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Automatically Charting Symptoms
From Patient-Physician Conversations
Using Machine Learning
Automating clerical aspects of medical record keeping through
speech recognition during a patient’s visit1 could allow phy-
sicians to dedicate more time directly with patients. We con-
sidered the feasibility of using machine learning to automati-
cally populate a review of systems (ROS) of all symptoms
discussed in an encounter.

Methods | We used 90 000 human-transcribed, deidentified
medicalencountersdescribedpreviously.2 Werandomlyselected
2547 from primary care and selected medical subspecialties to
undergo labeling of 185 symptoms by scribes. The rest were used
for unsupervised training of our model, a recurrent neural
network3,4 that has been commonly used for language under-
standing. We reported model details previously.5

Because some mentions of symptoms were irrelevant to
the ROS (eg, a physician mentioning “nausea” as a possible ad-
verse effect), scribes assigned each symptom mention a rel-
evance to the ROS, defined as being directly related to a pa-
tient's experience. Scribes also indicated if the symptom was
experienced or not. A total of 2547 labeled transcripts were ran-
domly split into training (2091 [80%]) and test (456 [20%]) sets.

Fromthetestset,weselected800snippetscontainingatleast
1of16commonsymptomsthatwouldbeincludedintheROS,and
asked 2 scribes to independently assess how likely they would in-
clude the initially labeled symptom in the ROS. When both said
“extremelylikely”wedefinedthisasa“clearlymentioned”symp-
tom. All other symptom mentions were considered “unclear.”

The input to the machine learning model was a sliding win-
dow of 5 conversation turns (snippets), and its output was each
symptommentioned,itsrelevance,andifthepatientexperienced

it. We assessed the sensitivity and positive-predictive value,
across the entire test set. We additionally calculated the sensi-
tivity of identifying the symptom and the accuracy of correct
documentation, in clearly vs unclearly mentioned symptoms.
TheFigureoutlinesthestudydesign.Thestudywasexemptfrom
institutional review board approval because of the retrospective
deidentified nature of the data set and the snippets presented
in this manuscript are synthetic snippets modeled after real spo-
ken language patterns, but are not from the original dataset and
contain no data derived from actual patients.

Results | In the test set, there were 5970 symptom mentions.
Of these 5970, 4730 (79.3%) were relevant to the ROS and 3510
(74.2%) were experienced.

Across the full test set, the sensitivity of the model to iden-
tify symptoms was 67.7% (5172/7637) and the positive predic-
tive value of a predicted symptom was 80.6% (5172/6417). We
show examples of snippets and model predictions in the Table.

From human review of the 800 snippets, slightly less than
half of symptom mentions were clear (387/800 [48.4%]), with
fair agreement between raters on the likelihood to include a
symptom as initially labeled in the ROS (κ = 0.32, P < .001). For
clearly mentioned symptoms the sensitivity of the model was
92.2% (357/387). For unclear ones, it was 67.8% (280/413).

The model would accurately document—meaning cor-
rect identification of a symptom, correct classification of rel-
evance to the note, and assignment of experienced or not—in
87.9% (340/387) of symptoms mentioned clearly and 60.0%
(248/413) in ones mentioned unclearly.

Discussion | Previous discussions of autocharting take for granted
that the same technologies that work on our smartphones will
work in clinical practice. By going through the process of adapt-
ing such technology to a simple ROS autocharting task, we re-
port a key challenge not previously considered: a substantial pro-
portion of symptoms are mentioned vaguely, such that even

Figure. Study Design

Remaining transcripts used for
unsupervised training of model

90 000 Unlabeled transcripts

2547 Selected from primary care and
medical specialities and were
then labeled by a scribe 

2091 Transcripts used to train model 456 Transcripts used to test model

Metrics for full test set 
Sliding windows of 5 turns (snippet)
of a conversation were generated.
Those were the inputs to the model.

800 Snippets containing common
symptoms reviewed by 2 scribes
for clarity 

• Prevalence of clearly mentioned
 symptoms
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Description of how data were used to construct the model, how subsets were
labeled, and where metrics were calculated.
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human scribes do not agree how to document them. Encour-
agingly, the model performed well on clearly mentioned symp-
toms, but its performance dropped significantly on unclearly
mentioned ones. Solving this problem will require precise,
though not necessarily jargon heavy, communication. Further
research will be needed to assist clinicians with more meaning-
ful tasks such as documenting the history of present illness.
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Table. Examples of Predictions on Various Snippets

Example Snippet Conversation Label Prediction
Colloquial references to
symptoms were correctly
handled by the model.

PT: Yeah. Abdominal pain
(experienced)

Abdominal pain (experienced)

DR: Anything else?

PT: [I have pain in my belly] or

[I have stomach-aches] or

[My stomach has been hurting].

DR: When?

PT: After I eat.

The model can identify
when symptoms are not
about the patient's
experience (ie, irrelevant).

DR: That must have been really scary for you and your son. Shortness of breath (not
about patient); hives (not
about patient)

Shortness of breath (not about
patient); hives (not about patient)PT: Yeah, what are the normal signs of an allergic reaction?

