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ABSTRACT 
 

Recent growth of the geospatial information on the web has made 

it possible to easily access various maps and orthoimagery. By 

integrating these maps and imagery, we can create intelligent 

images that combine the visual appeal and accuracy of imagery 

with the detailed attribution information often contained in 

diverse maps. However, accurately integrating maps and imagery 

from different data sources remains a challenging task. This is 

because spatial data obtained from various data sources may have 

different projections and different accuracy levels. Most of the 

existing algorithms only deal with vector to vector spatial data 

integration or require human intervention to accomplish imagery 

to map conflation. In this paper, we describe an information 

integration approach that utilizes common vector datasets as 

"glue" to automatically conflate imagery with street maps. We 

present efficient techniques to automatically extract road 

intersections from imagery and maps as control points. We also 

describe a specialized point pattern matching algorithm to align 

the two point sets and conflation techniques to align the imagery 

with maps. We show that these automatic conflation techniques 

can automatically and accurately align maps with images of the 

same area. In particular, using the approach described in this 

paper, our system automatically aligns a set of TIGER maps for an 

area in El Segundo, CA to the corresponding orthoimagery with 

an average error of 8.35 meters per pixel. This is a significant 

improvement considering that simply combining the TIGER maps 

with the corresponding imagery based on geographic coordinates 

provided by the sources results in error of 27 meters per pixel. 

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications ― 

Spatial Databases and GIS 

General Terms 
Algorithms, Design 

Keywords 
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1. INTRODUCTION 

There is a wide variety of geospatial data available on the Internet, 

including a number of data sources that provide imagery and maps 

of various regions. The National Map1, ESRI Map Service2, 

MapQuest3, University of Texas Map Library4, Microsoft 

TerraService5, and Space Imaging6 are good examples of map or 

imagery repositories. In addition, a wide variety of maps are 

available from various government agencies, such as property 

survey maps and maps of oil and natural gas fields. Satellite 

imagery and aerial photography have been utilized to enhance real 

estate listings, military intelligence applications, and other 

applications. Road vector data covering all of the United States is 

available from the U.S. Census Bureau7. By integrating these 

spatial datasets, one can support a rich set of queries that could 

not have been answered given any of these datasets in isolation. 

Furthermore, this integration would result in cost savings for 

many applications, such as county, city, and state planning, or 

integration of diverse datasets for emergency response. However, 

accurately integrating these geospatial data from different data 

sources remains a challenging task.  This is because spatial data 

obtained from various data sources may have different projections 

and different accuracy levels. If the geographic projections of 

these datasets are known, then they can be converted to the same 

geographic projections.  However, the geographic projection for a 

wide variety of geospatial data available on the Internet is not 

known.  Consider the integration of imagery and maps. Most 

online imagery (such as satellite imagery and aerial imagery) has 

been orthorectified (called orthoimagery, i.e., this imagery is 

altered from original photos so that it has the geometric properties 

of a map). Moreover, online maps are routinely revised using 
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satellite imagery or aerial photographs these days. However, these 

maps might align to imagery of a particular resolution and 

misalign to imagery that has different resolutions or different 

orthorectification parameters. The fact that many of the online 

map sources do not provide the geo-coordinates of the maps 

makes the integration even more complicated. In previous work, 

we developed an approach to automatically conflating road vector 

data with imagery [7]. In this paper we describe how we address 

the even more challenging problem of automatically conflating 

street maps (i.e., maps showing roads) with imagery. 

Figure 1 shows an example of integrating a street map (geo-

referenced US Census TIGER map with the scale 1:4269 which is 

queried from the TIGER Map Server8) and an image (geo-

referenced USGS DOQ images with 2-meter per pixel resolution 

which is queried from Microsoft TerraService). The map is made 

semi-transparent with the underlying image. We can see that there 

are certain geospatial inconsistencies between the map and 

imagery. In this paper, we describe our approach to automatically 

and accurately aligning orthoimagery with the various online 

street maps to alleviate these inconsistencies. In addition, we can 

take maps that have not been geo-referenced and automatically 

determine the geo-coordinates. By properly aligning imagery with 

maps, we can annotate objects on imagery, such as roads, streets 

and parks, with the maps. Consider the example shown in Figure 

2. The user sees the imagery of unknown area nearby and notices 

a park in the imagery. However, the imagery does not provide 

street names, so the user cannot determine how to reach the park. 

