
Automatic Web News Extraction Using Tree Edit Distance

Davi de Castro Reis1 2 Paulo B. Golgher2 Altigran S. da Silva3

Alberto H. F. Laender1

1Computer Science
Department

Federal University of Minas
Gerais

Belo Horizonte, Brazil

{davi,laender}@dcc.ufmg.br

2Akwan Information
Technologies

Av. Abraão Caram 430
Pampulha

Belo Horizonte, Brazil

{davi,golgher}@akwan.com.br

3Computer Science
Department

Federal University of
Amazonas

Manaus, Brazil

alti@dcc.fua.br

ABSTRACT

The Web poses itself as the largest data repository ever available in

the history of humankind. Major efforts have been made in order

to provide efficient access to relevant information within this huge

repository of data. Although several techniques have been devel-

oped to the problem of Web data extraction, their use is still not

spread, mostly because of the need for high human intervention and

the low quality of the extraction results. In this paper, we present

a domain-oriented approach to Web data extraction and discuss its

application to automatically extracting news from Web sites. Our

approach is based on a highly efficient tree structure analysis that

produces very effective results. We have tested our approach with

several important Brazilian on-line news sites and achieved very

precise results, correctly extracting 87.71% of the news in a set of

4088 pages distributed among 35 different sites.

Categories and Subject Descriptors

H.3.m [Information Storage and Retrieval]: Miscellaneous—

Data Extraction, schema inference, Web

General Terms

Algorithms, Languages

Keywords

data extraction, edit distance, trees, schema, electronic news

1. INTRODUCTION
Nowadays the Web poses itself as the largest data repository ever

available in the history of humankind. Major efforts have been

made in order to provide efficient access to relevant information

within this huge repository. At least two broad views of this prob-

lem have evolved recently. The first one, characterized by the un-

structured view of data, has developed breakthrough technologies

(such as Web search engines) based on information retrieval [3]

methods, which have been used in many successful commercial

products. The second one, characterized by the structured or semi-

structured view of data, borrows techniques from the database area

to provide the means to effectively managing the data available on

the Web [9]. Thus, several techniques have been adapted (or tar-

geted specifically) to the problem of extracting data from the Web

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1­58113­844­X/04/0005.

for further processing (querying, integration, mediation, etc.) [13].

However, these techniques are still not spread as the information re-

trieval based ones. This happens mostly because of two problems

with these techniques: (1) the need for high human intervention and

(2) the low quality of the extraction results. Thus, the motivation to

develop new methods and tools to allow the effective deployment

of a more structured view of the data available on the Web still

remains.

Devising generic methods for extracting Web data is a complex

(if not impossible) task, since the Web is very heterogeneous and

there are no rigid guidelines on how to build HTML pages and how

to declare the implicit structure of the Web pages. Thus, in order to

develop effective methods for extracting Web data in a precise and

completely automatic manner, it is usually required to take into

account specific characteristics of the domain of interest. One of

such domains is that of on-line newspapers and news portals on

the Web, which have become one of the most important sources

of up-to-date information. Indeed, there are thousands of sites that

provide daily news in very distinct formats and there is a growing

need for tools that will allow individuals to access and keep track

of this information in a automatic manner.

In this paper, we present a domain-oriented approach to Web

data extraction and discuss its application to automatically extract-

ing news from Web sites. This approach is based on the concept

of tree-edit distance [17, 20] and allows not only the extraction of

relevant text passages from the pages of a given Web site, but also

the fetching of the entire Web site content, the identification of the

pages of interest (the pages that actually present the news) and the

extraction of the relevant text passages discarding non-useful ma-

terial such as banners, menus, and links.

To support this approach, we have developed a highly efficient

tree structure analysis algorithm that outperforms, for practical pur-

poses, the best results on tree-edit distance calculation in the liter-

ature. We have tested our approach with several important Brazil-

ian on-line news sites and achieved very precise results, correctly

extracting 87.71% of the news in a set of 4088 pages distributed

among 35 different sites.

The rest of this paper is organized as follows. Section 2 gives

an overview of the theory behind tree edit distance algorithms, the

basis of our work. Section 3 presents our improved tree structure

analysis algorithm, while Section 4 shows the application of this

algorithm in the various tasks that comprise our approach. Experi-

mental results demonstrating the effectiveness of our approach are

in Section 5. Section 6 discusses related work. Finally, conclusions

and directions for future work can be found in Section 7.

502

2. TREE EDIT DISTANCE
The approach we have developed for finding and extracting data

of interest from Web pages is based on the analysis of the structure

of these target pages. More precisely, by evaluating the structural

similarities between pages in a target site we are able to perform

tasks such as grouping together pages with similar structure to form

page clusters and finding a generic representation of the structure

of the pages within a cluster. Indeed, as we shall see, such tasks are

key to our approach.

Since the structure of a Web page can be nicely described by a

tree (e.g., a DOM tree), we have resorted to the concept of tree

edit distance [17, 20] to evaluate the structural similarities between

pages. Intuitively, the edit distance between two trees TA and TB

is the cost associated with the minimal set of operations needed

to transform TA into TB . In this section we review this important

concept along with its related formalisms and describe how we use

it to analyze the structure of Web pages.

Trees are one of the most common data structures used in com-

puter science. Formally, they are defined as directed acyclic simple

graphs. Although most of the discussion in this section can be gen-

eralized to deal with different types of tree, we are interested only

in one specific type of tree, called labeled ordered rooted tree. A

rooted tree is a tree whose root vertex is fixed. Ordered rooted trees

are rooted trees in which the relative order of the children is fixed

for each vertex. Labeled ordered rooted trees have a label l attached

to each of their vertices. Figure 1 shows an example of such a tree.

From now on, we refer to labeled ordered rooted trees simply by

trees, except when explicitly stated.

