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Automatically
Composed Workflows
for Grid Environments
Jim Blythe, Ewa Deelman, and Yolanda Gil, USC Information Sciences Institute

Once the realm of high-performance computing for scientific applications, grid

computing is rising as a key enabling infrastructure for resource sharing and

coordinated problem solving in dynamic multi-institutional virtual organizations.1 Grids

build over networking technology to provide middleware support such as locating files 

over a network of computers, scheduling the dis-
tributed execution of jobs, and managing resource
sharing and access policies.2 The need of scientific
communities to interconnect applications, data,
expertise, and computing resources is shared by other
application areas, such as business, government,
medical care, and education.3,4

Unfortunately, grid computing today is far from
the reach of regular computer users. To use a grid,
many users must provide a detailed executable script
specifying the jobs that should run, the hosts and files
to use, and sometimes the specific scheduler in the
host computer. Our research aims to develop intelli-
gent middleware components that encapsulate the
expertise required to use grids. Earlier, we used AI
planning techniques to automatically generate exe-
cutable job workflows from high-level specifications
of desired results.5 We integrated our planner in a
grid environment to extract relevant knowledge from
existing grid middleware.6

One of our application domains is the Laser Inter-
ferometer Gravitational Wave Observatory (LIGO,
www.ligo.caltech.edu), which aims to detect pulsars.
The planner can be given the high-level goal of mak-
ing a search in certain areas of the sky over a certain
time period. Our solution for LIGO uses semantic
descriptions of the workflow processes and of the
files they require and produce, to compose the work-
flow automatically.

However, domains where such semantic descrip-
tions aren’t yet available can still benefit from AI
planning and scheduling. Moreover, greater improve-
ments in efficiency are possible using semantic
descriptions of the information content of a group of
related files, or of content that any one of a group of
files can provide.

Motivation
Scientists often seek specific data products, which

they can obtain by configuring available application
components and executing them on the Grid. For
example, suppose that the user’s goal is to obtain a
frequency spectrum of a signal S from instrument Y
and time frame X, placing the results in location L.
In addition to these results, the user might have
requirements on intermediate steps. For example, the
user might want the results of any intermediate fil-
tering steps to be available in location I, perhaps to
examine them for unusual phenomena.

Today, users must transform this kind of high-level
requirement into a workflow of jobs that they can sub-
mit for execution on the Grid. Each job must specify
which files contain the code to run. To do this, the user
must map the high-level requirements to available
application components (for example, the fast Fourier
transform coded by Caltech’s group, version 3.0 or
higher) and select a file location from the many avail-
able replicas of the code in various locations. The job
also specifies the host on which it should run, on the
basis of the code requirements (for example, the code
must be compiled for a message-passing interface and
parallelized to run on a tightly coupled architecture,
preferably with more than five nodes) and on the basis
of the user access policies for computing and storage
resources. An executable workflow also includes jobs
to transfer input data and application component files
to the execution location.

The need for automation
Although grid middleware allows for discovery of

the available resources and of the replicated data’s
locations, users currently must carry out all these
steps manually. Automating this process is not only
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desirable but also necessary for five reasons.
The first is usability. Currently, users must

have extensive knowledge of the grid com-
puting environment and its middleware func-
tions. For example, the user must query the
Replica Location Service (RLS)7 to find the
input data files’ physical locations.

The second reason is complexity. In addi-
tion to requiring scientists to become grid-
enabled users, the process might be complex
and time consuming. The user must make
many choices when alternative application
components, files, or locations are available.
The user might reach a dead end where he or
she can’t find a solution, which would require
backtracking to undo some previous choice.

The third reason is solution cost. Lower-
cost solutions are highly desirable in light of
the high cost of some computations, the
user’s limited access to resources, and band-
width variability. Because finding any fea-
sible solution is already time consuming,
users won’t be likely to explore alternative

workflows that could reduce execution cost.
The fourth reason is global cost. Because

many users are competing for resources, min-
imizing cost within a community is desirable.
This requires reasoning about one user’s
choices in light of other users’choices, such as
possible common jobs that could be included
across workflows and executed only once. In
addition, policies that limit a user’s access to
resources should be taken into account to
accommodate as many users as possible while
they’re contending for limited resources.

