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ABSTRACT

Biomedical texts can be typically represented by four rhetorical
categories: Introduction, Methods, Results and Discussion (IMRAD).
Classifying sentences into these categories can benefit many other
text-mining tasks. Although many studies have applied different
approaches for automatically classifying sentences in MEDLINE
abstracts into the IMRAD categories, few have explored the
classification of sentences that appear in full-text biomedical articles.
We first evaluated whether sentences in full-text biomedical articles
could be reliably annotated into the IMRAD format and then explored
different approaches for automatically classifying these sentences
into the IMRAD categories. Our results show an overall annotation
agreement of 82.14% with a Kappa score of 0.756. The best
classification system is a multinomial naive Bayes classifier trained
on manually annotated data that achieved 91.95% accuracy and
an average F-score of 91.55%, which is significantly higher than
baseline systems. A web version of this system is available online
at—http://wood.ims.uwm.edu/full_text_classifier/.

Contact: hongyu@uwm.edu

1 INTRODUCTION

Previous studies have concluded that biomedical texts typically fall
into the rhetorical categories of Introduction, Methods, Results and
Discussion (IMRAD) [e.g. (Day, 1998; Gabbay and Sutcliffe, 2004;
Salanger-Meyer, 1990; Sollaci and Pereira, 2004; Swales, 1990)].
Sollaci and Pereira (2004) concluded that IMRAD has been the only
structure adopted by scientific papers since the 1980s.

Although scientific articles are indeed structured under the
IMRAD categories at the discourse level, sentences that appear
under an IMRAD subheading do not necessarily conform to the
expectations of the same IMRAD category. For example, the
following is a paragraph from the Results section of a full-text article
(Wang et al., 2003) in which sentences were manually classified
into IMRAD categories (italic represents introduction, underscore
represents methods, bold represents results and italic-underscore
represents discussion).

PECAM-1 plays an important role in endothelial cell-cell
and cell-matrix interactions, which are essential during
vasculogenesis and/or angiogenesis (17,22). Here, we examined
expression of PECAM-1 mRNA in vascular beds of various

*To whom correspondence should be addressed.

human tissues and compared it with expression of PECAM-1
in human endothelial and hematopoietic cells. A short exposure
of the blot probed with GAPDH is shown, because
poly(A)+ RNA from the cell lines gives a strong signal
within several hours compared with the total RNA from
human tissue. Therefore, total RNA from various tissues
required a much longer exposure to reveal GAPDH mRNA.
Human tissue and cell lines expressed multiple RNA bands for
PECAM-1, which may represent alternatively spliced PECAM-1

isoforms, the identity of which required further analysis.

In this study we report our efforts on annotating sentences into
the IMRAD categories and computationally classifying sentences
into these categories. The motivation for our work is that most text
mining systems use sentences as independent units for information
extraction [e.g. (Friedman et al., 2001)], summarization [e.g. (Yu
et al., 2009)] and question answering [e.g. (Yu et al., 2007)],
hence, sentence-level IMRAD classification may benefit such text-
mining applications. For example, information extraction tools (e.g.
extracting protein—protein interactions) may target evidence-rich
results and avoid evidence-lean introductions (Yeh et al., 2003).
Summarization may use such classification to aggregate sentences
and provide a summary for each rhetorical category. For example,
our work shows that biomedical research scientists prefer to have
the IMRAD structure for summarizing the content of a figure (Yu
et al., 2009). Question answering may target different rhetorical
categories for answer extraction. For example, definitions can often
be extracted from Introductions (Yu et al., 2007).

The importance of classifying biomedical text into rhetorical-
zone categories has been recognized, and various approaches have
been developed to automate the task, although most of these efforts
have been directed toward developing approaches for assigning
IMRAD categories to sentences that appear in MEDLINE abstracts
(McKnight and Srinivasan, 2003; Yu et al., 2007).

McKnight and Srinivasan (2003) reported the first automation
of this task. They trained supervised machine-learning binary-
classifiers on structured abstracts (i.e. the sentences in an abstract
were structured by the authors into the IMRAD categories). The
authors observed that sentences typically followed the IMRAD order
in an abstract and therefore incorporated sentence position as an
additional feature of their system. They reported F-scores of 52-79%
for assigning each sentence to IMRAD categories. Similarly,
Yamamoto and Takagi (2005) built a system to automatically classify
abstract sentences into five rhetorical categories—Background,
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Purpose, Methods, Results and Conclusions. They reported an
F-score ranging from 63 to 89.8% for their best classifier over
the five categories. .Lin et al. (2006) implemented hidden Markov
models to attain F-scores of 73-89%.