D E

B C

R

Figure 1: A labeled ordered rooted tree with root R

In its traditional formulation, the tree edit distance problem con-

siders three operations: (a) vertex removal, (b) vertex insertion, and

(c) vertex replacement. To each of of these operations, a cost is as-

signed. The solution of this problem consists in determining the

minimal set of operations (i.e., the one with the minimum cost) to

transform one tree into another. Another equivalent (and possibly

more intuitive) formulation of this problem is to discover a map-

ping with minimum cost between the two trees. The concept of

mapping (introduced in [18]) is formally defined next.

DEFINITION 1. Let Tx be a tree and let Tx[i] be the i-ism vertex

of tree Tx in a preorder walk of the tree. A mapping between a tree

T1 of size n1 and a tree T2 of size n2 is a set M of ordered pairs

(i, j), satisfying the following conditions for all (i1, j1), (i2, j2) ∈
M

• i1 = i2 iff j1 = j2;

• T1[i1] is on the left of T1[i2] iff T2[j1] is on the left of T2[j2];

• T1[i1] is an ancestor of T1[i2] iff T2[j1] is an ancestor of

T2[j2].

In Definition 1, the first condition establishes that each vertex can

appear no more than once in a mapping, the second enforces order

preservation between sibling nodes and the third enforces the hier-

archical relation between the nodes in the trees. Figure 2 illustrates

a mapping between two trees.

Intuitively, a mapping is a description of how a sequence of edit

operations transform a tree into another, ignoring the order in which

these operations are applied. In Figure 2, a dotted line from a ver-

tex of T1 to vertex of T2 indicates that the vertex of T1 should be

changed if the vertices are different, remaining unchanged other-

wise. Vertices of T1 not touched by dotted lines should be deleted,

and vertices of T2 not touched should be inserted.

D E

C B

EA

RR

A

T1

G

T2

Figure 2: A mapping example

As we have already mentioned, estimating a tree edit distance

is equivalent to finding the minimum cost mapping. Let M be a

mapping between tree T1 and tree T2, let S be a subset of pairs

(i, j) ∈M with distinct labels, let D be the set of nodes in T1 that

do not occur in any (i, j) ∈ M and let I be the set of nodes in T2

that do not occur in any (i, j) ∈ M . The mapping cost is given by

c = Sp + Iq + Dr, where p, q and r are the costs assigned to the

replacement, insertion, and removal operations, respectively. It is

common to associate a unit cost to all operations, however, specific

applications may require the assignment of distinct costs to each

type of operation.1

The tree edit distance problem is a difficult one, and several al-

gorithms, with different tradeoffs, have been recently proposed, but

all formulations have complexities above quadratic [6]. Further,

it has been proved that, if the trees are not ordered, the problem

is NP-complete [27]. The first algorithm for the mapping prob-

lem was presented in [18], and its complexity is O(n1n2h1h2),

where n1 and n2 are the sizes of the trees and h1 and h2 are

their heights. This is a dynamic programming algorithm that re-

cursively calculates the edit distance between the strings formed

by the sets of children vertices of each internal vertex in

the tree. In [21], a new algorithm was presented with cost

O(d2n1n2min(h1, l1)min(h2, l2)), where d is the edit distance

between the trees and l1 and l2 are the number of leaves in each

tree. Notice that this cost depends on the algorithm output. The

best known upper limit for this problem is due to an algorithm pre-

sented in [6] with complexity O(n1n2 + l21 + l2.5
1 l2).

Despite the inherent complexity of the mapping problem in its

generic formulation, there are several practical applications that

can be modelled using restricted formulations of it. By imposing

conditions to the basic operations corresponding to the original for-

mulation in Definition 1 (i.e., replacement, insertion and removal),

four classical restricted formulations are obtained: alignment, dis-

tance between isolated trees, top-down distance, and bottom-up

distance, for which more convenient and fast algorithms have been

proposed [19, 22].

Detailing each one of these formulations and algorithms is be-

yond the scope of this paper, but since our approach is based on a

restricted version of the top-down mapping problem, we will briefly

review and illustrate it. Informally, a top-down mapping restricts

the removal and insertion operations to take place only in the leaves

of the trees. Figure 3 illustrates a top-down mapping which is for-

mally defined as follows.

1Other applications may even require a distinct set of operations.

503

DEFINITION 2. A mapping M between a tree T1 and a tree T2

is said to be top-down only if for every pair (i1, i2) ∈ M there

is also a pair (parent(i1),parent(i2)) ∈ M , where i1 and i2 are

non-root nodes of T1 and T2 respectively.

D E

C B

EA

RR

A

T1

G

T2

Figure 3: A top-down mapping example

The first algorithm for the top-down edit distance problem was

proposed by Selkow [17]. In [25], Yang presents a recursive dy-

namic programming algorithm with cost O(n1n2) for the problem,

where n1 and n2 are the sizes of T1 and T2, respectively.

One of the most popular algorithms for the problem is presented

in [5] also with cost O(n1n2). This algorithm, however, is not

recursive and the problem is solved within a single dynamic pro-

gramming instance. The paper also presents an external memory

variation for this algorithm.

Top-down mappings have been successfully applied to several

Web related applications such as document categorization. For in-

stance, Nierman and Jagadish [16] use a top-down distance algo-

rithm to cluster XML documents.

In our case, we are interested in the problem of evaluating the

similarity between Web pages. Indeed, most Web pages are struc-

tured according to formats such as HTML and XML which, as

mentioned before, can be seen as labeled ordered rooted trees [7].

Actually, the DOM paradigm, commonly used for manipulating

Web pages, uses this tree representation.

In the next section, we present a new algorithm for determin-

ing a restricted form of top-down mapping between two trees that

represent Web pages and, as a consequence, the tree edit distance

between them.

3. THE RTDM ALGORITHM
In this section, we present an algorithm for determining a new

type of mapping that we call Restricted Top-Down Mapping. In-

tuitively, in the restricted top-down mapping, besides the insertion

and removal operations, the replacement operation of different ver-

tices is also restricted to the leaves of the trees. More formally, we

have the following definition.