The last reason is reliability of execution.
In today’s Grid framework, when a job’s exe-
cution fails, the job is resubmitted for execu-
tion on the same resources. Recovery mech-
anisms that consider alternative resources and
components as the grid changes are desirable.

While addressing the first three reasons
would enable wider accessibility of the Grid
to users, the latter two simply can’t be han-
dled by individual users and will likely need
to be addressed at the architecture level.

Our approach to automation
First, we use declarative representations

of knowledge involved in each choice of the
workflow generation process. This includes
knowledge about how application compo-
nents work, characteristics and availability
of files, capabilities of the resources avail-
able, and access control policies.

Second, the planner can access this knowl-
edge at any point during workflow genera-
tion. This lets the planner make decisions and
assignments in a flexible manner that

• Takes into account previous and future
choices, searching for a low-cost workflow
configuration that satisfies user requirements

• Is feasible in the given execution environ-
ment

• Can adapt to changes in the overall system
state

Figure 1 illustrates our approach. Users
provide high-level specifications of desired
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results, as well as constraints on the compo-
nents and resources to use. These requests
and preferences are represented in the knowl-
edge base. The grid environment contains
middleware to find components that can gen-
erate the desired results, to find the input data
that they require, to find replicas of compo-
nent files in specific locations, to match com-
ponent requirements with available resources,
and so on. The knowledge base also incor-
porates some knowledge that middleware
currently uses (resource descriptions, meta-
data catalogs to describe file contents, user
access rights and use policies, and so on).
Workflow generation and maintenance com-
ponents update workflow during execution
as new information becomes available.

Although much of the necessary knowl-
edge is available from middleware (as we
describe in the next section), running jobs on
a grid requires considerable additional
knowledge. For example, an application
component might be available in a form
that’s compiled for a message-passing inter-
face. So, the component makes calls to MPI
libraries that will need to be available in the
host computer where the component is to
run. Similarly, a piece of Java code implies
requirements on the execution host—namely,

that the host can run Java Virtual Machine.
Our approach organizes this knowledge and
reasons about it in a uniform framework.

Grid environments
As we mentioned before, middleware ser-

vices such as those that the Globus toolkit
(www.globus.org) provides help users obtain
information about available resources, com-
ponent software, data files, and the execution
environment. We’ve used several of these ser-
vices as knowledge sources for our planner8,9

as part of its integration in the Pegasus sys-
tem (http://pegasus.isi.edu) for planning and
execution in grids (see Figure 2).

In grid environments, an application com-
ponent (for example, a fast Fourier transform)
can be implemented in different source files,
each compiled to run on a different type of
target architecture. Exact replicas of the exe-
cutable file can be stored in many locations,
which helps reduce execution time. Data files
can also be replicated in various locations.
Each file has a description of its contents in
application-specific metadata, which is basi-
cally a collection of terms of predicate logic
capturing the meaning, provenance, and other
aspects of the data. Logical file descriptions
uniquely identify the application component

or data; physical file descriptions uniquely
specify the location and name of a specific
file on a host. The Metadata Catalog Service
(MCS) responds to queries that are based on
application-specific metadata and returns the
logical names of files containing the required
data, if they exist.10,11 Given a logical file
name that uniquely identifies a file without
specifying a location, the RLS can find phys-
ical locations for the file on a grid.7

The grid execution environment includes
computing and storage resources with di-
verse capabilities. A specific application
might require a certain type of resource for
execution—for example, a certain number
of nodes to efficiently parallelize its execu-
tion. This might be indicated in its metadata
description. Executing applications with
minimal overhead might require specifying
which job queue available in the host is more
appropriate. The Monitoring and Discovery
Service (MDS)12 allows discovery and mon-
itoring of grid resources. Resource match-
makers find resources appropriate to the
application components’ requirements.