The research efforts described above attempt to classify sentences
in abstracts, but to our knowledge, little work has been attempted to
predict the IMRAD categories of sentences in full-text biomedical
articles. Furthermore, no work has been reported in which manual
annotation has been used to assign sentences to their IMRAD
categories. Hence, whether a sentence that appears in a full-text
biomedical article can be assigned IMRAD categories with a high
degree of reliability is still an open question.

In their examination of full-text biomedical articles, Mizuta et al.
(2006) explored linguistic features and developed richer rhetorical-
zone categories, such as problem-setting (i.e. the problem to be
solved), insight (i.e. the author’s insights), etc. Using 20 annotated
full-text articles, supervised machine-learning classifiers (i.e. naive
Bayes and support vector machines) were developed for automation
(Mullen et al., 2005). Lexical and syntactic features were used
along with the location of sentences and zone sequences. Their best
performing system incorporated all features and achieved an F'-score
of 70% for all category classification.

Other related work includes Shatkay et al. (2008) and Wilbur et al.
(2006), who first annotated 10 000 sentences selected from full-text
biomedical articles along five parameters: focus, certainty, evidence,
polarity and direction/trend. Sentences were broken into fragments
by annotators, and each fragment was annotated by three annotators.
They then built a multi-dimensional classifier using support vector
machines, in which each sentence was classified along the same
parameters. The classifier was trained on those annotated cases for
which all three annotators agreed, and it achieved good performance
according to its evaluation using 5-fold cross validation.

We previously developed a framework for IMRAD classification
(Agarwal and Yu, 2009; Yu et al., 2009). This article extends
that work to conduct a comprehensive experiment design and data
analysis.

2 METHODS

We first examine whether a sentence can be reliably annotated into IMRAD
categories, and we then explore text-mining approaches for automation.

2.1 Data

The publicly available BioMed Central full-text corpus was used for this
study. We randomly selected 148 articles that explicitly incorporate the
IMRAD sections into their structure and then randomly selected five
sentences from each of these sections in the articles. This resulted in a total
of 2960 sentences (148 x5 x4), which were used for annotating IMRAD
categories.

2.2 Annotation, agreement and gold standard

The first author of this article (AnnotatorAuthor) developed an annotation
guideline and used it to manually annotate 2000 sentences that were randomly
selected from the set of 2960 into one of the four IMRAD categories.
In cases of sentences containing two or more categories, precedence was
given to Discussion over all other categories, to Results over Methods
and Introduction and to Methods over Introduction. We followed this
order because the rhetorical structure in biomedical articles follows the
IMRAD order, and each rhetorical category linearly follows the other.
For example, for logical clarity, sentences in Results frequently introduce

Table 1. Confidence value assigned by the annotators to the set of 1930
sentences

AnnotatorAuthor ~ High Medium Low  Total

AnnotatorBiologists  High 1377 193 30 1600
Medium 227 61 25 313
Low 11 4 2 17
Total 1615 258 57 1930

Table 2. Matrix of category assignment by AnnotatorAuthor and
AnnotatorBiologists for sentences annotated with ‘High’ confidence

AnnotatorBiologists I M R D
AnnotatorAuthor 1 389 18 16 78
M 12 363 21 7
R 1 14 273 44
D 13 1 21 106

I: Introduction, M: Methods, R: Results, D: Discussion.

relevant background information or methods, while Discussion sentences
frequently mention Results. This order of precedence was also recognized
by McKnight and Srinivasan (2003) in their study. A confidence value was
also assigned to each annotation: ‘High’ was assigned if the annotator was
certain that the sentence belonged to a particular category, ‘Medium’ if the
annotator could only be certain that it belonged to one of two categories, and
‘Low’ if the annotator could only be certain that it belonged to one of three
or more categories.

To evaluate the quality of the annotation, we provided five biomedical
researchers (AnnotatorBiologists) with the annotation guideline and asked
them to independently assign IMRAD categories and confidence scores to
400 sentences each. Thus between them, the AnnotatorBiologists, who are
not the authors of this paper, annotated the same 2000 sentences that were
annotated by the AnnotatorAuthor, so that every sentence was annotated
by two annotators. Since a heuristic-based sentence splitter was used to
produce the data, there were cases of training sentences not being split
correctly. Annotators were allowed to tag these sentences as artifacts, and
these sentences were removed. There were 70 such cases, leaving 1930
sentences for full annotation.