DEFINITION 3. A top-down mapping M between a tree T1 and

a tree T2 is said to be restricted top-down only if for every pair

(i1, i2) ∈ M , such that t1[i1] 6= t2[i2], there is no descendent of

i1 or i2 in M , where i1 and i2 are non-root nodes of T1 and T2

respectively.

Figure 4 shows a restricted top-down mapping. As done for the

family of edit distances mentioned before, we can define the re-

stricted top-down edit distance between two trees T1 and T2 as the

cost of the restricted top-down mapping between the two trees.

The RTDM algorithm combines the ideas presented in [25] and

[19]. To determine the restricted top-down mapping between two

trees T1 and T2, the RTDM algorithm first finds all identical sub-

trees that occur at the same level of the input trees. This step is

performed in linear time using a graph of equivalence classes, in

D E

C B

EA

RR

A

T1

G

T2

Figure 4: A restricted top-down mapping example

a similar way to what is done in [19]. Our algorithm, however, is

based on a post-order traversal of the trees. We can use this much

simpler approach because we only look for the identical sub-trees

of the same level. This first step of the algorithm has linear cost,

with respect to the number of vertices in the trees.

Once the vertices in the trees are grouped in equivalent classes,

an adaptation of Yang’s algorithm [25] is applied to obtain the min-

imal restricted top-down mapping between the trees. This second

step of the algorithm is shown in Figure 5. This figure only shows

the algorithm version for calculating the tree edit distance, but its

modification for obtaining the mapping is straightforward.

As we have already mentioned, the traditional top-down edit dis-

tance algorithm by Chawathe [5] has a complexity of O(n1n2) for

all cases, that is, the best, the expected and the worst cases. The

RTDM algorithm also has a worst case complexity of O(n1n2),

but, in practice, it performs much better due to the fact that it only

deals with restricted top-down mappings.

The worst case of the RTDM algorithm occurs when the two

trees being compared are all identical, except for their leaves. In all

other cases, the cost is amortized by the short-cuts in lines 20−25,

which we call the top-down short-cut, or in lines 17−18, which we

call the bottom-up short-cut. Further, when all we want to know is

whether the tree edit distance is under a given threshold, the short-

cut in lines 15 − 16 prevents the recursion to continue. This is a

very common situation when we need to cluster trees based on their

structural similarities.

We also notice that we can trivially alter lines 20 − 25 (the so-

called top-down short-cut), to create an algorithm that determines

the traditional (i.e., non-restricted) top-down edit distance. Thus,

we also have a new algorithm for the traditional formulation of the

problem.

Another interesting aspect of the RTDM algorithm is its flexi-

bility with respect to the cost of the edit operations. This property

allows using the algorithm in more complex derivations of the prob-

lem. For instance, it allows comparing a given tree instance with

a tree pattern of variable size. This problem is analogous to the

problem of matching regular expressions with strings and has been

addressed in the literature [26].

In the next section, we show how the RTDM algorithm can be

applied to the problem of automatically finding news available on

Web sites and extracting their components (e.g., titles, body, etc.)

for further processing.

4. AUTOMATICALLY EXTRACTING WEB

NEWS
In this section we discuss a Web news extraction approach that

relies on the RTDM algorithm to identify relevant text passages

containing news and their components, extract them and discard

useless material such as banners, links, etc. Our approach has ba-

sically two main tasks: (1) the crawling of news portals to fetch

the pages of interest and (2) the extraction of the news from the

504

1 RTDM(T1, T2, ǫ: threshold)
2 begin

3 let m be the number of children of T1 root

4 let n be the number of children of T2 root

7 M [i, 0]← 0 for all i = 0, . . . , m

8 M [0, j]← 0 for all j = 0, . . . , n

9 for i = 1 to m

10 for j = 1 to n

11 Ci ← descendents(t1[i])
12 Cj ← descendents(t2[j])

13 d←M [i− 1, j] +
Pt1[k]∈Ci

k delete(t1[k])

14 i←M [i, j − 1] +
Pt2[k]∈Cj

k insert(t2[k])
15 if M [i− 1, j − 1] > ǫ

16 s←∞
17 elsif t1[i] and t2[j] are identical sub-trees

18 s← 0
19 elsif

20 if t1[i] is a leaf

21 s← replace(t1[i], t2[j])

22 s← s +
Pt2[k]∈Cj

k insert(t2[k])
23 elsif t2[j] is a leaf

24 s← replace(t1[i], t2[j])

25 s← s +
Pt1[k]∈Ci

k delete(t1[k])
26 else

27 s← RTDM(t1[i], t2[j], ǫ)
28 fi

29 fi

30 M [i, j]← min(d, i, s);
31 end

32 end

33 return M [m, n]
34 end

Figure 5: The RTDM Algorithm. The functions replace, delete

and insert give the costs of vertex replacement, vertex removal

and vertex insertion, respectively

HTML pages collected. Since Web crawling techniques have been

extensively discussed elsewhere [12], we focus our discussion on

the extraction task, in which resides most of our contributions.

To extract the desired news, our approach recognizes and ex-

plores common characteristics that are usually present in news por-

tals. For instance, most news sites have the following organization:

(a) a home page that presents some headlines, (b) several section

pages (or channels) that provide the headlines divided in areas of

interest (e.g., sports, technology, international, etc.), (c) pages that

actually present the news, containing the title, author, date and body

of the news. The goal of our approach is to correctly extract the

news, disregarding the other pages.

Our approach relies on the basic assumption that the news site

content can be divided in groups that share common format and

layout characteristics. This is rather a safe assumption, since nowa-

days most of the Web content is built using programs or scripts that

read the content from a database, format it, and generate the output

as an HTML page. We call this set of common layout and for-

mat features a template. Figure 6 presents two different templates

available in the CNN site.

DEFINITION 4. A template is the set of common layout and for-

mat features that appear in a set of HTML pages that is produced

by a single program or script that dynamically generates the HTML

page content.