Using the techniques described in this paper, user can easily 

obtain an integrated view of the imagery with the map of the area, 

which would guide the user on how to reach the park. 

The traditional approach to aligning these various geospatial 

products is to use a technique called conflation [21], which 

requires identifying an appropriate set of counterpart features 

(termed control points) on the two data sources to be integrated. 

Other points will be moved according to the correspondence 

between the control point pairs. Various GIS researchers and 

computer vision researchers have shown that the intersection 

points on the road networks provide an accurate set of control 

point pairs [7, 11, 12, 14]. In addition, road networks are 

commonly illustrated on diverse maps. The identification of these 

control points is often performed manually, which is a tedious and 

 

a) TIGER street map b) Satellite image c) Imagery with superimposed map ( the roads on 

imagery are represented as white lines) 

Figure 1: The map-imagery integration without alignment 

a) Orthoimagery with the area of 

interest highlighted 

b) ESRI street map (whose geo-coordinates  

are unknown) 

           c) Imagery with aligned map  

Figure 2: The map-imagery integration with alignment 
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time-consuming process that is made even harder by the fact that 

many of the online sources do not even provide the coordinates of 

the corner points of the maps.  We have developed an approach to 

automatically identify a set of control point pairs by combining 

different sources of information from each of the sources to be 

integrated. In particular, we utilize common vector datasets as 

“glue” to integrate imagery with maps. We first identify feature 

points on imagery by utilizing some information inferred from 

vector dataset, and then we detect the same sort of feature points 

on maps. Finally, we compute the alignment between the two 

point sets. Now that we have a set of control point pairs for the 

map and imagery, we can use the conflation technique described 

in [21] to align the map with the imagery. Our proposed approach 

facilitates the close integration of vector datasets, imagery and 

maps, thus allowing the creation of intelligent images that 

combine the visual appeal and accuracy of imagery with the 

detailed attribution information often contained in diverse maps. 

The remainder of this paper is organized as follows. Section 2 

reviews our previous work on automatically detecting road 

intersection points in imagery. Section 3 illustrates the techniques 

to automatically find road intersection points in street maps. 

Section 4 presents a specialized point pattern matching algorithm 

for finding the mapping between the layout (with relative 

distances) of the intersection points on the imagery and the maps, 

respectively, to generate a set of control point pairs. Section 5 

describes the idea of conflating maps with imagery based on the 

detected control point pairs. Section 6 provides experimental 

results. Section 7 discusses the related work and Section 8 

concludes the paper by discussing our future plans. 

2. PREVIOUS WORK: IDENTIFYING 

INTERSECTIONS ON IMAGERY 

Automatic extraction of road intersection points from imagery as 

feature points is a difficult task due to the complexity that 

characterizes natural scenes [1].  In order to efficiently and 

accurately detect road intersection points on imagery, we utilize 

existing road network vector databases as part of the prior 

knowledge. In general, integrating existing vector data as part of 

the spatial object recognition scheme is an effective approach.  

The vector data represents the existing prior knowledge about the 

data, thus reducing the uncertainty in identifying the spatial 

objects, such as road segments, in imagery.  

In [6, 7], we described several techniques for automatic conflation 

of road vector data with imagery.  The most effective technique 

we found exploits a combination of the knowledge of the road 

network with image processing in a technique that we call 

localized image processing.  With this approach, we first find road 

intersection points from the road vector dataset. For each 

intersection point, we then perform image processing in a 

localized area around the intersection point to find the 

corresponding point in the image. The running time for this 

approach is dramatically lower than traditional image processing 

techniques due to performing image processing on localized areas. 

