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Abstract. Configuration was one of the first tasks successfully approached via

AI techniques. However, solving configuration problems can be computationally

expensive. In this work, we show that the decomposition of a configuration prob-

lem into a set of simpler and independent subproblems can decrease the com-

putational cost of solving it. In particular, we describe a novel decomposition

technique exploiting the compositional structure of complex objects and we show

experimentally that such a decomposition can improve the efficiency of configu-

rators.

1 Introduction

Each time we are given a set of components and we need to put (a subset of) them

together in order to build an artifact meeting a set of requirements, we actually have to

solve a configuration problem. Configuration problems can concern different domains.

For instance, we might want to configure a PC, given different kinds of CPUs, memory

modules, and so on; or a car, given different kinds of engines, gears, etc. Or we might

also want to configure abstract entities in non-technical domains, such as students’ cur-

ricula, given a set of courses.

In early eighties, configuration was one of the first tasks successfully approached

via AI techniques, in particular because of the success of������� [10]. Since then,

various approaches have been proposed for automatically solving configuration prob-

lems. In the last decade, instead of heuristic methods, research efforts were devoted

to single out formalisms able to capture the system models and to develop reasoning

mechanisms for configuration. In particular, configuration paradigms based on Con-

straint Satisfaction Problems (CSP) and its extensions [12, 13, 1, 18] or on logics [11, 3,

16] have emerged.

In the rich representation formalisms able to capture the complex constraints needed

in modeling technical domains, the configuration problem is theoretically intractable (at

least NP-hard, in the worst case) [5, 15, 16]. Despite the theoretical complexity, many

real configuration problems are rather easy to solve [17]. However, in some cases the

intractability does appear also in practice and solving some configuration problems can
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require a huge amount of CPU time. These ones are rather problematic situations in

those tasks in which low response time is required. E.g. in interactive configuration the

response time should not exceed a few seconds and on-line configuration on the Web

imposes even stricter requirements on this configurator feature.

There are several ways that can be explored to control computational complexity in

practice: among them, making use of off-line knowledge compilation techniques [14];

providing the configurator with a set of domain-specific heuristics, with general focus-

ing mechanisms [6] or with the capability of re-using past solutions [4]; defining tech-

niques for automatically decomposing a problem into a set of simpler subproblems [9,

8]. These approaches are not in alternative and configurators can make use of different

combinations of them. However it makes sense to investigate to what extent each one

of them can contribute to the improvement of the efficiency of configurators. In the

present work, we focus on automatic problem decomposition, since to the best of our

knowledge this issue has not received much attention in the configuration community.

In [7] a structured logical approach to configuration is presented. Here we commit

to the same framework as that described there and we present a novel problem decom-

position mechanism that exploits the knowledge on the compositional structure (i.e. the

knowledge relevant to parts and subparts) of the complex entities that are configured.

We also report some experimental results showing its effectiveness.

Section 2 contains an overview of the conceptual language, while Section 3 de-

fines configuration problems and their solutions. In Section 4 a formal definition of the

bound relation, which problem decomposition is based on, is given; moreover, in that

same section, a configuration algorithm making use of decomposition is reported and

illustrated by means of an example. Section 5 reports the experimental results, while

Section 6 contains some conclusions and a brief discussion.

2 Conceptual Language

In the present paper the ��� (Frames, Parts and Constraints) [7] language is adopted

to model the configuration domains. Basically, ��� is a frame-based KL-One like

formalism augmented with a constraint language.

In ���, there is a basic distinction between atomic and complex components.

Atomic components are the basic building blocks of configurations and they are de-

scribed by means of properties, while complex components are structured entities whose

characterization is given in terms of subparts which can be complex components in their

turn or atomic ones. ��� offers the possibility of organizing classes of (both atomic

and complex) components in taxonomies as well as the facility of building partonomies

that (recursively) express the whole-part relations between each complex component

and its (sub)components. A set of constraints restricts the set of valid combinations

of components and subcomponents in configurations. These constraints can be either

specific to the modeled domain or derived from the user’s requirements.

We illustrate ��� by means of an example; for a formal description, refer to [7].