In the case of news, templates are filled by journalists, usually

through the use of specific Web applications or some database inter-

face. Each field of a template (e.g., a news title) we call a data-rich

object. Ideally, the extractors generated by our approach should be

able to identify each one of these data-rich objects, and discover,

among them, which ones correspond to the title and the body of the

news.

According to our approach, the extraction task is performed in

four distinct steps: (1) page clustering, (2) extraction pattern gen-

eration, (3) data matching and (4) data labeling. Figure 7 illustrates

these steps.

In the following sections, we detail each step that comprises the

extraction task. We notice that our approach is simple and or-

thogonal, once the core of the main steps (clustering, extraction

and matching) is the RTDM algorithm, with variations on the cost

model for the edit operations.

4.1 Page Clustering
This first step takes as input a previously crawled set of pages

(a training set) and generates clusters of pages that share common

formating/layout features, i.e., share the same template. Each clus-

ter is later generalized into an extraction structure for a template, in

the extraction pattern generation step. Notice that the cluster algo-

rithm cannot simply group pages by their address (URL), because

subtle changes in script or cgi parameters may result in a com-

pletely different HTML page.

To generate the clusters, we use traditional hierarchical cluster-

ing techniques [23] in which the distance measured is the output of

our RTDM algorithm. There are no pre-defined number of clusters.

Instead, we adopt a constant threshold to determine if two given

clusters should be merged. In our implementation we used 80% of

similarity as the threshold value. The cost model for this step is

the simplest one. Every vertex insertion, removal or replacement

has unit cost. The replacement of equally labeled vertices has cost

zero. Other works [16] suggest a more sophisticated set of oper-

ations, but our experiments have shown that this simple model is

effective for our purposes. The output of this step is a set of page

clusters that share the same template.

4.2 Extraction Pattern Generation
In this step, our approach generalizes a cluster of pages into what

we call a node extraction pattern (ne-pattern). Formally, an ne-

pattern is a tree defined as follows.

DEFINITION 5. Let a pair of sibling sub-trees be a pair of sub-

trees rooted at sibling vertices. A node extraction pattern is a rooted

ordered labeled tree that can contain special vertices called wild-

cards. Every wildcard must be a leaf in the tree, and each wildcard

can be of one of the following types:

• SINGLE (·) A wildcard that captures one sub-tree and must

be consumed.

• PLUS (+) A wildcard that captures sibling sub-trees and

must be consumed.

• OPTION (?) A wildcard that captures one sub-tree and may

be discarded.

• KLEENE (∗) A wildcard that captures sibling sub-trees and

may be discarded.

We can think of an ne-pattern as a kind of regular expression for

trees. We call a wildcard every vertex in the tree that can match

any symbol (any label) with its associated type. Our purpose in this

step is to assure that each wildcard corresponds to a data-rich object

in the template. Single and plus wildcards should correspond to

505

Figure 6: Some templates available in the CNN site

Crawled
Pages

Clustering

*

+

?

+

Pages
Training

?

+

*

+

*

+

?

+

+

+

*

+

?

+

<title> ... </title>
<body> ... </body>

<title> ... </title>
<body> ... </body>

<title> ... </title>

<body> ... </body>

<title> ... </title>

<body> ... </body>

Extractor Generation
ne patterns

ne patterns Data LabelingData Matching

Figure 7: The main extraction steps

required objects, such as the title of a news, and option and Kleene

wildcards should correspond to optional objects, such as related

news lists.

Further, we say that an ne-pattern accepts (or matches) a given

tree if there is a mapping with no infinite cost between the ne-

pattern and the target tree. We define formally this concept and

the cost model associated with this mapping in Section 4.3.

The goal of this step in the extraction task is, taking as input a

page cluster, to generate an ne-pattern that accepts all the pages in

this cluster. Thus, the content differences between the pages in the

cluster are modeled as wildcards in our ne-patterns. To generate

such ne-patterns, we rely on what we call a composition operation,

defined as follows.

DEFINITION 6. Let T x
1 and T x

2 be distinct ne-patterns. Then

the composition of T x
1 and T x

2 , T x
1 ◦ T x

2 , is a ne-pattern T x
3 such

that:

• Let S1 be the set of trees accepted by T x
1 .

• Let S2 be the set of trees accepted by T x
2 .

• Let S3 be the set of trees accepted by T x
3 .

• Then S1 ∪ S2 ⊆ S3.

The process of generating an ne-pattern consists of iterating all

the trees that represent the pages in the cluster and incrementally

composing one to each other in the cluster. Notice that any tree can

be seen as an ne-pattern without any wildcard. At the end of the

process, we have an ne-pattern that accepts all pages in that cluster.

Let us see how we can use the RTDM algorithm to implement

the composition operation. First, we say that vertices a and b of an

ne-pattern are equal if and only if:

• a and b are wildcards and both are of the same type;

• a and b are not wildcards and the labels associated with a

and b are equal.

This is the equality operator for the RTDM algorithm. As a cost

model, we give the same weight, 1, to any edit operation in the

506

trees. Given two ne-patterns T x
1 and T x

2 , we use the RTDM al-

gorithm to obtain a mapping MTx
1
→T x

2
. From this mapping, we

create the composite ne-pattern T x
3 = T x

1 ◦T x
2 using the following

rules:

• if a is not in the mapping, then add a′ to T x
3 where a′ =

f(a, ?);

• if a maps to b then add a′ to T x
3 where a′ = f(a, b);

• and f(a, b) is defined as:

f(∗, ∗) = ∗ f(+, +) = + f(., .) = .

f(∗, +) = ∗ f(+, .) = + f(., ?) = ?
f(∗, ?) = ∗ f(+, ?) = ∗ f(., n) = .

f(∗, .) = ∗ f(+, n) = + f(?, ?) = ?
f(∗, n) = ∗ f(?, n) = ?
f(n1, n2) = n1 if n1 and n2 have identical labels

f(n1, n2) = . if n1 and n2 have different labels

where n, n1, n2 are non-wildcard vertices and the parameter order

is not relevant.