The agreement between the AnnotatorAuthor and AnnotatorBiologists
over the 1930 sentences was 72.54%, with a Kappa score of 0.629. One-
thousand three-hundred and seventy-seven sentences were assigned high
confidence by both AnnotatorAuthor and AnnotatorBiologists (Table 1).
Annotators agreed on 1131 (82.14%) of these 1377 sentences, with a Kappa
score of 0.756. We found that disagreement was mainly caused due to
sentence ambiguity. For example, the sentence ‘However, physicians in
training will likely deal with such marketing influences once in practice’
was classified as Introduction by the AnnotatorAuthor and Discussion by
the AnnotatorBiologists. The sentence could have been interpreted as an
explanation for a result or as a research question posed by the current study.
Such ambiguity is quite common in natural language (Mihalcea, 2003).

The 1131 sentences that both the AnnotatorAuthor and
AnnotatorBiologists annotated with a confidence value of ‘High’ and
were in agreement on with respect to IMRAD categories were used to
generate the gold standard to evaluate the different systems discussed in
the next section. Of these 1131 sentences, 389 were labeled Introduction,
363 were labeled Methods, 273 were labeled Results and 106 were labeled
Discussion (Table 2).
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3 AUTOMATIC CLASSIFICATION

We explored rule-based and machine-learning approaches for
automatically classifying a sentence into IMRAD categories.

3.1 A baseline system

As a baseline, we created a simple system (Baseline) that assigns a
sentence an IMRAD category based on the original IMRAD section
in which the sentence appears. For example, we assign all sentences
in the Introduction section the category Introduction.

3.2 A rule-based system

Rule-based systems have attained success in the biomedical domain
[e.g. (Friedman et al., 1994; Yu et al., 2002)]. We randomly selected
eight articles from the TREC Genomics Track text collection
(Hersh et al., 2006), which contains more than 160000 full-text
biomedical articles. The eight articles contain ~30 000 words and
1250 sentences. The first author of this article (SA) read each
article and then manually identified patterns that were indicative
of IMRAD categories. These patterns consisted of individual words
or phrases, and sentences were probed for the presence of these
patterns using regular expressions. For example, one rule links a
sentence to Discussion if the sentence incorporates the words ‘our’,
‘observations’ and ‘suggests’ and the sentence is not associated with
a citation. A total of 603 rules were identified, of which 410 were
Methods rules, 96 were Results rules and 97 were Discussion rules.
If a sentence was not identified by any of the methods, results or
discussion rules, then that sentence was labeled as Introduction.
We then implemented the rules in a rule-based classifier (Rule)
that automatically assigns sentences to the appropriate category.
Manually identifying rules was a time consuming task; it took the
first author two hours per article on average to identify and code all
rules in that article.

3.3 Supervised machine-learning systems trained on
non-annotated corpus

As stated above, manually creating rules is an expensive process,
and developing machine learning approaches with minimum manual
effort is an attractive proposition. We explored methods for training
supervised machine-learning systems on data that does not require
further annotation, and in this respect, our work is inspired by the
work of (Yu and Hatzivassiloglou, 2003). We assume that in a full-
text, IMRAD-structured article, the majority of sentences in each
section will be classified into their respective IMRAD category.
For example, even though the sentences under the Introduction
section incorporate other categories, we assume that a majority of
the sentences are still assigned Introduction.

We developed four classifiers. The first classifier, Nonl,
was trained on structured sentences from the full-text article
incorporating the test sentence. The IMRAD category of the
sentences in the full text was used as the label of the sentence to
build the classifier. Since our training data are noisy, the second
classifier, Non2, incorporated an iterative classification process that
attempts to remove the noisy data from the training set. Specifically,
for each full-text document, we built the classifier C|, which was
trained on the sentences within the four structured sections. We then
applied the same classifier to predict the category of sentences in
the training data and then removed those contradictory predictions.

We assume that C; performs better than random and therefore
has a better-than-random chance of removing noisy training data.
We then continued the iteration C;, i=1,2,...,N. We found that
two iterations gave the best accuracy when tested on the gold
standard; hence, we report the performance of Non2 based on two
iterations. Non3 was trained on structured MEDLINE abstracts.
We considered an abstract to be structured if it contained the four
IMRAD categories or their synonyms (for example, Background
was assigned as Introduction). Eight thousand randomly selected
sentences (2000 for each category) from the structured abstracts in
MEDLINE were used to train the classifier.

Non4 was trained on structured full-text sentences instead of
abstract sentences. Eight thousand sentences (2000 from each
category) from the IMRAD categories were randomly collected from
full-text articles in the BioMed Central corpus and used to train
the classifier. Unlike Nonl, Non4 was trained on sentences from
randomly selected articles, whereas Nonl was trained on sentences
from the same article as the test sentences.

3.4 Supervised machine-learning system trained on
manually annotated full-text sentences

The non-annotated data is noisy; hence, classifiers trained on
this data may not obtain optimal performance. To overcome this
disadvantage, we trained supervised machine-learning system on
the annotated data. We call this classifier Man. Feature selection and
machine-learning systems are described in the following section.