In fig. 1 a portion of a simplified conceptual model relevant to PC configuration is rep-

resented. The classes of complex components (e.g. ��, ��	
������, ...) are repre-

sented as rectangles, while classes of atomic components (e.g.���� ����	�� �����	



has_mot(1;1)

has_cdw1(0;1)

Controller

SCSI

has_mpcb(1;1)

has_cs(0;1)

CPUhas_cpu(1;2)

RAM

has_ram(1;4)
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CDW_EIDE CDW_SCSI

has_cdr2(0;7)

Main Printed

Circuit Board

MPCB_SCSI MPCB_EIDE

has_cdw2(0;7)

CONSTRAINTS

Associated with PC class

"In any PC, if there is a EIDE main printed circuit board and at least one SCSI device, 

 then there must be a controller SCSI"

[co1](<has_mot,has_mpcb>)(in MPCB_EIDE) AND 

      ((<has_hd1>)(in HD_SCSI(1;7)) OR (<has_cdr1>)(in CDR_SCSI(1;1)) OR 

       (<has_cdw1>)(in CDW_SCSI(1;1)) 

     )==>(<has_mot,has_cs>)(1;1)

Associated with Motherboard class

"In any motherboard, if there is a SCSI main printed circuit board, 

 then there should be no controller SCSI"

[co2](<has_mpcb>)(in MPCB_SCSI)==>(<has_cs>)(0;0)

Associated with CD Tower class

"In any CD tower, there must be at least one CD reader or CD writer"

[co3](<has_cdr2>,<has_cdw2>)(1;14)

PC

has_cdr1(0;1)

Hard Disk

HD

EIDE

HD

SCSI

has_hd1(1;7)

Disk Array

has_da(0;1)

has_mon(1;1)

has_k(1;1)

has_hd2(1;7)

STRING

Keyboard

Monitor
manuf_m(1;1)manuf_k(1;1)

Fig. 1. A simplified PC conceptual model (���� )

�����, �� ������, ...) are represented as ellipses. Partonomic roles represent whole-

part relations and are drawn as solid arrows. For instance, the �� class has the parto-

nomic role 
�� ��	, with minimum and maximum cardinalities �, meaning that each

PC has exactly one motherboard; partonomic role 
�� ���, whose minimum and max-

imum cardinalities are � and �, respectively, expresses the fact that each PC can option-

ally have one CD reader, and so on. It is worth noting that the motherboard is a complex

component having � to � RAM modules (see the 
�� ��� partonomic role), one main

printed circuit board (
�� �� role), that can be either the SCSI or the EIDE type, etc.

Descriptive roles represent properties of components and they are drawn as dashed

arrows. For example, the ����	�� component has a string descriptive role ����� �,

representing the manufacturer.

Each constraint is associated with a class of complex components and is com-

posed by ��� predicates combined by means of the boolean connectives �,�,�,�.

A predicate can refer to cardinalities, types or property values of (sub)components.

The reference to (sub)components is either direct through partonomic roles or indirect

through chains of partonomic roles. For example, in fig. 1 ���℄ is associated with the

��	
������ class and states that, if 
�� �� role takes values in ���� ����



(i.e. the main printed circuit board is the SCSI type), then 
�� � relation must have car-

dinality � (i.e. there must be no SCSI controller). An example of a chain of partonomic

roles can be found in ���℄: the consequent of the constraint ���℄ (associated with ��
class) states that the role chain �
�� ��	� 
�� �� has cardinality 1, i.e. the �� com-

ponent has one Motherboard with one SCSI Controller. ���℄ shows an example of a

union of role chains: a component of type �� ����� must have 1 to 14 �� ������s
or �� ���	��s.

3 Configuration Problems

A configuration problem is a tuple�� � ������ � �� � �, where�� is a conceptual

model, � is a partial description of the complex object to be configured (the target

object),  is a complex component occurring in � (either the target object itself or one

of its complex (sub)components) whose type is � (which is a class of complex objects

in�� ) and � is a set of constraints involving component . In particular,� can contain

the user’s requirements that component  must fulfill.

Given a configuration problem �� , the task of the configurator is to refine the

description � by providing a complete description of the component  satisfying both

the conceptual description of � in �� and the constraints � , or to detect that the

problem does not admit any solution.

Configuration Process We assume that the configurator is given a main configuration

problem ��� � ���� �	� � ��� !��, where  represents the target object, whose

initial partial description � 	 �	 contains only the component ; � !� is the set

of requirements for  (expressed in the same language as the constraints in �� 1).