Pegasus sends jobs that are completely
specified for execution to schedulers that
manage the resources and monitor execution
progress. For example, users can employ
Condor-G and DAGMan (Directed Acyclic
Graph Manager)13 to request a task to be exe-
cuted on a resource. Condor-G adds an indi-
vidual task to a resource’s queue, while
DAGMan manages the execution of a par-
tially ordered workflow by waiting for a
task’s parents to complete before scheduling
the task.

Given that our planner decides for the user
where to generate the data and what software
and input files to use, it’s important to pro-
vide the user and others accessing this
derived data with its provenance information,
or to explain how the data arrived at its cur-
rent form. To achieve this, we’ve integrated
our system with the Chimera Virtual Data
System.14 Our system generates a Virtual
Data Language description of the products
generated in the workflow. Chimera uses this
VDL description to populate its database
with the relevant provenance information.

LIGO pulsar search
Our techniques are general, but we’ve

applied them in the context of LIGO. We’ve
focused on pulsar search (see Figure 3),
where grid resources must search for evi-
dence of gravitational waves possibly emit-
ted by pulsars. The data needed to conduct
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the search is a long sequence (approximately
four months and 2 × 1011 points) of a single
channel—the gravitational wave strain chan-
nel observed at the LIGO instrument. The
observatory’s output is in small segments of
many channels that are stacked to make a
large time-frequency image, perhaps 4 × 105

on each side. The pulsar search looks for
coherent signals in this image.

The pulsar search is both computation and
data intensive and requires more resources
than those available in the LIGO Scientific
Collaboration. To exploit the grid resources,
LIGO’s existing analysis tools were inte-
grated into a grid environment. The exe-
cutable workflows we created were applied
to LIGO data collected during the instru-
ment’s first scientific run. These workflows
targeted a set of 1,000 locations of known
pulsars as well as random locations in the
sky. The analysis results were made avail-
able to LIGO scientists through the grid.

Modeling workflow composition
as a planning problem

Here’s how we formulate assignment of a
set of coordinated tasks in a workflow and
allocation of the tasks to available resources
as an AI planning problem.

Planning operators
We model each application component that

might take part in the workflow as a planning
operator. The operators’effects and precondi-
tions reflect two information sources: data
dependencies between the program inputs and
outputs, and the programs’hardware and soft-
ware resource requirements.

The planner imposes a partial order on the
tasks that’s sufficient for execution because it
models their input and output data dependen-
cies. If a task’s prerequisites are completed
before the task is scheduled, the information
required to run the associated program will be
available. To account for any required data
movement, we also use a planning operator to
model file transfer across the network. We
model the data dependencies between tasks
both in terms of metadata descriptions of the
information and in terms of files used to repre-
sent the data in the system. Metadata descrip-
tions—for example, a term in predicate logic
denoting the result of a pulsar search in a fixed
point in the sky across a fixed range of fre-
quencies at a fixed time—let the user specify
requests for information without specific
knowledge of programs or file systems, with
the planner filling in the request’s details.

Because the operators also model the files that
a program creates and uses, the planner knows
how the information is accessed and stored. It
can then reason about how tasks can share
information and can plan for moving informa-
tion around the network. The planner’s repre-
sentation of information and files can be kept up
to date with the state of the Grid by making
queries to the MCS and RLS, so that its plans
are directly executable and efficient.

The planning operators also model con-
straints on the resources required to perform
the desired operations. Hardware constraints
might include a particular machine type, the
minimum RAM or hard disk space available,
or the presence of a certain number of nodes
in a distributed-memory cluster. Software con-
straints might include the operating system and
version, the presence of scheduling software
on the host machine, and the presence of sup-
port environments—for example, to run Java.
In our work on the LIGO scenario, it was suf-
ficient to model requirements on the schedul-
ing software present, because of the close rela-
tionship between the software and the
hardware configurations of the machines
involved.