3.5 Machine-learning systems and features

For all supervised classifications, we tested three algorithms:
multinomial naive Bayes, naive Bayes and support vector machine
(SVM). Both naive Bayes and SVMs are widely used supervised
machine-learning algorithms. The probabilistic framework of naive
Bayes follows a multi-variate Bernoulli model in which a sentence
is represented by a vector of words; O indicates absence, while
1 indicates presence of the word at least once. Multinomial
naive Bayes represents a multinomial distribution of words in a
sentence that captures word frequency. The multinomial model has
been shown to outperform naive Bayes in document classification
(McCallum and Nigam, 1998). We used the implementation of
all three algorithms provided by the open-source Java™-based
machine-learning library Weka 3 (Witten and Frank, 2006).

We explored words and n-grams features testing them as
individual words, combinations of individual words and bigrams,
and combinations of individual words, bigrams and trigrams. We
observed that citations can be an important feature for distinguishing
categories; for example, citations are more frequently used in
Introduction than in Results. Hence, we created a new feature to
indicate the presence of a citation. All numbers were replaced by
a unique symbol—#NuMBeR. We did not remove stop words since
certain stop words are more likely to be associated with certain
IMRAD categories. We also did not remove words that referred
to a figure or table, since such references are more likely to occur
in sentences indicating the outcome of the study. To observe the
contribution of citations, stop words, reference to figures and tables,
and replacement of numbers for classification, we ran our best
classifier after removing these features.

Biomedical texts frequently report existing knowledge in the
present tense and the experimental results in the past tense. We
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therefore added the presence of these two verb tenses as additional
features and used the Stanford parser (Klein and Manning, 2003) to
identify the presence of these tenses. We also explored the IMRAD
categories inherited from a structured full-text article as a feature.
This feature was only added in the machine-learning classifier Man.
On the basis of feature selection, we trained four different Man
classifiers—Man-Terms, which was trained only on term features;
Man-Tense, which was trained using term features and verb tenses;
Man-IMRAD, which was trained using term features and the original
IMRAD category of the sentence; and Man-All, which was trained
using term features, verb tenses and the original IMRAD category
of the sentence.

We experimented with mutual information and chi-square for
feature selection. In experimenting with different top features, we
obtained better performance using the top-2500 features.

3.6 Gold standard and evaluation

We created six sets of gold standards. The first gold standard set
comprised 1131 sentences that were agreed upon by two annotators
and were annotated with ‘High’ confidence. However, this resulted
in the rejection of 799 sentences and a highly unambiguous training
set that might not be representative of all sentences in the literature.
Thus, we created a second gold standard comprising all the sentences
agreed upon by the two annotators. Two additional gold standard
sets were created using AnnotatorAuthor’s or AnnotatorBiologist’s
annotations. The remaining two gold standard sets were created
using AnnotatorAuthor’s or AnnotatorBiologist’s ‘High’ confidence
annotations.

We evaluated the supervised machine-learning systems on the first
gold standard, which consisted of 1131 sentences. The sentences
were randomly divided into 10-folds. Nine folds (1017-8 sentences)
were then used for training, and the trained classifier was then
tested on the fold that had been held out of the training set (113-4
sentences). All other systems were evaluated 10 times using the
same set of holdout sentences as the gold standard. For all systems,
we report overall accuracy, recall, precision and F-score for each
category and the micro-average of recall, precision and F-score
for all systems. The micro-average is the mean when each class
is weighted according to its size. Recall is the number of correctly
predicted sentences divided by the total number of sentences in the
same category, and precision is the number of correctly predicted
sentences divided by the total number of sentences predicted in the
same category.

4 RESULTS

We compared the performance of multinomial naive Bayes, naive
Bayes and SVM algorithms with feature selection based on mutual
information and chi-square using the Man-All classifier. We found
that the best accuracy was achieved using the multinomial naive
Bayes algorithm with mutual information based feature selection
(Table 3). Hence, for subsequent tests, we selected term features by
sorting them by their mutual information scores and then trained
multinomial naive Bayes classifiers.