Therefore, the goal of the configurator is to provide a complete description of the target

object (i.e. of an individual of the class �) satisfying the model �� and fulfilling the

requirements � !� (such a description is a solution of the configuration problem) or

to detect that the problem does not admit any solution (i.e. that such an individual does

not exist). Since �� is assumed to be consistent, this last case happens only when the

requirements� !� are inconsistent w.r.t. �� . A sample description of an individual

�� satisfying the conceptual model ���� in fig. 1 and fulfilling the requirements

listed in fig. 2 is reported in fig. 4.f.

The configuration is accomplished by means of a search process that progressively

refines the description of . At each step the configuration process selects a complex

component in � (starting from the target object), it refines the description � by insert-

ing a set of direct components of the selected component (by choosing both the number

of these components and their type) and then it configures all the direct complex com-

ponents possibly introduced in the previous step. If, after a choice, any constraint (either

1 It is worth pointing out that the user actually specifies her requirements in a higher level lan-

guage (through a graphic interface) and the system performs an automatic translation into the

representation language. This translation process may also perform some inferences, e.g. if

the user requires a PC with a CD tower containing at least one CD reader and at least one

CD writer, the system infers also an upper bound for the number of components of these two

kinds, as in requirements ���� and ���� in fig. 2, where the upper bound � is inferred for both

the number of CD readers and of CD writers that the CD tower can contain.



The manufacturer of the monitor must be the same as that of the keyboard

[req1](<has_mon,manuf_m>)=(<has_k,manuf_k>)

It must have a disk array

[req2](<has_da>)(1;1)

It must have a CD tower with at least one CD reader and at least one CD writer

[req3](<has_cdt,has_cdr2>)(1;7)

[req4](<has_cdt,has_cdw2>)(1;7)

It must have no more than 4 SCSI devices

[req5](<has_cdr1>,<has_cdw1>,<has_hd1>,<has_cdt,has_cdr2>,<has_cdt,has_cdw2>,

       <has_da,has_hd2>)(in CDR_SCSI U CDW_SCSI U HD_SCSI(0;4)) 

Fig. 2. User’s Requirements for a PC (������)

in�� or in� !�) is violated, then the process backtracks. The process stops as soon

as a solution has been found or when the backtracking mechanism cannot find any open

choice. In the last case, �� does not admit any solution.

4 Decomposing Configuration Problems

Because of the inter-role constraints, both those in �� and those in � !�, a choice

made by the configurator for a component can influence the valid choices for other

components. In [9, 8] it is shown that the compositional knowledge (i.e. the way the

complex product is made of simpler (sub)components) can be exploited to partition

the constraints that hold for a given component into sets in such a way that the com-

ponents involved in constraints of two different sets can be configured independently.

While such a decomposition has been proved useful in reducing the actual computa-

tional effort in many configuration problems, here we present an enhancement of such

a decomposition mechanism that considers constraints as dynamic entities instead of

static ones.

4.1 Bound and Unbound Constraints

The decomposition capability is based on a bound relation among constraints. We as-

sume that, in any configuration, each individual component cannot be a direct part of

two different (complex) components, neither a direct part of a same component through

two different whole-part relations (exclusiveness assumption on parts).

Let �� � ������ � �� � � and ���������	 be a configuration problem and

the set of constraints associated with � in �� , respectively and let �� "� � 
 � �
���������	. The bound relation � is defined as follows: if �� and �� are two

predicates occurring in � and in ", respectively, that mention both a same partonomic

role � of � then ��" (i.e. if � and " refer, through their predicates, to a same part of

, then they are directly bound in ); if ��" and "�� then ��� (i.e. � and � are

bound by transitivity in ). It is easy to see that � is an equivalence relation.

To solve �� � ������ � �� � �, the configurator must refine the description of 
by specifying the set ������	 of its components and subcomponents. In particular,

it specifies the type of each element in ������	 and, for each partonomic role



(1) configure(CM,T,c,C,V){

(2)   SUBPROBLEMS = <>;

(3)   - add to V the constraints associated with C in CM;

(4)   currentSP=V;

(5)   S=decompose(CM,T,c,currentSP);

(6)   for each s in S push(s, SUBPROBLEMS);

(7)   while(SUBPROBLEMS    <>){

(8)     currentSP=pop(SUBPROBLEMS);

(9)     if(no choice made for the direct components of c involved in currentSP){

(10)       T = insertDirectComponents(CM,T,c,currentSP);