The initial state
The planner receives as input an initial

state that captures information from several
sources, including

• Hardware resources available to the user,
described using the CIM (Common Infor-
mation Model) schema (www.dmtf.org/
standards/standard_cim.php)

• Estimates of bandwidths between the
resources

• Relevant data files that have already been
created, and their locations and metadata
descriptions

Our objective is automatic extraction of this
information. At present, the process is partially
automated, as we describe later in this article.

Goals
The goal given to the planner usually rep-

resents a metadata request for information
and a location on the network where the data
should be available. Additional goals can also
specify the programs or host machines to use,
for intermediate or final steps.

Search control rules
These rules help the planner quickly find

good solutions based on preferences for
resources and component operators. They
also help the planner search the space of all
plans more efficiently to find high-quality
plans, given more search time. Details on the
planning-domain specification and its imple-
mentation using the PRODIGY architecture15

appear elsewhere.5
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Using the planner
Our use of the planner has three phases:

1. Preparing the input problem specification
2. Practical considerations for using AI

planning for workflow composition
3. Interpreting the output plan as an exe-

cutable workflow

Integration with the grid environment. Two
modules shown in Figure 3 provide input for
the planner. The current-state generator pro-
duces the initial state description, and the
request manager produces the goal descrip-
tion from a user request. The current-state
generator uses the MCS and RLS.

Given knowledge of which data products
already exist and their location, the planner
can choose whether to transfer existing data
across the network or re-create it closer to
where it’s needed. The planner makes this
choice either explicitly by search control
rules or implicitly by creating a number of
candidate plans and picking the one with the
best expected runtime.

An important design decision in our cur-
rent implementation was whether to encode
information about all possible required data
products in the initial state before planning
begins or to let the planner query for the exis-
tence of data products while planning.
Although the planner can make the queries,
we chose to gather the information before
planning because this lets us combine the
potentially large number of queries about
files, reducing bandwidth and the load on the
MCS and RLS. The current-state generator
decides which data products to query on the
basis of the goal description. This could be
done through a static analysis of the planning
operators but is currently hard coded.

Once the current-state generator retrieves
the file information, it sends the information
to the AI planner, along with the goal from
the request manager. The AI planner merges
this information with a static file describing
available resources to create the final initial
state and goals used for planning. Our aim
for the near future is to use the MDS to
retrieve information about computer hosts,
rather than use a static file, and to use the
Network Weather Service16 to retrieve timely
information about bandwidth estimates
between resources. We also intend to inte-
grate user profile information and user-
provided input indicating user preferences
and access to resources.

The planning operators are stored sepa-

rately. We’re investigating ways to generate
the operators from metadata and resource
information about the application compo-
nents. We describe one implemented approach
in a later section.

Practical considerations. AI planning tech-
niques allow a declarative representation of
workflow components with separate search
regimes. They can also declaratively model
heuristics for constructing good workflows or
evenly sampling the set of possible workflows.
To make the most efficient use of AI planning,
we have to integrate the planner with special-
ized subsolvers that were more efficient for
certain subproblems. Other researchers have
taken similar approaches to integrate AI plan-
ning with scheduling systems.17

For the LIGO application, for example, a
user request for a pulsar search might lead
the planner to schedule up to 400 separate
short Fourier transform tasks on the available
machines. These SFT tasks are identical
except for their input parameters and are
independent of one another. All these tasks
must complete before the planner applies a
concatenation task to their results—a situa-
tion sometimes called a parameter sweep. In
this case, it’s more efficient for the planner
to consider all the instances of the SFT pro-
gram that are assigned to one host as a task
group, without explicitly reasoning about the
instances. A separate routine assigns the SFT
instances to the task groups. This simple rou-
tine is a specialized subsolver that balances
the workload while taking into account any
input files that already exist on the grid. Rea-
soning at this slightly higher level of abstrac-
tion in the planner required reformulating the
operator for the SFT from one that models
single instances of the program to one that
models multiple instances. This is an exam-
ple of changing the level of semantic detail in
the planner, as we describe in more detail in
a later section.