The motivation behind this set of operations is that optional ver-

tices of the template that the ne-pattern is trying to model should be

kept optional after composing the ne-pattern with a new tree, and

higher quantifiers (i.e., Kleene and plus) should be kept in the final

ne-pattern. Non-wildcard vertices in the ne-pattern that are mapped

to different (as defined by our equality operator) non-wildcard ver-

tices in the tree being composed should result in new wildcards.

We notice that some data-rich objects in the pages might span

through several sibling sub-trees, like a text of a news body that

is composed of many adjacent paragraphs. Capturing each of these

objects as a single entity is the purpose of the plus and Kleene wild-

cards.

If we look carefully at the definition of the function

f(a, b) above, we will see that there is no wildcard quantifier “pro-

motion” policy, or, in other words, wildcards plus and Kleene will

never be generated if there are no plus or Kleene wildcards in

the input of the function. These wildcards are created in a post-

processing step whenever we compose two ne-patterns.

This post-processing is actually quite simple. Every wildcard

followed by a set of option wildcards should be converted into a

wildcard for variable size objects, that is, Kleene or plus wildcards.

If the wildcard before the set of option wildcards is a single or a plus

wildcard, then the set of option wildcards and the precedent wild-

card are converted to a plus wildcard. If the wildcard is an option

or Kleene wildcard, then both this wildcard and the adjacent option

wildcards are converted to a Kleene wildcard. Figure 8 illustrates

the whole ne-pattern generation task, including the “promotion” of

a wildcard. In our approach, even if wildcards are separated by a

maximum of 3 non-wildcard vertices they can be merged (includ-

ing the non-wildcard vertices) into a single variable size wildcard

(plus or Kleene).

4.3 Data Matching
In this step, our approach matches the set of generated

ne-patterns to the set of recently crawled pages. To find the most

appropriate ne-pattern to a crawled HTML page, we again rely on

our RTDM algorithm.

Before discussing the cost model for the matching step, we need

to understand what the intuition behind the matching of the ne-

patterns is. In this context, we say that, in a given mapping, if

one wildcard vertex in the ne-pattern maps to a vertex in the target

HTML tree, then the wildcard consumes the vertex. Now let us

define the desired behavior for a mapping between the ne-pattern

and the target tree, so that we can create an appropriate cost model.

DEFINITION 7. We define a match between an ne-pattern and

a target HTML tree as a mapping such that the following rules are

satisfied in this order:

1. Every non-wildcard vertex in the ne-pattern must map to an

identical vertex in the target tree.

2. Every vertex in the target tree must map to an identical non-

wildcard vertex in the ne-pattern or be consumed by a wild-

card.

3. Single wildcards (.) must consume one sub-tree of the target

tree.

4. Plus wildcards (+) must consume at least one sub-tree of the

target tree.

5. Option wildcards (?) must consume one sub-tree of the target

tree, if it is possible.

6. Kleene wildcards (∗) must consume at least one sub-tree of

the target tree, if it is possible.

7. Plus wildcards (+) must consume as many sibling sub-trees

of the target tree as possible.

8. Kleene wildcards (∗) must consume as many sibling sub-

trees of the target tree as possible.

The satisfaction of Rules 1, 2, 3 and 4 is enough to guarantee

that the ne-pattern accepts the target tree. Rules 5 and 6 assure

that the match is as tight as possible, or, if it is possible to use

an optional wildcard without violating the acceptance condition, it

must be used. Rules 7 and 8 are always automatically satisfied, and

are declared to help understanding the behavior of the ne-pattern.

The equality function for the RTDM algorithm is very simple.

Non-wildcard vertices with identical labels are equal and the equal-

ity comparison with a wildcard vertex always fails. Let a be a ver-

tex in the ne-pattern, and b a vertex in the target tree. We define the

cost model for the RTDM algorithm as follows:

• Vertex Replacement

(A) a is a wildcard→ 0

(B) else→∞

• Vertex Insertion

(C) There is an ancestor of b such that it is consumed

by a wildcard→ 0

(D) The left sibling of b is consumed by a ∗ → 0

(E) The left sibling of b is consumed by a +→ 0

(F) else→∞

• Vertex Removal

(G) a =? or a = ∗ → 1

(H) else→∞

The replacement cost (A) guarantees that only wildcards can be

replaced by the sub-trees they consume. The insertion cost (C)

allows complete sub-trees to be consumed by the wildcards. Costs

(D) and (E) allow wildcards to consume lists of sibling sub-trees.

The vertex removal cost (G) assures that only optional wildcards

can be deleted, and it associates a non-zero cost with the deletion

of an optional wildcard, so they are preferably covered by cost (A).

Finally, costs (B), (F) and (H) together guarantee that the ne-pattern

must accept the target page, or the mapping will have infinite cost.

507

to a vertex with different label in

the target tree, we consider it as

Required wildcards

Optional wildcards

If a vertex in the source tree maps

Variable size objects

After creating each new pattern,

evidence of a variable size object.

following another wildcard is the

we look for wildcards followed

The presence of optional wildcards

a required wildcard, since it is

and create a new wildcard that can

by a series of optional wildcards

capture variable sized objects.

present in both trees.

D E

A

B C

A

F C

D

�✁

?

C

A

D

A

C

D

? ✂✄✂
☎✄☎
✆✄✆✄✆✆✄✆✄✆✆✄✆✄✆✆✄✆✄✆✆✄✆✄✆

✝✄✝✄✝✝✄✝✄✝✝✄✝✄✝✝✄✝✄✝✝✄✝✄✝

?

✞✄✞✄✞✄✞✄✞✄✞✄✞✟✄✟✄✟✄✟✄✟✄✟✄✟

...
Page Cluster

A

G F C

D E

...

?

A

C

D

+

.

in a target tree, we consider the presence

When a vertex in a tree has no equivalent

of the vertex optional in our extractor

and generate an optional wildcard.