We evaluated the effect of individual words, bigrams and trigrams
as text features to train the Man-All classifier. Our results indicated
that a combination of individual words, bigrams and trigrams gave

Table 3. Comparison of the accuracy of multinomial naive Bayes, naive
Bayes and SVM algorithms when trained on text features selected using
mutual information or chi-square

Multinomial naive Naive Bayes SVM

Bayes
Mutual information 91.95+2.81 85.95+3.44 89.13+2.3
Chi-square 86.03£2.69 86.65+3.07 87.09+2.48

Table 4. Performance of Man-All classifier using different combinations of
individual words, bigrams and trigrams as term features

Iw Iw+b Iw + b+t
Accuracy 90.10£1.90 91.60+2.14 91.954+2.81
Introduction F:91.2443.38 F: 92.56+3.45 F: 92.654+3.49
Methods F:94.4242.02 F:95.14+2.14 F:95.04+3.12
Results F: 90.63+3.46 F: 91.243.01 F:92.24+3.89
Discussion F: 60.20£19.1 F: 71.46+£13.4 F: 73.77£14.6
Micro-average R:90.43 R:92.01 R: 92.36

P: 90.00 P: 91.72 P: 91.93

F: 89.20 F:91.08 F: 91.55

P: Precision, R: Recall, F: F-score, Iw: Individual words, b: bigrams, t: trigrams.

the best performance (Table 4). Hence, for all machine-learning
classification runs, we used this combination.

We report the results of rule-based and machine-learning
classifications. Table 5 shows the performance of all classifiers. As
mentioned in Section 3.5, the Man classifier was trained using a
combination of term features with verb tenses in the sentence and
the original IMRAD category of the sentence. Table 5 also shows
the results of comparing the performance of different features used
to train the Man classifier. The accuracies obtained by performing
10-fold cross validation using Man-All classifier for each of the six
gold standards are shown in Table 6.

Our mutual information score showed that the top-10 features
were ‘citation’, ‘were’, ‘#NuMBeR’ (denotes any numeric value),
‘is’, ‘that’, ‘was’, ‘has’, ‘table #NuMBeR’, ‘#NuMBeR #NuMBeR’
and ‘table’. Since terms that are normally removed during
normalization of text attained high mutual-information scores, we
wanted to study the effect of removing these terms. We compared
the performance of the Man-All classifier by removing stop words,
numbers and references to figures and tables (Table 7). We removed
stop words that were obtained from the list of stop words used in
the information retrieval library Lucene (Gospodnetic and Hatcher,
2005). The results show that the removal of citation markers, stop
words, references to figures and tables and numbers led to a decrease
in the performance of the Man-All classifier by 1.97, 4.77, 0.71 and
0.17%, respectively.

To evaluate if the number of annotated sentences is sufficient,
we performed a 10-fold cross validation of different-sized gold
standards. We randomly selected sentences from the original gold
standard to create gold standard subsets of sizes ranging from 100
to 1100 sentences in increments of 100. We performed 10-fold
cross validation using the Man-All classifier, as shown in the case
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Table 5. Performance with SD across the 10-folds of all classifiers