(11)       if(T== FAILURE) return FAILURE;

(12)    }else{

(13)       - choose a direct complex component d of c that has not been configured 

             yet and that is involved in currentSP (let D be the type of d);

(14)       T=configure(CM,T,d,D,currentSP);

(15)       if(T==FAILURE) BACKTRACK;

(16)      }

(17)     - remove satisfied constraints from currentSP;

(18)     if(not solved currentSP){

(19)        currentSP=reviseConstraints(CM,c,currentSP);

(20)        S=decompose(CM,T,c,currentSP);

(21)        for each s in S push(s,SUBPROBLEMS);}

(22)   }//while

(23)   - complete T by inserting all the components and subcomponents of c not 

         involved in the constraints in V

(24)   return T;

(25) }//configure

��

Fig. 3. Configuration algorithm overview

occurring in the conceptual description of type � (the type of component ) in �� , it

specifies which elements in ������	 play that partonomic role.

If �� and �� are two different equivalence classes of constraints induced by the rela-

tion �, let ��������	 and ��������	 be the sets of components in

������	 referred to by constraints in �� and in ��, respectively. Given the ex-

clusiveness assumption on parts, these two sets are disjoint and, for every pair of com-

ponents � 
 ��������	 and � 
 ��������	, there is no constraint in � �
���������	 linking them together. It follows that the choices of the configura-

tor relevant to the components in ��������	 do not interact with those relevant to

the components in ��������	. In other words, �� and �� represent two mutually

independent configuration subproblems.

4.2 Decomposition Mechanisms

In fig. 3 a configuration algorithm making use of decomposition is sketched. For lack

of space, let us illustrate the algorithm just by means of an example. Let’s suppose that

the user wants to configure a �� (described by the conceptual model ���� in fig. 1)

meeting the set � !��� of requirements stated in fig. 2.

At the beginning, the configurator is given the problem�� � � ����� � ���	� ���
���� !����. Besides the requirements� !��� , the set of constraints associated

with �� in ���� are also considered to fully specify the problem (statement in row

� of the algorithm in fig. 3). This initial situation is represented in fig. 4.a.

Initial Decomposition Step (statements in rows 
 and �). Before starting the actual

configuration process, the configurator attempts to decompose the constraints that hold



T1=(pc1)

SUBPROBLEMS = <>

currentSP = [req1,...,req5,co1]

a)

T1=(pc1)

SUBPROBLEMS = <S2 = [req1]>

currentSP = S1 = [req2,...,req5,co1]

b)

T2=(pc1 <has_cdr1 (cdr_scsi1)>

        <has_cdw1 (cdw_scsi1)>

        <has_hd1 (hd_scsi1)>

        <has_mot (mb1)>

        <has_cdt (cdt1)>

        <has_da (da1)>)

SUBPROBLEMS = 

    <S2 = [req1],S12 = [req3,req4,req5]>

currentSP = S11 =[co1’]

c)

T3=(pc1 <has_cdr1 (cdr_scsi1)>

        <has_cdw1 (cdw_scsi1)>

        <has_hd1 (hd_scsi1)>

        <has_mot (mb1 <has_mpcb (mpcb_scsi1)>

                      <has_cs ()>

                      <has_cpu (cpu1)>

                      <has_ram (ram1,ram2,ram3,ram4)>)>

        <has_cdt (cdt1)>

        <has_da (da1)>)

SUBPROBLEMS = <S2 = [req1]>

currentSP = S12 = [req3,req4,req5]

d)

T4=(pc1 <has_cdr1 (cdr_eide1)>

        <has_cdw1 (cdw_eide1)>

        <has_hd1 (hd_scsi1)>

        <has_mot (mb1 <has_mpcb (mpcb_scsi1)>

                      <has_cs ()>

                      <has_cpu (cpu1)>

                      <has_ram (ram1,ram2,ram3,ram4)>)>

        <has_cdt (cdt1 <has_cdr2 (cdr_scsi1)>

                       <has_cdw2 (cdw_scsi1)>)>

        <has_da (da1 <has_hd2 (hd_scsi2)>)>)

SUBPROBLEMS = <>

currentSP = S2 = [req1]

e)