Figure 8: How an ne-pattern is created from a cluster of similar pages

Although costs (C), (D) and (E) seem quite complicated at a first

glance, they are trivially implemented in constant time. To check

the validity of any of them, we just need to check if the vertex in

the target tree is being inserted in the position of (or immediately

after) a wildcard in the ne-pattern. This cost model guarantees that

either the conditions in Definition 7 are satisfied or the mapping has

infinite cost.

Once the ne-pattern has been selected, the extraction process is

straightforward. Both trees (the ne-pattern and the HTML page)

are traversed in pre-order and for each wildcard found in the ne-

pattern, the text passage in the vertices consumed by the wildcard

is extracted from the HTML page. Figure 9 illustrates the matching

process.

4.4 Data Labeling
The output of the data matching step is a set of ordered text pas-

sages, each one corresponding to a set of vertices consumed by a

ne-pattern wildcard. More formally, we can define the output of a

match as a set T = (t1, p1), (t2, p2), ..., (tn, pn) where each ti is a

text passage retrieved by a wildcard and pi is the vertex position of

this wildcard if we perform a pre-order traversal of the ne-pattern.

The goal of the data labeling step is to select from T the pas-

sages ti and tj that correspond to the title and the body of the news

being extracted from the Web page2. To achieve this, we apply

simple heuristics to T as discussed bellow. Given a set of extracted

passages T = (t1, p1), (t2, p2), ..., (tn, pn) we say that:

• length(ti) is the number of terms (words) in passage ti;

• | tk ∩ ti | is the number of terms that occur in passages tk

and ti;

• ti is a news body iff length(ti) > length(tk) ∀ 1 < k <

n, k 6= i and length(tk) > 100 (Body labeling heuristics);

• tj is a news title iff 1 ≤ length(tj) ≤ 20 and
|tj∩ti|

pj−pi
>

|tk∩ti|
pk−pi

∀ 1 < k < i, k 6= j (Title labeling heuristics).

2In this paper we do not focus on the extraction of the news date,
because we can trivially determine it from the date the news first
appeared on the Web site.

In other words, the passage elected to be the body of the news

is the longest one with more than 100 words. Further, the passage

selected to be the title is one that has ranges from 1 to 20 words,

has a maximum intersection with a body passage, and is the closest

one to the body. The intuition behind the title selection is that most

of the times the title is placed near the body and its terms usually

appear in the news body.

Despite using this simple heuristics, our labeling strategy is very

effective, as shown next by our experiments.

5. EXPERIMENTAL RESULTS

5.1 Setup
Our experiments were run using 4088 HTML pages collected

from 35 different Brazilian on-line news sites. The sites chosen

are the most popular vehicles from the Brazilian press, including

country-wide newspapers, news agencies, magazines and

main regional publications. All the experiments were carried out

using a 700MHz Pentium III processor with 128MB of RAM.

5.2 The RTDM algorithm
Considering that the RTDM algorithm is the basis of the news

extraction approach described in this paper, we must assure that it

runs fast and scales well. To the best of our knowledge, there is no

other restricted top-down mapping algorithm in the literature, so

we decided to compare the RTDM algorithm with the competitive

top-down edit distance algorithm presented by Chawathe in [5].

Adapting Chawathe’s algorithm to the extraction pattern genera-

tion and data matching steps of our approach is not trivial, but the

page clustering step can be easily adapted to use this algorithm.

Thus, we built two versions of the clustering step, one powered by

the RTDM algorithm, and the other one powered by Chawathe’s.

Comparing the executions times, the RTDM algorithm in general

outperforms the alternative algorithm by 4 times, but sometimes it

is more than 10 times faster. The main disadvantage of Chawathe’s

algorithm is that it is always quadratic with respect to the num-

ber of vertices of the trees being compared. Figure 10 shows how

the algorithms perform when the average number of vertices of the

trees being compared increases. If we analyze the behavior of the

508

+

?

A

E

D

...

=B D

FE

C

A

A

B +

*

?

A

D+

G

Matching the ne patterns

is matched against the tree. The first pattern matches

The second pattern matches with 0 cost and is the selected

ne pattern. The last pattern fails to match because there is

DB C

A

E F

The extraction result

Each wildcard of the ne pattern

target tree. Each set of vertices

results in one data−rich object.

In the example below, two

data−rich objects (BC and F)

were extracted.

with cost 1, because it discards its Kleene wildcard.

no possible mapping for the G vertex.

Each HTML page is converted to tree, and a set of ne patterns

consumes a set of vertices of the

Figure 9: How ne-patterns are matched with Web pages

RTDM algorithm when the number of vertices grows, we see that it

depends not only on the number of vertices in the trees, but also on

the properties of the trees. This is due to the several short-cuts that

the algorithm uses to avoid recursively checking the complete trees

and to the different properties of the restricted top-down mappings.

Each point in Figure 10 roughly corresponds to a cluster.

Figure 10: RTDM and Chawathe’s algorithm - the bezier ap-

proximation of the curves shows that Chawathe’s algorithm has

quadratic growth

5.3 News Extraction
The second part of our experiments consisted of analyzing the

output of the complete extraction process. We manually compared

the extracted news with the original HTML pages, to check for

their correction and completeness. Table 1 presents the results for

all 35 sites. Our approach was able to extract correctly an average

of 87.71% of the news, while 9.25% were erroneously extracted

and 3.04% were not extracted.

During our experiments, we noticed that the use of restricted top-

down mappings is really suitable for identifying data-rich portions

of Web pages. In the data labeling step, however, it is still difficult

to precisely identify the title of the news. Most of the errors were

due to subtitles and authors names that were misidentified as titles.

Despite this, we achieved very good results with a completely au-

tomatic approach and simple labeling heuristics.

Even though we have used simple labeling heuristics, the reason

for this high level of effectiveness is that, after the extraction of

the data-rich portions of the pages, the size of the set of candidates

text passages for title and body is usually reduced from a range of

hundreds to thousands to a range of two to five candidates.