Furthermore, exploiting the road direction and width information 

improves both the accuracy and efficiency of detecting edges in 

the image.  An issue that arises is that the localized image 

processing may still identify incorrect intersection points, which 

introduces noise into the set of control point pairs. To address this 

issue, we utilized a filtering technique termed Vector-Median 

Filter [7] to eliminate inaccurate control point pairs. Once the 

system has identified an accurate set of control point pairs, we 

utilize rubber-sheeting techniques described in [21] to align the 

vector data with the imagery. With our test sets as described in 

[7], this approach produced an accurate alignment of the vector 

data with the imagery. 

More details about our previous work on vector-imagery 

conflation is provided in [7]. As a result the conflated intersection 

points on the road network can be aligned with the intersection 

points on the imagery. We can then use the conflated intersection 

points as intersection points on the imagery. Figure 3 shows an 

example illustrating the detected intersection points on an image, 

before and after conflating the image with a road network. 

3. IDENTIFYING INTERSECTION 

POINTS ON STREET MAPS 

Since there are few online street maps with known geo-

coordinates, we cannot apply the same localized image 

processing, described in Section 2, to find intersection points on 

maps. This is because we cannot find the corresponding vector 

data for the map, since the map geo-coordinates are unknown. 

Hence, for those maps whose geo-coordinates are unknown in 

advance, we utilize automatic map processing and pattern 

recognition algorithms described below to identify the intersection 

points on maps. 

Ideally, intersection points on street maps could be extracted by 

simply detecting road lines. However, due to the varying thickness 

 

a) Imagery with road network, before conflation b) Detected intersection points on imagery, after conflation

Figure 3: Intersection points automatically detected on imagery  



of lines on diverse maps, accurate extraction of intersection points 

from maps is difficult [19, 23]. In addition, there is often noisy 

information, such as symbols and alphanumeric characters on the 

map, which make it even harder to accurately identify the 

intersection points. To overcome these problems, we adapted the 

automatic map processing algorithm described in [19] to 

skeletonize the maps for extracting intersection points. The basic 

idea is to detect intersection points only on the map that has been 

pre-processed by line thinning algorithms and noise-removal 

procedures. In particular, the process can be divided into the 

following subtasks: (1) isolate map data by a threshold, (2) 

decrease line width by thinning algorithms, such as [3], (3) 

recognize intersection points by crossing number (CN), the 

number of lines emanating from an intersection point [3], (4) 

remove misidentified intersections caused by noisy information 

(such as symbols and text). The details of the line intersections 

detection algorithm are discussed in [19]. However, this algorithm 

assumes that the roads are illustrated as multiple single-lined 

segments on the maps. Therefore, it is not appropriate for the 

maps where roads are depicted as double lines. In particular, from 

our experiments with diverse single line online street maps, this 

algorithm achieved 65% to 95% precision in identifying road 

intersections, while it worked poorly (with 20% to 30% precision) 

for double line street maps.  

To alleviate this problem, instead of using “crossing 

number(CN)” (for an intersection, its CN must be greater than 

two) to detect intersections, we utilize feature-detection functions 

implemented in OpenCV9 to detect promising points, such as 

corners and distinct points. Then, a verification process is 

conducted to check whether there is any linear structure around 

each detected corner point. If so, the detected point will be 

characterized as an intersection point. We found that our revised 

approach can achieve 76% precision (on average) on our tested 

street maps. 

Figure 4 shows an example illustrating the detected intersection 

points on a map queried from MapQuest. Although our algorithm 

can significantly reduce the rate of misidentified intersection 

points on the maps, it is still possible that both noisy points are 

detected as intersection points and some intersections be missed. 

For example, the point near the lower right corner (the “E” in “E 

Grand Ave”) was mistaken for a road. However, our point 

matching algorithm (described next) can tolerate the existence of 

misidentified intersection points. 