Baseline Rule Nonl Non2 Non3 Non4 Man-Terms Man-IMRAD Man-Tense Man-All
A 77.81£4.03 58.18+4.87 74.45+£5.22 72.77+£5.24 66.94+4.49 73.924+2.39 88.06+3.2 91.34+3.09 88.77+3.19 91.95+2.81
I R:67.884+8.99 R:86.98+7.01 R:92.384+6.82 R:92.88+8.16 R:51.76+8.62 R:74.04+7.53 R:95.54+2.53 R:97.57+1.95 R:95.24+2.22 R:97.36+2.02
P:91.794£7.45 P:49.02+6.67 P:62.16+9.22  P:59.08+£10.3  P:83.87+6.47 P:79.01+11.5 P:85.87+7.58 P:88.06+7.34 P:86.41+7.22 P:88.59+5.91
F:77.87£8.11  F:62.42+6.61 F:74.07£8.13  F:71.9+9.65 F:63.53+6.56 F:75.96+8.47 F:90.21+4.23 F:92.38+4.37 F:90.38+3.89 F:92.65+3.49
M  R:85.43+3.7 R:62.13+6.34 R:91.93+£6.82 R:91.04+6.03 R:72.48+7.58 R:82.73+4.23 R:93.69+2.23 R:96.11+2.90 R:95.44+2.21 R:96.16+2.39
P:91.78+2.62  P:80.34+8.80  P:82.14+5.27  P:80.02+6.05 P:84.42+7.65 P:83.33+8.28  P:87.82+5.91  P:94.25+5.04  P:88.00+6.33  P:94.09+5.0
F:88.44+2.51 F:69.74+5.75 F:86.71+4.71 F:85.07+£5.36 F:77.5845.12 F:82.71+4.23 F:90.49+2.69 F:95.09+3.16 F:91.404+3.30 F:95.04+3.12
R R:78.56+6.92 R:22.89+9.94 R:74.454+8.36 R:72.36+7.63 R:82.38+4.16 R:67.65+9.02 R:82.84+598 R:88.30+7.65 R:84.05+5.30 R:90.81+6.93
P:78.25£6.25  P:54.51+19.2  P:77.87£7.46 P:77.49+7.73 P:60.46+8.15 P:74.53+£8.28 P:91.63+5.83 P:93.43+£5.89  P:93.384+4.68 P:94.16+4.15
F:78.21+£5.23  F:31.81+£129 F:75.95+7.18 F:74.69+£6.97 F:69.35+5.12 F:70.56+7.06 F:86.84+4.57 F:90.46+4.39 F:88.31+3.60 F:92.24+3.89
D R:84.114£8.56  R:29.33£16.1 R:33.96+9.43 R:32.99+9.33 R:69.81+15.8 R:60.18+12.8 R:58.64+20.8 R:64.70+£18.5 R:59.244+20.1 R:65.0+18.3
P:38.77£10.0  P:59.88+27.6  P:82.11+£7.66  P:82.74+6.75 P:34.05+8.59 P:38.90+8.61 P:91.59+11.8 P:87.66+14.0 P:91.55+104 P:91.05+10.7
F:52.444+10.5 F:38.25+£19.3 F:47.35+10.2 F:46.45£10.2 F:45.0749.71 F:46.51+£8.66 F:68.3%16.1 F:72.36+154 F:69.03£15.0 F:73.77+14.6
ma R:77.61 R: 58.13 R: 82.43 R: 81.72 R: 67.49 R:73.99 R: 88.41 R: 91.78 R: 89.23 R: 92.36
P: 83.55 P: 61.42 P:74.23 P: 72.46 P: 73.73 P: 75.56 P: 88.42 P:91.30 P: 89.09 P:91.93
F: 78.96 F: 55.12 F: 76.08 F: 74.42 F: 67.71 F: 74.06 F: 87.43 F:90.91 F: 88.21 F:91.55
A: Accuracy, I: Introduction, M: Methods, R: Results, D: Discussion, ma: Micro-average, F: F-score, R: Recall, P: Precision.
Table 6. Performance of the Man-All classifier on different training sets ” o R —
obtained when annotations of AnnotatorAuthor or AnnotatorBiologists are s o e—
.. 3 85 g
used as the gold standard and/or confidence value is ignored i s
< p
75 +—2 : : : v : : |

Gold standard Only ‘High’
confidence

sentences

All sentences

Sentences agreed by AnnotatorAuthor
and AnnotatorBiologists

Annotations of AnnotatorAuthor

Annotations of AnnotatorBiologists

91.95 (77.81) 88.29 (74.29)

88.31 (69.12)
81.04 (68.5)

82.95 (65.08)
78.24 (64.82)

The value in the parentheses is the performance of Baseline for that training set.

Table 7. Performance of the Man-All classifier when stop words, citations,
numbers and reference to figures and tables were removed from term features

No features  Remove sw ~ Remove Remove Remove f&t
removed citations numbers
A 91.95+2.81 87.18+1.74  90.98+2.01 91.78+2.41 91.4242.53
da 4.77 1.97 0.17 0.53
I F:92.65+3.49 F:88.3+4.61 F:91.77+3.14 F:93.38+2.57 F:92.784+2.95
M F:95.04+3.12 F:93.04£3.02 F:95.02+2.90 F:95.17£1.99 F:94.73+3.21
R F:92.244+3.89 F:89.07+4.62 F:90.14+4.43 F:90.71+£3.59 F:90.12+3.51
D F:73.77+14.6 F:33.284+16.7 F:71.65£13.8 F:72.97+14.7 F:74.17£13.5
ma R:92.36 R: 85.66 R: 91.39 R:92.13 R: 91.79
P:91.93 P: 86.15 P:91.20 P:91.89 P: 9143
F: 91.55 F: 84.10 F: 90.54 F: 91.40 F:91.02

A: Accuracy, da: Decrease in accuracy, I: Introduction, M: Methods, R: Results, D:
Discussion, ma: Micro-average, F: F-score, R: Recall, P: Precision, sw: stop words
f&t: reference to figures and tables.

of the original gold standard. The accuracies of classifiers using
different-sized gold standards are shown in Figure 1.

To further test the robustness of Man system, we split the
sentences into 5- and 10-folds after sorting them by publication date.
‘We performed a 5- and 10-fold cross validation by training the Man-
All classifier on this data and obtained an accuracy of 91.78+1.87

100 200 300 400 500 600 700 800 900 1000 1100 Al

Size of Training Data

Fig. 1. Accuracy of the Man-All classifier for different sized gold standard
subsets.

and 92.13£2.67%, respectively. Man-All’s accuracy on randomly
distributed data was 91.954+2.81%.