In the LIGO application, the planner re-

turns the first plan generated, using local
heuristics aimed at generating a plan with
low expected runtime. The planner can also
either evaluate all possible plans and return
one with the lowest runtime according to its
estimates, or act as an anytime algorithm,
searching for better plans and returning the
best found when queried. To make the esti-
mates, we attach a routine to each operator
to estimate its runtime as a function of its
input data and the chosen host. The local esti-
mates are combined into an estimate for the
whole plan on the basis of the partial order
of tasks. In principle, the planner could also
use the estimates with partial plans to per-
form an A* search for the best plan, but we
haven’t implemented this.

Executing the plan on the grid. Once the
plan is complete, the AI planner sends it to
the request manager as a partially ordered set
of tasks. Any tasks that the planner has com-
bined—for example, the SFT construction
tasks in the LIGO scenario—are represented
separately. The planner uses the partial order
to oversee the plan’s execution as a work-
flow, but two steps are first necessary to com-
plete the workflow.

The first step is to create any needed data
products and store them in files on the grid.
The plan, which includes steps to create the
data products, refers to them by their meta-
data descriptions. The planner makes another
set of queries to the MCS to create the appro-
priate logical file names and enter their asso-
ciated metadata attributes. These files will be
created on the host machines where the pro-
grams are to run. However, some of the files
might need to be moved to other storage
machines for long-term availability and reg-
istered to services such as the RLS so that
they’re available for reuse in future requests.
The request manager adds the necessary
steps to the workflow to store and register
these files.

In the second step, the request manager
submits the completed workflow to DAG-
Man for execution. DAGMan keeps track of
task dependencies, and schedules each task
on the required machine when the parent
tasks have completed.

Experiences with the planner
To create and execute workflows for pul-

sar searches, our planner used approximately
10 machines and clusters of different archi-
tectures and computing and storage resources
at Caltech, the University of Southern Cali-
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fornia, and the University of Wisconsin, Mil-
waukee. The planner performed 185 pulsar
searches, scheduling 975 tasks and making
1,365 data transfers. The total runtime was
close to 100 hours.

Owing to the interest from the physics-
based user community, we were asked at a
conference demonstration to include an alter-
native algorithm for the pulsar search task
that used different resource types, routines,
and support files. We were able to define
additional planning operators for these rou-
tines and describe the new hosts in the
resource file. The planner could then create
and execute workflows using either the orig-
inal or the new algorithm and could choose
the most appropriate workflow depending
on the availability of hosts or data products.
Our collaborators from the LIGO project
expressed great interest in this work, and we
aim for this initial implementation to become
the foundation of a system with which they
can perform production-level analysis.

Planning with varying levels of
semantic information

We’ve recently been applying these tech-
niques in several other domains, including
galaxy morphology,18 astronomy,19 and tomog-
raphy. While defining the application com-
ponents with full generality for the planner
requires semantic information, in some
domains information about the application
components’ input and output requirements
is readily available only at the level of logi-
cal file names. For example, the VDL char-
acterizes components with a set of clauses,
where each clause relates a group of output
files to the input files and program parame-
ters required to produce them.14

We’ve created a translation module to
automatically create planning domains from
VDL descriptions. Given this information,
the planner can compose workflows as
before, as long as the goal is a specific logi-
cal file name rather than a metadata descrip-
tion. However, the domain is typically less
general than when we use metadata, because
we must mention each potential goal explic-
itly. Given separately defined information
about the components’ resource require-
ments, the resulting workflows behave iden-
tically to our hand-coded LIGO domain for
problems within the reduced domain. With-
out this resource information, the planner
creates a workflow that doesn’t assign com-
ponents to resources but is otherwise correct.

For some domains, semantic descriptions

can considerably improve performance, effec-
tively making planning practical. As in the
LIGO domain, file-based information is often
rearranged and repackaged between applica-
tion components, which can result in a large
number of files required as input to a compo-
nent. A case in which we created the planning
domain from VDL descriptions produced 60
operators that required 1,000 input files and
one operator that required 60,000 input files.