4. POINT PATTERN MATCHING  

So far we have identified a set of intersections on both the street 

map and the imagery. Figure 5 shows an example of the two point 

sets on a map and an image, respectively. The remaining problem 

is to find the mapping between these points in order to generate a 

set of control point pairs. The problem of point pattern matching 

has at its core a geometric point sets matching problem. The basic 

idea is to find the transformation T between the layout (with 

relative distances) of the intersection point set M on  the map and 

the intersection point set S on the imagery. The key computation 

of matching the two sets of points is calculating a proper 

transformation T, which is a 2D rigid motion (rotation and 

translation) with scaling. Because the majority of map and 

imagery are oriented such that north is up, we only compute the 

a) MapQuest map b) Detected intersection points 

Figure 4: Intersection points detected on a map 
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9 http://sourceforge.net/projects/opencvlibrary 

 

a) A map with some detected intersections b) An image (with detected intersections) covers left map 

Figure 5: Intersection points detected on a map and an image 



translation transformation with scaling. Without loss of generality, 

we consider how to compute the transformation where we map 

from a fraction α of the points on maps to the points on imagery. 

The reason why only a fraction α of the points on the maps is 

considered is that there are misidentified points arising from the 

processes of image recognition (i.e., identifying intersection 

points on maps). Moreover, there may be some missing 

intersection points on the imagery as well. 

The transformation T brings at least a fraction α of the points of M 

(on the map) into a subset of S (on the imagery). Symbolically, 

this implies:  

∃ T and M’ ⊆ M , such that  T(M’) ⊆ S , where | M’ | ≥  α| M | and 

T(M’) denotes the set of points that results from applying T to the 

points of M’. Or equivalently,  

for a 2D point (x, y) in the point set M’ ⊆ M, ∃ T in the matrix 

form 
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| M’ | ≥  α| M | and the 2D point (longitude, latitude) belongs to 

the intersection point set S on the imagery.  With this setting, we 

do not expect point coordinates to match exactly because of finite-

precision computation or small errors in the datasets. Therefore, 

when checking whether a 2D point p belongs to the point set S, 

we declare that p ∈ S, if there exists a point in S that is within 

Euclidean distance δ of p for a small fixed positive constant δ, 

which controls the degree of inaccuracy. The minimum δ such 

that there is a match of M’ into S is called Hausdorff distance. 

Different computations of the minimum Hausdorff distance have 

been studied in great depth in the computational geometry 

community [8]. We do not seek to minimize δ  but rather adopt an 

acceptable threshold for δ. The threshold is small compared to the 

inter-point distances in S. In fact, this sort of problem was 

categorized as “Nearly Exact” point matching problem in [5].  

Given the parameters α and δ, to obtain a proper transformation T, 

we need to compute the values of the four unknown parameters 

Sx, Sy, Tx and Ty. This implies that at least four different equations 

are required. A straight forward (brute-force) method is first 

choosing a point pair (x1, y1) and (x2, y2) from M, Then, for every 

pair of distinct points (lon1, lat1) and (lon2, lat2) in S, the 

transformation T’ that map the point pair on M to the point pair on 

S is computed by solving the following four equations: 

Sx* x1  + Tx = lon1   Sy* y1  + Ty = lat1  

Sx* x2  + Tx = lon2   Sy* y2  + Ty = lat2 

Each transformation T’ thus generated is applied to the entire 

points in M to check whether there are more than α|M| points that 

can be aligned with some points on S within the threshold δ. The 

above-mentioned process is repeated for each possible point pair 

from M, which implies that it could require examining O(|M|2) 

pairs in the worst case. Since for each such pair, we spend O(|S|2 

|M| log|S|) time searching for a match, this method has a worst 

case running time of O(|M|3 |S|2 log|S|). The advantage of this 

approach is that we can find a mapping (if the mapping exists) 

with a proper threshold δ, even in the presence of very noisy data. 

However, it suffers from high computation time. One way to 

improve the efficiency of the algorithm is to utilize randomization 

in choosing the pair of points from M as proposed in [17], thus 

achieving the running time of  O(|S|2 |M| log|S|). However, their 

approach is not appropriate for our datasets because the extracted 

intersection points from maps could include a number of 

misidentified intersection points.  