5 DISCUSSION

Our inter-annotator agreement results show that when sentences
tagged with high confidence were compared, an agreement of
82.14% was observed, with a Kappa score of 0.756. This
indicates good agreement between the annotators (Fleiss, 1981).
By ignoring the confidence value, overall agreement and Kappa
score dropped to 72.54% and 0.629, respectively, which indicates
acceptable agreement (Fleiss, 1981). This indicates that the use of
confidence values while annotating improves agreement and quality
of annotation. Table 1 indicates that 71.35% sentences were assigned
with high confidence by both annotators. Although selecting only
those sentences that were agreed upon and assigned with ‘high’
confidence by both annotators decreases the size of the gold standard
substantially, we believe that the improvement in the quality of
annotation due to the removal of ambiguous sentences offsets
the disadvantage of fewer training data. For example, ambiguous
sentences, such as ‘For all of these comparisons the strength of the
correlations will be weakened by the different time frames used; CPG
six months, troublesomeness four weeks, GHQ 12 and EQ 5D today’,
were annotated with ‘low’ confidence by both annotators. However,
a 10-fold cross-validation evaluation using sentences annotated with
any confidence value by one annotator (AnnotatorAuthor) showed
82.95% accuracy (Table 6). Our results indicate that if all ambiguous
cases were also used for learning the classifier, it would achieve an

3178

220z 18BNy |z uo 1senB AQ 9Z1G1Z/vL L E/EZ/ST/BI0IE/SONBWIOJUIOIG /WO dNO"DIWaPED.//:SARY L0l PAPEOUMO]



Automatically classifying sentences in full-text biomedical articles

accuracy of 82.95%. Hence, at worst, it is possible to develop a
system performing with 82.95% accuracy. In Figure 1, it can be
seen that the difference in the performance of the Man-All classifier
at the gold standards of 1000, 1100 and all 1131 sentences is small
(they are within 1.0% of each other). This suggests that the current
gold standard, which includes 1131 ‘high’ confidence sentences, is
sufficient for obtaining a classifier that performs well.

The top features identified by mutual information showed the
importance of citation markers, numbers, stop words and reference
to figures and tables. Consistent with the mutual information results,
we observed the F-score for Discussion decreased by ~40% on
removing stop words (Table 7). Our results indicate that stop words
are important for identifying Discussion sentences. For example, the
sentence ‘A possible limitation of our study may be the relatively
low percentage of duodenal biopsies performed in patients with
primary biliary cirrhosis tested positive for at least one antibody
class’ was incorrectly predicted as Introduction when stop words
were removed, whereas it was correctly predicted as Discussion
when stop words were not removed. This is because the stop words
‘our’ and ‘may’ are used by the classifier to identify a sentence as a
Discussion sentence.

Our results show that the baseline classifier (Baseline) achieved
a competitive performance of 77.81% accuracy, which suggests
that many of the sentences in full-text articles are indeed
structured. However, it also suggests that ~22% of sentences
do not belong to the category they appear in. Hence, it is not
surprising that the supervised machine-learning system trained on
uncategorized sentences (Nonl) achieved an accuracy of 74.45%.
This performance is poorer than that of the baseline classifier
and might be due to noise in the training data and/or a smaller
training dataset. Similarly, the iterative classifiers (Non2) that
attempt to remove noisy data also performed worse (72.77%) than
Baseline. The results suggest that the iterative classifier might have
removed sentences that were misclassified, leading to a decrease
in training size and hence a decrease in performance. Results of
iterative machine-learning classifications support previous work in
opinion/fact classification (Yu and Hatzivassiloglou, 2003).

The rule-based classifier (Rule) was expected to perform with
high precision; however, this was not the case. The precision for
Methods, Results and Discussion rules was between 54 and 81%,
which indicates that the rules were not exclusive.

Although a machine-learning classifier trained on structured
abstracts (Non3) is widely considered to be among the best systems,
our results show that these systems did not perform well (66.94%).
‘We noticed that this represented a 10.87% decrease in accuracy over
a baseline system that considers a sentence based on the IMRAD
section in which it occurs. The poor performance may be caused by
the fact that sentences in full-text articles are composed differently
than sentences in abstracts. For example, abstracts rarely contain
such features as citations and references to figures and tables that
were shown to have an effect on the performance of machine-
learning classifiers (Table 7). As shown in our results, when we
removed citation and reference to figures and tables as features from
the Man classifier, accuracy decreased by 1.97% points and 0.53%,
respectively. However, this still does not justify the difference
in performance between classifiers trained on abstract sentences
and those trained on manually annotated sentences. On further
inspection, we found that abstract sentences are often noisy, similar
to full-text sentences. Of the 100 sentences randomly selected from

structured abstracts that were analyzed by the first author of this
article, it was observed that 27% did not belong to the category
they appear in (results not shown). Our results strongly demonstrate
that a classifier specific to full texts is needed and that high quality
annotated data is a must.