6. RELATED WORK
One of the reasons why the Web has achieved its current huge

volume of data is the fact that a great and increasing number of

data-rich Web sites have their pages automatically generated from

databases. Taking advantage of this, a number of approaches have

been recently proposed to analyze the structure of the pages of these

Web sites with the purpose of inferring a general data schema for

them and ultimately generating wrappers to extract this data.

The first solution for this problem was proposed by Grumbach

and Mecca [11] assuming the existence of collections of data-rich

pages bearing a similar structure or schema. In [7], an algorithm

is proposed to infer union-free regular expressions that represent

page schemas. For complex schemas with optional attributes, the

algorithm execution can explode and thus it is considered as having

exponential cost [7]. By using several heuristics, Arasu and Garcia-

Molina [1] have recently proposed a polynomial time algorithm for

the problem. Since the approaches proposed in [1] and [7] require

no human intervention, an important problem that they have left

open is how to automatically label the extracted data. This problem

is addressed in [2] but the solution proposed is not general enough.

There are also several works in the literature that address the

problem of schema extraction from collections of XML documents.

The XTRACT system [10] uses MDL, an information theory tech-

nique, to infer concise and accurate schemas from a collection of

XML documents. Min et al. presented a much faster system, with

better results in [15]. Although we do not directly consider the

schema extraction problem in this work, the ne-patterns we gener-

ate resemble schema definitions, and we believe that the techniques

proposed here can also be applied to the schema extraction prob-

lem. Also, the ideas behind the XML schema extraction systems

can be used to improve our work in situations in which the data

509

Site
√ × Not Extracted # pages

A notı́cia Joenville 83.95% 13.58% 2.47% 81

AOL Brasil 87.60% 12.40% 0.00% 121

Agência Estado 94.90% 4.08% 1.02% 98

Correio Brazilense 71.43% 11.90% 16.67% 119

Correio da Bahia 98.15% 1.85% 0.00% 54

DCI 96.55% 0.00% 1.72% 228

Diário de Natal 96.62% 0.00% 2.90% 206

Diário Grande ABC 100.00% 0.00% 0.00% 8

Diário do Maranhão 75.00% 25.00% 0% 48

Diário Popular 100.00% 0.00% 0.00% 85

Diário de Cuiaba 85.26% 12.82% 1.92% 154

Diário do Com. BH 92.31% 3.85% 3.85% 26

Estado de Minas 77.40% 21.47% 1.13% 177

Estado de São Paulo 84.33% 15.21% 0.46% 217

Folha de Pernam. 91.18% 1.47% 7.35% 68

Folha de São Paulo 77.78% 13.33% 8.89% 225

Gazeta Digital 88.17% 10.75% 1.08% 185

Gazeta Mercantil 87.01% 0.65% 12.34% 154

Hoje em Dia 90.91% 9.09% 0.00% 66

IDG Now 93.18% 2.27% 4.55% 44

ITWeb 96.88% 0.00% 3.13% 32

InvestNews 95.47% 0.00% 4.53% 329

Jornal da Tarde SP 90.57% 5.66% 3.77% 159

O Dia RJ 75.86% 22.07% 2.07% 144

O Globo 99.35% 0.65% 0% 307

Tribuna Santos 75.00% 22.58% 2.42% 123

Tribuna da Bahia 81.13% 15.09% 3.77% 53

Tribuna da Imprensa 90.63% 9.38% 0% 32

UOL 74.53% 23.58% 1.89% 106

Valor On Line 91.45% 4.27% 4.27% 117

Verdade On Line 82.61% 13.04% 4.35% 22

Vox News 80.00% 0.00% 20.00% 35

Yahoo 93.64% 0.91% 5.45% 208

Zero Hora 83.22% 16.11% 0.67% 149

Total 87.71% 9.25% 3.04% 4088

Table 1: Results obtained for the news extraction process.

being extracted is ruled by more complex schemas than those of

found in on-line news. Actually, the problem of schema extraction

for Web pages has been proven NP-Complete recently [24].

The automatic classification of Web pages based on their struc-

ture is addressed in [8]. However, this work differs from ours since

in our case the classification is based on the structural properties of

the pages and not on the results of the wrapping process.

The ChangeDetectorTM system [4] uses an algorithm very simi-

lar to ours in its entity-based change detection step. The algorithm,

however, works with hashes of the contents of the subtrees, falling

back to the tree view when any hash comparisons fails. This is

equivalent to our bottom-up shortcut. Furthermore, when aligning

child vertices, it does not take into account the cost of the recursive

operations.

Bing Liu et al. have developed an effective algorithm for mining

data records from Web pages [14]. The algorithm has two steps.

In the first step it identifies the data region of the Web page and in

the second one it extracts the records themselves. The algorithm

works each time in a single page, so it does not compare the page

trees. Although achieving good results, the algorithm only works

with multi-record pages and therefore cannot be applied to on-line

news pages, that are almost exclusively single-record pages.

Compared to the recent work in the literature, the work in this

paper offers an alternative and uniform solution for three important

problems in automatic Web data extraction: structure-based page

classification, extractor generation, and data labeling. The fact that

this solution is based on the well established concept of tree-edit

distance brings the additional advantage of allowing the use of ex-

isting results for studying these problems from a new perspective.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced a new algorithm for calculat-

ing the edit distance between two given trees, which is based on

a restricted form of top-down mapping. This algorithm, which we

call RTDM, improves existing results in the literature [5, 25] for the

problem of automatically analyzing the structure of Web pages.

Furthermore, we show how this algorithm can be applied to solve

three important problems in automatic Web data extraction,

namely: structure-based page classification, extractor generation,

and data labeling. In particular, we have addressed the problem

of automatically finding and fetching news available on Web sites,

and extracting their components. Through experimentation with 35

news Web sites, we have demonstrated that the RTDM algorithm is

highly effective for these tasks. Indeed, the results show an average

of 87.71% correctly extracted news without any human interven-

tion.