DR: Some people have a hard time breathing and
get hives all over.
PT: What should I do if it happens again to my son?

DR: Does he have an injector?

The model can detect
descriptions of symptoms
that are clearly explained
but not explicitly mentioned.
This is a complex
natural-language
understanding task.

DR: Any problems with your urination? Frequent urination
(experienced); urinary
incontinence (not
experienced)

Frequent urination (experienced);
urinary incontinence (not
experienced)PT: I feel like I need to go all the time.

DR: Any accidents?

PT: No, I always make it on time.

DR: Oh, okay.

Some normal physiological
experiences can sound like
symptoms, but it is unclear
if a clinician would even
document this as abnormal,
although the scribe and
model both identified it.

DR: What happens after you wake up? Palpitations (experienced) Palpitations (experienced)

PT: I get up to turn off the alarm and my heart rate
jumps up.
DR: You feel your heart racing?

PT: Yeah, then it goes back to normal in a few seconds.

DR: Okay.

The model identified fever
and cough correctly.
Although clear to a human,
“decreased appetite” is not
identified by the model. We
note that it is mentioned
only implicitly (the patient
could mean anorexia or
discomfort with
swallowing).

PT: It has been a hard few days. Fever (experienced); cough
(experienced); sore throat
(experienced); decreased
appetite (experienced)

Fever (experienced); cough
(experienced); sore throat
(experienced)DR: Tell me what has been going on.

PT: Two days ago I noticed I was running a fever and
I also started having this bad cough. My throat also
started hurting and I didn't feel like eating anything.
I was worried I was getting the flu, so I didn't go
to work and came here instead.
DR: Sorry to hear that.

PT: What should I do?

The model incorrectly
identified the patient as
reporting depression, which
is implicitly negated.

DR: It is not uncommon to feel different after
starting steroids.

Anxiety (experienced);
depression (not
experienced)

Anxiety (experienced); depression
(experienced)

PT: Oh, I didn't know that.

DR: So you think you are getting depressed after
starting it?
PT: I think I am feeling more anxious than
feeling depressed.
DR: Go on.

Abbreviations: DR, physician; PT, patient.
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Characteristics of Digital Health Studies
Registered in ClinicalTrials.gov
Digital health is the application of software or hardware, often
using mobile smartphone or sensor technologies to improve
patient or population health and health care delivery.1 In contrast
to drugs and traditional medical devices, which have strict

regulatoryguidelinesonsafety
and efficacy, the clinical evi-
dence generation for digital
health tools may be motivated

by other factors, including adoption, utilization, and value,
that may influence study design and quality. The landscape of
clinical evidence underlying digital health interventions has not
been well characterized.2,3 We sought to evaluate the character-
istics of digital health studies registered in ClinicalTrials.gov.

Methods | Weperformedacross-sectionalanalysisofdigitalhealth
studies in ClinicalTrials.gov.4,5 To identify studies evaluating
mobile-, web-, and electronic-based tools as well as digital medi-

cal devices, we searched ClinicalTrials.gov on January 22, 2017,
using the Medical Subject Heading concepts (mobile health,
mHealth, ehealth, telehealth, and telemedicine) and commonly
used lay terms (digital health, consumer health, mobile applica-
tion, and wireless technology). Variables were exported as struc-
tured fields when downloaded from ClinicalTrials.gov.6 A single
reviewer (C.E.C.) verified studies for inclusion, removed dupli-
cates, and assigned each study to 1 of 13 clinical areas determined
by iterative qualitative clustering against commonly accepted
medicine domains. Descriptive statistics were calculated for key
study characteristics, with additional stratification by study type
(interventional vs observational, randomization status). We used
the χ2 test to compare proportions, and P < .05 was considered
to be statistically significant.

Table 1. Digital Health Studies Registered in ClinicalTrials.gov

Study Type No. (%) of Studies
All (N = 1783)

Interventional 1570 (88.1)

Observational 213 (11.9)

Study allocation (n = 1776)

Randomized 1257 (70.8)

Nonrandomized 519 (29.2)

Recruitment statusa

Not yet recruiting 218 (12.2)

Recruiting or enrolling 535 (30.0)

Active, not recruiting 176 (9.9)

Completed 692 (38.9)

Withdrawn or terminated 56 (3.1)

Unknown 103 (5.8)

Interventional (n = 1570)

Intervention model (n = 1563)

Parallel assignment 1147 (73.4)

Crossover assignment 88 (5.6)

Factorial assignment 43 (2.8)

Single group assignment 282 (18.0)

Masking (n = 1561)

Double-blind 107 (6.9)

Single-blinda 417 (26.7)

Open-label or no masking 1031 (66.0)

Observational (n = 213)

Observational model (n = 180)

Case-control 26 (14.4)

Case-only 39 (21.7)

Cohort 100 (55.6)

Other 15 (8.3)

Time perspective (n = 199)

Prospective 157 (78.9)

Retrospective 19 (9.5)

Cross-sectional 21 (10.5)

Completed, Suspended, Withdrawn, Terminated (n = 751)

Study results

Available 85 (11.3)

Not available 666 (88.7)

a Randomization status unknown for 7 studies.
b Patient, principal investigator, or assessor.
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