Because we can often view these files as
being created by an iterative process, we can
represent them compactly by explicitly rep-
resenting the iteration parameters. Suppose,
for example, that the 60,000 files are gener-
ated from two parameters, x and y, whose val-
ues range from 1 to 200 and 1 to 300, respec-
tively. Then, a predicate (f x y) can describe

each file, and a predicate that implicitly
encodes the set—for example, (range f 1 200 1
300)—can represent the collection.

We’ve used a domain-independent con-
vention of this type to represent large groups
of files efficiently in the planner. We also
modified some application component defi-
nitions to work with sets rather than individ-
ual files. However, to complete a general
solution, the planner must reason about oper-
ations on sets. There are several reasons for
this. First, the initial state might specify that
all the files in some range exist but not explic-
itly specify that the range exists. The plan-
ner must be able to infer this if needed. Sec-
ond, existing files might cover some but not
all of a required range of files, and the plan-
ner must reason about which files are miss-
ing. Third, there might be a maximum num-
ber of files for which a component can be
scheduled on one machine, which might be
smaller than the range the user desires. The
planner must therefore be able to reason about
the subsets of input files that computations
require and to infer that those subsets exist.

Our philosophy is, as we mentioned before,
that a user shouldn’t have to think about the
repackaging of data that’s necessary to coor-

dinate workflows on a grid. So, we’ve en-
coded a library of axioms for reasoning about
ranges of files as domain-independent oper-
ators. We include these operators in the plan-
ning domain when we create it. Currently, the
planner can solve problems efficiently with
these four axioms:

• The “empty” range of files always exists.
• If a range of files exists, then so does any

subrange.
• If two contiguous ranges of files exist, then

their concatenation also exists as a single
range of files.

• If every individual file defined by a range
exists, then so does that range of files.

We’re further exploring this representation
to ensure the planner’s completeness and effi-
ciency when working with ranges of files.
This research is a good example of how
domain-independent but specialized reason-
ing can help planning and scheduling prob-
lems in Grid and Web environments.

Our initial work in applying knowl-
edge-based techniques to make grid

computing more transparent and accessible
has led to promising results and an encour-
aging response from the user community.
We’re further testing the approach’s gener-
ality by developing applications for high-
energy physics and with earthquake simula-
tions for the Southern California Earthquake
Center (www.scec.org). If this approach is
successful, it will significantly help bring
grid-based computing’s benefits to a much
wider user base. (For a look at other research
related to ours, see the sidebar.)

Although our research focuses on the
domain of grid environments, it has more
general applications for composition of Web
Services. Indeed, many grid toolkits are
adopting the Open Grid Services Architec-
ture,3 in which grid services are an evolution
of Web Services. The issues of semantic
descriptions of component and data infor-
mation used in planners discussed in this arti-
cle are relevant to both domains.

We’ve identified several issues that we’ll
explore in future research. For instance, rea-
soning about entire workflows lets us find a
globally optimal solution that might not be
possible if we seek a locally optimal alloca-
tion for each component task. However, a rel-
atively long-term plan might be far from opti-
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mal or unachievable in practice because the
computational environment can change
rapidly while the plan executes. Scheduling
of tasks might simply fail, and resources
might become unavailable or be swamped
when needed. Bandwidth conditions might
change, and new data might render some
later steps pointless.

We intend to incorporate grid-monitoring
services in our framework that continually
monitor the environment as the plan executes
and that repair or recompute the plan if needed.
We’ll initially exploit the fact that plan creation

in this domain is fast compared with execution,
so that these services can continually replan as
the situation changes and can always schedule
the next task from the latest available plan.
Other strategies for plan monitoring, replan-
ning, and reactive planning are applicable, as
are strategies to predict and avoid likely sources
of failure.20

This research has demonstrated the useful-
ness of a planning-based approach to workflow
construction and of declarative representations
of data shared between several components in
the Grid. Providing support throughout the

workflow life cycle will require the integration
of many additional AI techniques, including
scheduling and resource reasoning, ontologies
and description logic reasoning, multiagent sys-
tems, and reasoning about uncertainty.
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