Assuming that map-scales are provided, we improve the (brute-

force) point matching algorithm by exploiting information on 

direction and relative distances available from the vector sets and 

maps.  The information on direction and distance is used as prior 

knowledge to prune the search space of the possible mapping 

between the two datasets. More precisely, given a point pair (x1, 

y1) and (x2, y2) on M, we need  to only consider pairs (lon1, lat1) 

and (lon2, lat2) in S, such that the ground distance between (x1, y1) 

and (x2, y2) is close to the ground distance between (lon1, lat1) and 

(lon2, lat2). The ground distance between (x1, y1) and (x2, y2) is 

calculated by multiplying their Euclidean distance by map scale. 

Furthermore, the orientations of  (x1, y1) and (x2, y2) should also 

be close to the orientations of  (lon1, lat1) and (lon2, lat2). This 

enhanced algorithm runs in O(|M|3 |S|1.3 log|S|). 

We can further improve the performance by transforming the 

point patterns on maps and imagery to a 2D Euclidean space, 

where the distance measurement is ground distance. The real 

world distance is used between points in the transformed space. 

Therefore, we only consider translation transformation without 

scaling in such space. In particular, the process (as shown in 

Figure 6) can be divided into the following subtasks: (1) Consider 

the points on the maps: choose one point P as origin (0,0), then 

determine the coordinates of other points Qi (Xi, Yi) as follows. Xi 

is the ground distance between P and Qi in east-west orientation, 

while Yi is the ground distance between P and Qi in north-south 

orientation. Note Xi is negative, if Qi is west to P. Yi is negative, if 

Qi  is south to P. (2) Repeat the similar transformation to the 

points on imagery. (3) Compare the two point patterns from these 

two transformed spaces: we now only consider the translation 

transformation T between the two transformed point patterns. The 

revised algorithm runs in O(|M|2 |S| log|S|) and works well in our 

experiments (see Section 6) even in the presence of very noisy 

data.  

5. IMAGE AND MAP CONFLATION  

Now that we have a set of control point pairs for the map and 

imagery, we can deform one of the datasets (the source image) to 

align the other (the target image) utilizing these identified control 

point pairs. Without loss of the generality, we assume that the 

map is the source image, while the orthoimage is the target image.  

To achieve overall alignment of an image and a map, the system 

must locally adjust the map to conform to the image.  It is 

reasonable to align the two datasets based on local adjustments, 

because small changes in one area should not affect geometry at 

long distance.  To accomplish local adjustments, the system 

partitions the domain space into small pieces. Then, we apply 

local adjustments on each single piece.  Triangulation is an 

effective strategy to partition the domain space to define local 

adjustments. There are different triangulations for the control 



points.  One particular triangulation, the Delaunay triangulation, 

is especially suited for the conflation purpose [21].  A Delaunay 

triangulation is a triangulation of the point set with the property 

that no point falls in the interior of the circumcircle of any triangle 

(the circle passing through the three triangle vertices).  The 

Delaunay triangulation maximizes the minimum angle of all the 

angles in the triangulation, thus avoiding triangles with extremely 

small angles.  We perform the Delaunay triangulation with the set 

of control points on the map, and make a set of equivalent 

triangles with corresponding control points on the imagery. The 

details of the triangulation algorithms can be found in [4, 16]. 

Imagine stretching a map as if it was made of rubber.  We deform 

the map algorithmically, forcing registration of control points on 

the map with their corresponding points on the imagery.  This 

technique is called “Rubber sheeting” [25].  There are two steps 

for rubber sheeting. First, the transformation coefficients to map 

each Delaunay triangle on the map onto its corresponding triangle 

on the imagery are calculated. Second, for each pixel in each 

triangle on the imagery, we replace it semi-transparently with the 

corresponding pixel on the map by using the computed 

transformation coefficients. 

Figure 7 shows an example of Delaunay triangulation, and the 

arrow illustrates that the pixels of the triangle on the imagery 

would be (semi-transparently) overlaid by the corresponding 

pixels on the map (i.e., rubber-sheeting). In practice, if the 

conflation area (i.e., the convex hull formed by control points ) of 

the source image is much larger than that of the target image, the 

rubber-sheeting results will be distorted because the sampling 

frequency is insufficient. We solve this problem by rescaling the 

conflation area on the map and imagery to identical sizes before 

applying triangulation and rubber-sheeting. 