Our results also show that the classifier trained on annotated
sentences from structured, full-text articles that were randomly
selected (Non4) performed with an accuracy of 73.92%. This is
lower than the performance of Baseline. However, this was not
completely unexpected, since the performance of Baseline indicates
that ~22% of the sentences do not belong to the category they
appear in, which results in Non4 being trained on extremely noisy
data. Also, it was noted that the performance of Non4 is similar to
classifier Nonl, which was trained on sentences in the same article.
This similarity in performance suggests that the presence of noise
in the training data was responsible for low performance. It also
justifies the need for a manually annotated corpus for classifying
sentences into IMRAD categories.

Our results showed that multinomial naive Bayes performed better
than SVM at classifying sentences. This divergence needs to be
investigated further. When studying the effect of non-text features
on the Man classifier, adding the tense of verbs feature (Man-Tense)
to the classifier based on term features only (Man-Terms) improved
accuracy by 0.71% (from 88.06 to 88.77%). Because of the strong
performance of the baseline system, it is not surprising to see an
improvement in performance (4-3.28%) when the inherited IMRAD
categories were added as the learning feature (Man-IMRAD). We
found that the best performance was produced by integrating both
features (Man-All). This resulted in an accuracy of 91.95%, which is
14.14% points higher than the baseline system. Also, our classifier
is robust as the performance of Man-All on time-distributed and
randomly-distributed data was not statistically significant. The high
accuracy of our system could help in developing many other
classification applications, for instance, citation classification, which
we intend to explore in the future.

Table 8 shows a sample of two sentences that were incorrectly
classified by Man-All for analysis. The first sentence was
misclassified as Methods due to the presence of the feature
‘analyzed’, while the feature ‘observed’ and the presence of a
number were used to classify the second sentence as Results.

Our work relates to the work of (Shatkay ez al., 2008), particularly
with respect to their introduction of a ‘Focus’ dimension, which
contains the categories ‘Scientific’, ‘Generic’ and ‘Methodology’.

Table 8. Sample of sentences from the gold standard, the category assigned
by annotators and the Man-All classifier

Incorrectly classified sentences Gold standard Assigned

When we analyzed the ROC Results Methods
curve just using the 796
cases with localized cancers,
we found a similar area of
0.64 (SE 0.01)

It is indeed the longest intron
observed in FrRUNT , but it
is nevertheless very short,

spanning just 1372 bp

Introduction Results
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They reported an accuracy of 92% for this three-category
classification problem, which compares well with the accuracy of
our classifier. However, instead of classifying entire sentences, they
broke the sentences into fragments and annotated the fragments,
which might help reduce ambiguous cases. However, since fragment
boundaries cannot be easily identified automatically, we did not
explore a fragment-based classification strategy.

Similar to our study, (Mullen et al., 2005) also classify sentences
in full-text articles; however, our study differs from their work
in three important ways: First, our IMRAD categories represent a
coarse-level representation of four categories, while Mullen et al.
presented a fine-level categorization comprising 10 categories. We
propose that their categories ‘Background’ and ‘Problem-setting’
map to Introduction, ‘Method’ maps to Methods, ‘Result’ maps
to Results, while ‘Insight’ and ‘Implication’” map to Discussion.
Four of their categories, ‘Else’, ‘Connection’, ‘Difference’ and
‘Outline’ do not map to any of the IMRAD categories. We believe
that the IMRAD representation naturally represents the overall
rhetorical structure of full-text biomedical articles and that it can
be applied to specific text mining tasks [e.g. figure summarization
(Yu et al., 2009)]. More importantly, we believe that our coarse-
level categorization leads to stronger annotation agreement. Note
that the data reported in Mullen et al. (2005) was annotated
by only one annotator, and hence, there was no report of inter-
annotator agreement. Finally, because of the coarse nature of our
representation, our system yields higher classification accuracy
(91.55% F-score) than Mullen et al.’s system (70% F-score).

6 CONCLUSION

In this study, we have explored several systems for automatically
classifying a sentence that appears in a full-text article into its
corresponding IMRAD category. An important finding in our work is
that the IMRAD classifier that was trained on sentences in abstracts
does not perform well on sentences appearing in full text. The best-
performing system was a multinomial naive Bayes classifier trained
on manually annotated sentences that appear in full text. The system
achieved an accuracy of 91.95%, a performance that is ~14% points
higher than the baseline system. A web version of our classifier is
available online at: http://wood.ims.uwm.edu/full_text_classifier/.
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