T5=(pc1 <has_cdr1 (cdr_eide1)>

        <has_cdw1 (cdw_eide1)>

        <has_hd1 (hd_scsi1)>

        <has_mot (mb1 <has_mpcb (mpcb_scsi1)>

                      <has_cs ()>

                      <has_cpu (cpu1)>

                      <has_ram (ram1,ram2,ram3,ram4)>)>

        <has_cdt (cdt1 <has_cdr2 (cdr_scsi1)>

                       <has_cdw2 (cdw_scsi1)>)>

        <has_da (da1 <has_hd2 (hd_scsi2)>)>

        <has_mon (acme_mon1)>

        <has_k (acme_k1)>)

SUBPROBLEMS = <>

currentSP = S2 = []

f)

Fig. 4. A Configuration Example

for the target object ��. To do this, it partitions the constraints

�����	�� � ���#�� $ $ $ � ��#
� ��℄ into a set of equivalence classes by computing the

bound relation ��� in this set: it is easy to see that the constraints ��#�� $ $ $ � ��#
� ��
are bound in �� according to the definition of the bound relation. Instead, ��#� is not

bound with any other constraint belonging to �����	�� . It follows that �����	��
can be partitioned into the two equivalence classes of contraints � � � ���#��$ $ $ ���#
�
��℄ and �� � ���#�℄, each one entailing a configuration subproblem.

Resolution of subproblems (while statement in rows � to ��). These subproblems

are mutually independent. One subproblem is chosen as the current one (in this ex-

ample that one relevant to the constraints �� � ���#�� $ $ $ � ��#
� ��℄) and the other

ones (in this example only that one relevant to �� � ���#�℄) are pushed into the

�%�����& �� stack (see fig. 4.b).

Insertion of direct components (statement in row ��). To solve �� the configurator

refines the description of the target object by inserting in it only those direct components

of �� involved in the constraints relevant to the current subproblem.More precisely, the

configurator considers each partonomic role � of �� class occurring in the constraints

belonging to �� and makes for � two basic choices: it chooses the number of direct



components, playing the partonomic role �, to insert into the configuration and, for each

one of them, it chooses its type. In this example, let’s suppose that a CD reader, a CD

writer, a hard disk (all of the SCSI type), a motherboard, a CD tower and a disk array

are inserted into the current configuration (fig. 4.c). Since configuration is accomplished

by means of a search process, it is worth pointing out that all the open choices (for

instance, the alternative EIDE type for the CD reader, the CD writer and the hard disk,

or the possibility of inserting more than one hard disk) have to be remembered as they

may be explored as a consequence of a backtracking.

Removal of satisfied constraints (statement in row ��). The current tentative configu-

ration �� does not contradict any constraint relevant to the current subproblem, more-

over requirement ��#� (imposing the existence of a disk array in the configured PC)

is now satisfied and it can be removed from �����	�� . The truth values of the other

constraints belonging to �����	�� cannot be computed yet, since the configurator

has not yet configured all the parts of the target object which these constraints refer to.

For instance, a CD tower has been inserted into the current tentative configuration � �,

but it has not been configured yet; therefore, up to this point, it is impossible to know

how many CD readers the CD tower will contain and thus the truth value of ��#� is still

unknown. Since �����	�� still contains some constraints (whose truth values are un-

known) referring to parts of some direct components of �� not yet considered by the

configurator, the subproblem relevant to �����	�� is not solved yet.

Further Decomposition Step (rows � to ��). After having refined the description of

�� with the insertion of some of its direct components, the configurator attempts a

further decomposition of the current subproblem.

Revision of constraints and re-computation of bound relation. To perform this de-

composition step, the configurator dynamically updates the form of the constraints

in �����	�� (i.e. the constraints are treated as dynamic entities). In this sample

case, even if the truth value of constraint �� cannot be determined in the tentative

configuration ��, for some predicates occurring in �� it is possible to say whether

they are true or false. In particular, the predicates ��
�� 
���	��� '� ������� �		,
��
�� ����	��� ��� ������� �		 and ��
�� ����	��� ��( ������� �		 are

all true in ��. Therefore, in the context of the choices made by the configurator and that

leaded to ��, these predicates can be substituted by their truth values in �� and �� can

be simplified in the following way:

����℄��
�� ��	� 
�� ���	��� ����  �� 	� ��
�� ��	� 
�� ��	��� �	.