Figure 8 shows the overall approach for conflating imagery and 

maps as described in Sections 2 through 5. First, we automatically 

conflate the road vector data with the orthoimagery to find the 

intersections in the image. Next, we find the road intersection 

points on the street map. Then, we utilize a specialized point 

pattern matching algorithm to align the two point sets and 

conflation techniques to align the imagery with maps. 

6. EXPERIMENTS 

We utilized a set of online street maps and imagery to evaluate 

our approach. The purpose of the integration experiment was to 

evaluate the utility of our algorithms in integrating real world 

data.  We are interested in measuring the accuracy of the 

integration of maps and imagery using our techniques.  To that 

end, we performed several experiments to validate the hypothesis 

that using our techniques we can automatically and accurately 

align maps and imagery. 
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Figure 6: Enhanced point pattern matching process 

 

Figure 7: Delaunay triangulation on imagery and a map, using identified intersections as control points 



6.1 Experimental Setup 
 

Table 1 summarizes the datasets and test sites used for our 

experiments. For each type of map, the threshold δ, a fixed 

constant used in point pattern matching routine, was determined 

by trying a few values and examining the results. We plan to 

determine the threshold by an iterative process in the future, 

which will dynamically change the threshold and try to find an 

acceptable threshold that can carry most of points on one dataset 

to the points on the other dataset. 

The experiment platform is Pentium III 700MHz processor with 

256MB memory on Windows 2000 Professional (with .NET 

framework installed). We conducted the experiments as follows. 

We first obtained online orthoimages covering the experimental 

area and identified road intersection points on the image by 

utilizing some information inferred from vector dataset (as 

described in Section 2 and the performance evaluation was 

illustrated in [7]). Then, we randomly downloaded various street 

maps (with diverse sizes and map-scales) within this area from the 

Internet and extracted an intersection point set for each map. 

Finally, we computed the alignments between the point set on 

each map with the point set on the image and acquired the results 

as described in the following sub-section. 

6.2 Experimental Result 
 

We identified 281 intersection points on the image of test data set 

1 (El Segundo, CA) and 240 intersections on the image of test 

data set 2 (St. Louis, MO). Because the tested maps are in diverse 

sizes and scales, the number of points detected on each map is 

different. On average, there are about 60 points on each map and 

we achieved 76%  precision (on average) for identifying road 

intersections on different maps. Since the running time of our 

techniques is mainly dominated by the point matching routine, we 

used the running time of the point matching routine as the overall 

execution time (the query time for retrieving online images or 

maps was not included). In addition, the running time of the point 

matching algorithm mainly depends on the number of road 

intersections on the maps, not on the maps sizes or map scales. 
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Figure 8: Overall approach to align orthoimagery and street maps 

Table 1: Tested datasets used in experiment 
 

 Test data set 1 ( El Segundo, CA) Test data set 2 (St. Louis, MO) 

Imagery Geo-referenced USGS DOQ ortho-

images with multiple resolutions 

Geo-referenced USGS high resolution color ortho-images 

with 0.3m/pixel resolution 

Maps  

(with various sizes/scales) 

15 MapQuest maps, 15 TIGER maps, 5 

ESRI maps 

7 ESRI maps, 6 MapQuest maps, 5 Yahoo maps10, 5 

TIGER maps, 4 Missouri census geographic base maps11 

Vector data U.S. Census TIGER/Lines12 NAVTEQ NAVSTREETS13 

Area covered Latitude:33.9164 to 33.9301 

Longitude:-118.4351 to -118.3702 

Width: 5.2km;      Height: 1.6km 

Latitude: 38.5808 to 38.5951 

Longitude: -90.4222 to -90.3883 

Width: 3km;      Height: 2km 

________________________________________________ 

10 http://maps.yahoo.com/ 

11 http://mcdc-maps.missouri.edu/ (population density maps with streets) 

12 http://www.census.gov/geo/www/tiger/ 

13 http://www.navteq.com/  



We found that the average execution time for conflating a map 

with 60 detected intersection points (possibly with some 

misidentified points) using our geospatial point matching routine 

is about two minutes. 