The approach provided by the RTDM algorithm is currently be-

ing used as the core of a fully operational Web news clipping sys-

510

tem, called AkwanClipping3, which provides daily news from the

most important Brazilian newspapers to over fifty companies.

As future work, we plan to generalize the proposed approach to

deal with different application domains, especially those in which

the schema of the data on the pages is complex. In fact, it is a

challenge to provide a generic method for automatic Web data ex-

traction [24]. Furthermore, we plan to use the RDTM algorithm to

improve Web search engines by incorporating structural evidences

derived from Web pages in addition to content evidences tradition-

ally used by current search engines.

Acknowledgements

This work is partially supported by project GERINDO (grant

MCT/CNPq/CT-Info 552087/02-5) and by the fourth author’s in-

dividual CNPq grant 304890/02-2.

8. REFERENCES
[1] A. Arasu, H. Garcia-Molina, and S. University. Extracting

structured data from web pages. In Proceedings of the 2003

ACM SIGMOD International Conference on Management of

Data, pages 337–348. ACM Press, 2003.

[2] L. Arllota, V. Crescenzi, G. Mecca, and P. Merialdo.

Automatic annotation of data extraction from large Web

sites. In Proceedings of the International Workshop on the

Web and Databases, pages 7–12, San Diego, USA, 2003.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information

Retrieval. Addison-Wesley, Harlow, England, 1st edition,

1999.

[4] V. Boyapati, K. Chevrier, A. Finkel, N. Glance, T. Pierce,

R. Stockton, and C. Whitmer. ChangedetectorTM : a

site-level monitoring tool for the WWW. In Proceedings of

the 11th International Conference on World Wide Web, pages

570–579. ACM Press, 2002.

[5] S. S. Chawathe. Comparing hierarchical data in external

memory. In Proceedings of the 25th International

Conference on Very Large Data Bases, pages 90–101,

Edinburgh, Scotland, U.K., 1999.

[6] W. Chen. New algorithm for ordered tree-to-tree correction

problem. Journal of Algorithms, 40:135–158, 2001.

[7] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner:

Towards automatic data extraction from large Web sites. In

Proceedings of the 27th International Conference on Very

Large Data Bases, pages 109–118, Rome, Italy, 2001.

[8] V. Crescenzi, G. Mecca, and P. Merialdo. Wrapping-oriented

classification of Web pages. In Proceedings of the 2002 ACM

Symposium on Applied Computing, pages 1108–1112. ACM

Press, 2002.

[9] D. Florescu, A. Levy, and A. Mendelzon. Database

techniques for the world-wide web: a survey. SIGMOD Rec.,

27(3):59–74, 1998.

[10] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and

K. Shim. Xtract: a system for extracting document type

descriptors from xml documents. In Proceedings of the 2000

ACM SIGMOD International Conference on Management of

Data, pages 165–176. ACM Press, 2000.

3For more information see http://www.akwan.com.

[11] S. Grumbach and G. Mecca. In search of the lost schema. In

C. Beeri and P. Buneman, editors, Proceedings of 7th

International Conference on Database Theory, Lecture

Notes in Computer Science, pages 314–331, Jerusalem,

Israel, 1999. Springer.

[12] A. Heydon and M. Najork. Mercator: A scalable, extensible

web crawler. World Wide Web, 2(4):219–229, 1999.

[13] A. Laender, B. Ribeiro-Neto, A. Silva, and J. S. Teixeira. A

brief survey of Web data extraction tools. SIGMOD Record,

31(2):84–93, 2002.

[14] B. Liu, R. Grossman, and Y. Zhai. Mining data records in

web pages. In Proceedings of the 9th ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, pages 601–606. ACM Press, 2003.

[15] J.-K. Min, J.-Y. Ahn, and C.-W. Chung. Efficient extraction

of schemas for xml documents. Information Processing

Letters, 85(1):7–12, 2003.

[16] A. Nierman and H. V. Jagadish. Evaluating structural

similarity in XML documents. In Proceedings of the 5th

International Workshop on the Web and Databases (WebDB

2002), Madison, Wisconsin, USA, June 2002.

[17] S. M. Selkow. The tree-to-tree editing problem. Information

Processing Letters, 6:184–186, Dec. 1977.

[18] K.-C. Tai. The tree-to-tree correction problem. J. ACM,

26(3):422–433, 1979.

[19] G. Valiente. An efficient bottom-up distance between trees.

In Proceedings of the 8th International Symposium on String

Processing and Information Retrieval, pages 212–219,

Santiago, Chile, 2001. IEEE Computer Science Press.

[20] G. Valiente. Tree edit distance and common subtrees.

Research Report LSI-02-20-R, Universitat Politècnica de

Catalunya, Barcelona, Spain, 2002.

[21] J. T.-L. Wang, B. A. Shapiro, D. Shasha, K. Zhang, and

K. M. Currey. An algorithm for finding the largest

approximately common substructures of two trees. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

20(8):889–895, 1998.

[22] J. T. L. Wang and K. Zhang. Finding similar consensus

between trees: an algorithm and a distance hierarchy. Pattern

Recognition, 34:127–137, 2001.

[23] P. Willett. Recent trends in hierarchic document clustering: a

critical review. Information Processing and Management,

24(5):577–597, 1988.

[24] G. Yang, I. V. Ramakrishnan, and M. Kifer. On the

complexity of schema inference from web pages in the

presence of nullable data attributes. In Proceedings of the

12th International Conference on Information and

Knowledge Management, pages 224–231. ACM Press, 2003.

[25] W. Yang. Identifying syntactic differences between two

programs. Softw. Pract. Exper., 21(7):739–755, 1991.

[26] K. Zhang, D. Shasha, and J. T. L. Wang. Approximate tree

matching in the presence of variable length don’t cares. J.

Algorithms, 16(1):33–66, 1994.

[27] K. Zhang, R. Statman, and D. Shasha. On the editing

distance between unordered labeled trees. Information

Processing Letters, 42(3):133–139, 1992.

511

