average 1 0.56 0.41 0.33 0.63 0.62

Precision and recall balance can be quantified with the F-measure (shown
in table 3). The (X) | (Y) regex obtained the best value followed not far
by X. As it was expected, the composition agent selectes (X) | (Y) based
on the F-measure.

Table 3: Document record types and F-measure of regexes.

URL Phone X Y (X)|(Y)

Document 1 0 5 1 - 1
Document 2 5 0 - 1 1
Document 3 5 5 0.67 0.67 1
Document 4 0 99 1 - 1
Document 5 0 10 1 - 1
Document 6 0 51 - 0.12 0.12
Document 7 77 20 0.35 0.14 0.33
Document 8 436 37 0.09 0.11 0.16
Document 9 241 24 0.23 0.01 0.17
Document 10 51 0 - 0.46 0.46

Average 0.62 0.35 0.69

6 Conclusions

An innovative approach for data extraction based on regex evolution and
grammatical composition of regex has been presented. We have shown
that it is possible to use a GA to evolve regex in a MAS and to apply
grammatical rules to the evolved regex in order to generate a composition
of regular expressions with the capacity to extract different records of
data.
Using a MAS to simulate a variable-length genome population has showed
to be a successful way to generate a variable-length chromosome evolu-
tion. Each agent is able to evolve a population and the MAS presents a
macroevolution that tends to generate regex correctly sized.
However, the experiments carried out show some limitations. The lin-
ear nature of the GA codification is not the best option to represent a
hierarchical structure such as a regex. The result is a natural difficulty
to define a fine-grained fitness function able to evaluate not only all the
regex, but also its parts. For these reasons the next step to follow is to
use other evolutionary algorithms, such as Genetic Programming and
Grammatical Evolution that overcome this limitation.
Finally, grammatical rules offer a simple way to automatically compose
basic regex and select the best composed regex measuring its F-measure
with a set of documents.

Acknowledgements

This work has been supported by the research projects TIN2007-65989,
TIN2007-64718 and Junta de Castilla-La Mancha project PAI07-0054-
4397.

References

1. David Camacho, Maria D. R-Moreno, David F. Barrero, and Rajen-
dra Akerkar. Semantic wrappers for semi-structured data extraction.
Computing Letters (COLE), 4(1), 2008.

2. Longbing Cao, Chao Luo, and Chengqi Zhang. Agent-mining inter-
action: An emerging area. In AIS-ADM, pages 60–73, 2007.

3. John H. Holland. Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and Ar-
tificial Intelligence. The MIT Press, April 1992.

4. Marat Kanteev, Igor Minakov, George Rzevski, Petr Skobelev, and
Simon Volman. Multi-agent meta-search engine based on domain
ontology. In AIS-ADM, pages 269–274, 2007.

5. Nicholas Kushmerick. Wrapper induction: Efficiency and expressive-
ness. Artificial Intelligence, 118:2000, 2000.

6. M. Michalowski, J.L. Ambite, S. Thakkar, R. Tuchinda, C.A.
Knoblock, and S. Minton. Retrieving and semantically integrating
heterogeneous data from the web. IEEE Intelligent Systems, 19(3),
2004.

7. Ken Thompson. Programming techniques: Regular expression search
algorithm. Commun. ACM, 11(6):419–422, 1968.