Since the revision of the constraints relevant to the current subproblem may remove

some predicates from the constraints (as it happens for �� in this example), it may

happen that some constraints that were previously bound have now become unbound,

therefore it makes sense to compute the bound relation again, in this revised set of con-

straints. In our example, the relation ��� induces a partitioning of the revised set of

constraints �����	�� � ���#�� ��#�� ��#
� ���℄ into the two classes ��� � ����℄
and ��� � ���#�� ��#�� ��#
℄ of bound constraints. This means that in the context of

tentative configuration �� (fig. 4.c), the current subproblem has been further decom-

posed into a set of independent subproblems.

Resolution of subproblems (while statement in rows � to ��). As in the previous exe-

cution of the body of the while, the configurator chooses one subproblem as the current



one (in this case, �����	�� � ���) while the other ones (in this case only that one

relevant to ���) have been pushed into the �%�����& �� stack. All the direct

components of �� involved in the set �����	�� of constraints have already been in-

serted into the tentative configuration. To solve ���, the motherboard�� needs to be

configured: indeed, ��� refers both to the main printed circuit board and to the optional

SCSI controller, which are �� components (rows �� to �
). This means solving the

configuration problem ����� � ����� � ��������	
������� ��
���.

The configuration of �� has to take into account both the set � �� of constraints

and constraint �� associated with��	
������ class in ���� (fig. 1).

In this example, a SCSI main printed circuit board�� ���� is inserted into the

tentative configuration, therefore no SCSI controller is inserted (because of ��). To

complete the configuration of��, the configurator inserts also a CPU (���) and four

memory modules (fig. 4.d). Constraint �� � is now satisfied, thus it is removed from

�����	�� . Since �����	�� does not contain any other constraint, the configuration

of �� represents a solution to the current subproblem. The subproblem entailed by

��� � ���#�� ��#�� ��#
℄ becomes the current one.

This subproblem involves the �� direct complex components �	� and ���. It

should be clear that there is no way of extending the tentative configuration �� by

configuring these two components while satisfying the constraints in � ��.

Indeed, ��#� and ��#� require that at least one CD reader and at least one CD writer

are inserted into �	� and, given the conceptual model ���� , these two devices must

be the SCSI type. The conceptual model states also that all the hard disks in the disk

array are the SCSI type (and that there is at least one hard disk in a disk array). How-

ever, �� already contains � SCSI devices; it follows that �� would have at least � SCSI

devices and this is in contradiction with requirement ��#
. Therefore the configuration

process has to backtrack and to revise some choices. It is worth noting that it would be

useless to find an alternative configuration for the motherboard, since�� was config-

ured while considering the subproblem relevant to � ��, which was independent from

the one entailed by ��� (for which the failure occurred). Therefore, let’s suppose that

the backtracking mechanism changes from SCSI to EIDE the types of the CD reader

and of the CD writer playing the partonomic roles 
�� ��� and 
�� ���, respec-

tively. After that, the tentative configuration �� is produced (fig. 4.e). It is easy to see

that �� satisfies all the constraints in �� � ���#�� $ $ $ � ��#
� ��℄, therefore it represents

a solution to the first of the two subproblems the main configuration problem �� � was

decomposed into (see above).

To solve the main problem, the tentative configuration��must be extended in order

to solve the subproblem entailed by �� � ���#�℄ too. �
 in fig. 4.f is a global solution.

This simple example illustrates a situation in which the configurator succeeds in fur-

ther decomposing the current subproblem, after having inserted the direct components

of the target object which the current set �����	�� of constraints refer to. How-

ever, it is worth noting that, in general, the configurator attempts to further decompose

the current subproblem also after having completely configured each direct complex

component of the target object (see the algorithm in fig. 3). Moreover, for the sake

of simplicity, the example focuses only on the problem decomposition performed by

partitioning the constraints relevant to the target object: it should be noticed that the



decomposition is not limited to the target object, but, on the opposite, it is recursively

performed also when configuring its complex (sub)components (by the execution of the

recursive invocation in row ��) .