For each category of maps, the percentage of the tested maps 

whose point pattern aligned with the corresponding point pattern 

on the imagery is shown in Table 2. On average, 87.1% of our 

tested maps accurately aligned their intersection point set with the 

corresponding point pattern on the image. 12.9% of the maps mis-

aligned with the image. We noticed that this is because the roads 

on some of these mis-aligned maps are in grid shape with similar 

block distances and some maps cover a smaller area compared 

with other maps. For example, the maps available on MapQuest 

are in fixed dimensions. The covered area becomes smaller 

whenever one zooms in the area of his interest. Hence, there is no 

unique pattern in the points of such large-scale, small maps. We 

can achieve higher accuracy by focusing on larger maps where 

there is more likely to be a unique pattern of points. 

We generated an accurate control point pair set for each map. 

Then, we used these control points to conflate the maps with 

imagery. To demonstrate the accuracy of our conflation 

techniques, some results are shown in Figure 9 to 12. As shown in 

these aligned images, we can annotate spatial objects (e.g., streets) 

on imagery with the attribution information contained in maps. 

In addition, we also conducted a quantitative analysis to our 

conflation results. Towards that end, we randomly selected a set 

of TIGER maps and imagery from both our test data sets. These 

selected maps and imagery cover 14% of our tested area in El 

Segundo, CA and 50% of our tested area in St. Louis, MO, 

respectively. Furthermore, after applying our point pattern 

matching routine against the tested TIGER maps and imagery, we 

accurately obtained aligned control point sets. The reason why we 

chose TIGER maps is that the geographic coordinates are 

provided by the data source. Therefore, we can simply combine 

the TIGER maps with the corresponding imagery based on 

geographic coordinates provided. The integration results were 

then compared with the conflation results by utilizing our 

approach. Our evaluation used all the road intersections in the 

maps and measured the displacement of the road intersections to 

the corresponding road intersections in the imagery. The mean of 

the point displacements are used to evaluate the accuracy of the 

algorithms.  

The experimental results are listed in Table 3 and the 

displacement distributions of the intersections on maps are shown 

Table 2: Percentage of the tested maps whose point pattern aligns with the corresponding point pattern on the imagery 
 

Test data set 1 (El Segundo, CA) Test data set 2 (St. Louis, MO)  

MapQuest 

map 

TIGER 

map 

ESRI 

map 

MapQuest 

map 

TIGER 

map 

ESRI 

map 

Yahoo 

map 

MO census 

geographic base map 

Percentage 93.3% 86.7% 80% 83.3% 80% 71.4% 100% 100% 

 

 

Figure 9: MapQuest map to imagery conflation (semi-

transparent map) for El Segundo, CA 

Figure 10: TIGER map to imagery conflation ( semi-

transparent image) for El Segundo, CA 

  

Figure 11: ESRI map to high resolution imagery 

conflation ( semi-transparent map) for St. Louis, MO 

Figure 12: MapQuest map to high resolution imagery 

conflation ( semi-transparent map) for St. Louis, MO 



in Figure 13.  The X-axis of this Figure depicts the displacement 

between intersection on the maps and the equivalent intersection 

on the image.  The displacement values are grouped every 5 

meters.  The Y-axis shows the percentage of intersections that are 

within the displacement range represented by the X-axis. For 

example, as shown in Figure 13(a), when utilizing our imagery-

map conflation approach to the first test data set, 84% of the road 

intersections on our conflated maps have less than 5 meters 

displacement from the corresponding imagery points.  When 

simply combining original TIGER-maps with imagery, we 

obtained 1.3% points within 5 meters displacement. Furthermore, 

original TIGER-maps have about 93% points with more than 10 

meters displacement, while our conflated maps only have 2.8% 

points with larger than 10 meters displacement. In sum, as shown 

in Table 3, for the first test data set, we aligned the TIGER-maps 

with an average error of 8.35 meters, which is three times better 

than the original TIGER-maps. For the second data set, we 

improved the error 2.2 times over the original TIGER-maps on 

high resolution imagery. 

7. RELATED WORK 

Geospatial data fusion has been one of central issues in GIS [24]. 