5 Experimental Results

The algorithm described in the previous section has been implemented in a configura-

tion system written in Java (JDK 1.3). In this section we report some results from tests

conducted with a computer system configuration domain. The experiments are aimed

at testing the performance of the configuration algorithm described in this paper and at

comparing it (w.r.t. the computational effort) with a configuration strategy without de-

composition and with the most performant decomposition strategy previously defined

is this framework, the one called in [9] “strategy �” (see [8, 9]). We call the algorithm

in [9] static decomposition algorithm and the algorithm in Section 4.2 dynamic decom-

position algorithm. All experiments were performed on a Mobile Pentium III 933 MHz

256 MB Windows 2000 notebook.

Using the computer system model, we generated a test set of ��� configuration

problems; for each of them we specified the type of the target object (e.g. a PC for

graphical applications) and some requirements that must be satisfied (e.g. it must have

a CD writer of a certain kind, it must be fast enough and so on). In � problems we

intentionally imposed a set of requirements inconsistent with the conceptual model (in

average, these problems are quite hard). A problem is considered solved iff the config-

urator provides a solution or it detects that the problem does not admit any solution.

For each problem the CPU time and the number of backtrackings that it required have

been measured. The configuration algorithms include some random choices: e.g. after

decomposing a problem, the selection of the current subproblem (see Section 4.2) is

performed randomly. To reduce the bias due to “lucky” or “unlucky” random choices,

every experiment was performed ten times and the average values of measured param-

eters were considered.
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The strategy with dynamic decomposition proves to be effective in reducing the

time and the number of backtrackings required by a problem to be solved w.r.t. both the

algorithm without decomposition and the algorithm with static decomposition. Figure 5

shows the frequency histograms of the CPU times. On the X axis is reported the time

interval taken in consideration and on Y axis is reported the number of problems solved

within the given interval. The chart shows that the dynamic decomposition is rather

effective in “moving” CPU times to low values, particularly to values less than � sec-

onds. Figure 6 reports the relative cumulative distribution graphs for CPU times. In this

case the Y axis reports the cumulative frequencies of problems solved within the given

interval. It may be worth to notice that the �� 	
 percentile for strategy without decom-

position is ��� s, for static decomposition it is � s, while it is �$
 s for strategy with

dynamic decomposition. Results regarding CPU times are reflected by those regarding

the number of backtrackings. Histograms and graphs are similar to those reported for

CPU times (because of space constraints it is not possible to show them here). The �� 	


percentile for the number of backtrackings is ����� for no decomposition, �
� for

static decomposition and ��� for dynamic decomposition, resulting in a significative

reduction of the number of backtrackings, too.

6 Conclusion and Discussion

In some configuration domains the theoretical intractability of configuration problems

can appear also in practice since a few configuration problems can require a huge

amount of CPU time to be solved. Some tasks, such as interactive configuration and

on-line configuration on the Web, need low response times by the configurator, there-

fore the issue of controlling in practice the computational complexity of configuration

problems should be dealt with.

In this paper we have investigated the role of problem decomposition in improving

the efficiency of configurators.

Other researchers have recognized the importance of decomposition in solving diffi-

cult configuration problems. In particular, in [2], the authors stress the need of designing

modular configuration models with low interaction among modules in such a way that

the modules can be solved one by one. However, little attention has been paid to provide

the configurator with mechanisms to automatically decompose configuration problems.

We have defined a decomposition technique, in a structured logical approach to

configuration, that exploits compositional knowledge in order to partition configuration

problems into a set of simpler (and independent) subproblems.

In [9, 8] some decomposition mechanisms were presented. Although these decom-

position techniques have proved to be useful in reducing CPU times, still they do not

allow to solve the large majority of the problems in a time acceptable for interactive

and on-line configuration, i.e. in less than few seconds. In this work we have extended

both the one called in [8] constraints-splitting decomposition and those defined in [9].

Differently from constraints-splitting decomposition, the mechanism presented here al-

lows the configurator to perform decomposition recursively by partitioning both the

constraints directly associated with the target object and those associated with its com-

ponents and subcomponents. Moreover, in the decomposition techniques defined in [9,



8], the constraints are treated as static entities, while here we have proposed an improved

mechanism that is able to perform more decompositions by dynamically simplifying the

constraints during the configuration process.

Some experimental results conducted in a computer system configuration domain

are reported which show the effectiveness of the decomposition technique presented

here.

Few cases of the test set still required a huge amount of CPU time (more than

�� s), therefore we do not claim that decomposition is the ”silver bullet” for difficult

configuration problems. However, the experimental results suggest that it can play an

important role in increasing the efficiency of configurators, therefore it is worth investi-

gating various integrations of decomposition and other techniques (off-line knowledge

compilation, re-using past solutions and so on).
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