Geospatial data fusion requires that the various datasets be 

integrated (without any spatial inconsistencies), resulting in a 

single composite dataset from the integrated elements. Towards 

automatic geospatial data fusion, a vital step is automated 

geospatial data conflation to align multiple geospatial datasets. 

There have been a number of efforts to automatically accomplish 

vector to vector conflation [9, 21, 26] and vector to imagery (or 

map) conflation [2, 11, 15]. Our work significantly differs from 

the previous work in terms of our approach to conflate vector data 

with imagery. These differences are described in detail in [7]. 

Furthermore, there has been relatively little work on automatically 

conflating maps with imagery. In [22], the authors describe how 

an edge detection process can be used to determine a set of 

features that can be used to conflate two image data sets. 

However, their work requires that the coordinates of both image 

data sets be known in advance.  Our work does not assume that 

coordinates for the maps are known in advance, although we do 

assume that we know the general region. Dare and Dowman [10] 

proposed a feature-based registration technique to integrate two 

images. However, their approach requires users to manually select 

some initial control points. Some commercial GIS products, such 

as Able R2V14 and Intergraph I/RASC15 provide the functionality 

of conflating imagery and maps (i.e., raster to raster registration) 

using different types of transformation methods. However, these 

products do not provide automatic conflation, so users need to 

manually pick control points for conflation. 

Our automatic map to imagery conflation approach utilizes a 

specialized point pattern matching algorithm to find the 

corresponding control point pairs on both datasets. The geometric 

point set matching in two or higher dimensions is a well-studied 

family of problems with application to different areas such as 

computer vision, biology, and astronomy [8, 17]. Furthermore, the 

space partition and deformation techniques (e.g., triangulation and 

rubber-sheeting) are also used for image warping [13, 20]. 

8. CONCLUSION AND FUTURE WORK 

Given the huge amount of geospatial data now available, our 

ultimate goal is to be able to automatically integrate this data 

using the limited information available about each of the data 

sources. The main contribution of this paper is the design and 

implementation of a novel data fusion approach to automatically 

conflate street maps with orthoimagery. We use common vector 

data as “glue” to integrate imagery with maps. In particular, our 

approach utilizes the road intersections automatically identified 

on imagery and maps (whose geo-coordinates are unknown in 

Table 3: Comparison of the integration accuracy of conflated maps with the original maps 
 

Dataset Original TIGER-maps Our conflated maps 

Mean point displacement (meters) for test data set 1 27 8.35 

Mean point displacement (meters) for test data set 2 24 10.9 
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Figure 13: The displacement distributions of 

road intersections 

____________________________________________ 

14 http://www.ablesw.com/r2v/ 

15. http://imgs.intergraph.com/irasc/ 



advance), and applies a specialized point matching algorithm to 

compute the alignment between the two point sets. Experimental 

results on the city of El Segundo, CA and the county of St. Louis, 

MO demonstrate that our approach leads to remarkably accurate 

alignments of maps and imagery. The aligned map and imagery 

can then be used to make inferences that could not have been 

made from either the map or the imagery individually. 

We intend to extend our approach in several ways. First, we plan 

to further improve our geospatial point pattern matching, since we 

have noticed that there is a natural similarity between point 

pattern matching and string pattern matching, which is the 

problem of finding a match between a given pattern string and a 

test string. The main issue is how to efficiently convert the 2D 

geospatial points to 1D points without the impact of noisy points 

(e.g., using Hilbert curve [18]). We also plan to enhance our 

intersection detection techniques used on maps. We intend to use 

OCR-related techniques to extract textual information from the 

maps in order to reduce the impact of these alphanumeric 

characters. In addition, these pre-extracted textual information 

(e.g., road names) can be used to label the detected intersections. 

Therefore, we can even further prune the search space of possible 

point pattern matchings by using these labeled intersections. An 

interesting direction with respect to integrating maps is to be able 

to take arbitrary maps with unknown geo-coordinates and 

determine their location anywhere within a city, state, country, or 

even the world. We already have road vector data covering most 

of the world, so the real challenge is developing a hierarchical 

approach to the point matching to make such a search tractable. 
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