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Abstract

Background: Disk herniation and disk bulge are two common disorders of lumbar intervertebral disks (IVDs) that often result
in numbness, pain in the lower limbs, and lower back pain. Magnetic resonance (MR) imaging is one of the most efficient
techniques for detecting lumbar diseases and is widely used for making clinical diagnoses at hospitals. However, there is a lack
of efficient tools for effectively interpreting massive amounts of MR images to meet the requirements of many radiologists.

Objective: The aim of this study was to present an automatic system for diagnosing disk bulge and herniation that saves time
and can effectively and significantly reduce the workload of radiologists.

Methods: The diagnosis of lumbar vertebral disorders is highly dependent on medical images. Therefore, we chose the two
most common diseases—disk bulge and herniation—as research subjects. This study is mainly about identifying the position of
IVDs (lumbar vertebra [L] 1 to L2, L2-L3, L3-L4, L4-L5, and L5 to sacral vertebra [S] 1) by analyzing the geometrical relationship
between sagittal and axial images and classifying axial lumbar disk MR images via deep convolutional neural networks.

Results: This system involved 4 steps. In the first step, it automatically located vertebral bodies (including the L1, L2, L3, L4,
L5, and S1) in sagittal images by using the faster region-based convolutional neural network, and our fourfold cross-validation
showed 100% accuracy. In the second step, it spontaneously identified the corresponding disk in each axial lumbar disk MR
image with 100% accuracy. In the third step, the accuracy for automatically locating the intervertebral disk region of interest in
axial MR images was 100%. In the fourth step, the 3-class classification (normal disk, disk bulge, and disk herniation) accuracies
for the L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1 IVDs were 92.7%, 84.4%, 92.1%, 90.4%, and 84.2%, respectively.

Conclusions: The automatic diagnosis system was successfully built, and it could classify images of normal disks, disk bulge,
and disk herniation. This system provided a web-based test for interpreting lumbar disk MR images that could significantly
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improve diagnostic efficiency and standardized diagnosis reports. This system can also be used to detect other lumbar abnormalities
and cervical spondylosis.

(JMIR Med Inform 2021;9(5):e14755) doi: 10.2196/14755
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Introduction

Magnetic resonance imaging (MRI) is a widely used technique
for detecting lumbar disorders, and its advantages include high
image quality and noninvasive and ionization-free radiation.
Disk herniation and disk bulge are two common types of lumbar
intervertebral disk (IVD) injuries that often result in low back
pain and tingling and numbness in the legs [1,2]. The diagnosis
of disk disorders is highly dependent on radiology methods such
as MRI. The leading question is as follows: how can radiologists
interpret massive amounts of magnetic resonance (MR) images
quickly and accurately for real-world applications? Motivated
by machine learning– and deep learning–based clinical practice
[3-6], we propose an automatic diagnosis system for diagnosing
disk bulge and disk herniation with MR images via deep
convolutional neural networks (CNNs), which can reduce
radiologists’ workload and provide the consistency required to
produce standardized diagnosis reports.

Koh et al [7] proposed a computer-aided framework that uses
several heterogeneous classifiers (ie, a perceptron classifier, a
least mean squares classifier, a support vector machine classifier,
and a k-means classifier) to construct a 2-level classification
scheme for disk herniation diagnosis, which achieved 99%
accuracy for 70 subjects. A probability classifier based on
Gaussian models was proposed to detect abnormal IVDs. This
model used the following three features: appearance, location,
and context [8]. A study [9] on texture features that were
obtained from IVD MR images used three different classifiers
(ie, the back-propagation neural network, k-nearest neighbor,
and support vector machine classifiers) to classify normal disks
and IVDs and achieved a maximum accuracy of 83.33%.
Additionally, many other methods have been proposed to
automatically diagnose IVD diseases based on MR images
[10-13]. Most of these models are for sagittal MR images, and
there are very few studies that have used axial lumbar MR

images, which are even more important in real clinical scenarios
to identify disk bulge and herniation [13]. Most previous studies
have mainly focused on binary classification (disease and
normal) [7-9,11,12], as it is rare to study 2 diseases at the same
time. In this study, we present a deep CNN–based diagnosis
system for diagnosing lumbar disk bulge and disk herniation
based on axial MR images. CNN analysis has proven to be an
efficient method that is widely used to solve various image
problems and has achieved huge success in many applicable
fields [14-18].

This study aimed to develop a clinical applicable system that
requires as little information from doctors as possible for
diagnosing disk bulge and disk herniation via deep learning
methods [19-21].

Methods

Data Set
In this study, lumbar MR Images and clinical diagnosis reports
were collected from the Medical Imaging Department of Xi’an
Number 3 Hospital, which is a large-scale grade 3A general
hospital in Xi’an, China. The sagittal and axial T2-weighted
lumbar MR images of 500 patients were acquired by using a
Philips Ingenia 3.0T scanner and exported in the Digital Imaging
and Communications in Medicine (DICOM) format. The main
diagnosis was based on axial images, as they display the
morphology of IVDs more clearly than other images. For each
subject, midsagittal images were used to locate IVDs in axial
images. A total of 3555 axial images were used in this study.
These images were labeled as normal disk, disk bulge, and disk
herniation according to diagnosis reports and rechecked by an
experienced radiologist, as shown in Table 1. Examples of
midsagittal lumbar images and axial images of normal disks,
disk bulge, and disk herniation are shown in Figure 1.

Table 1. The number of axial images in each category.

Total, nHerniation images, nBulge images, nNormal images, nIntervertebral disk

6663637593L1-L2a

69930120549L2-L3

71786284347L3-L4

749178413158L4-L5

724244242238L5-S1b

355557410961885All intervertebral disks

aL: lumber vertebra.
bS: sacral vertebra.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e14755 | p. 2https://medinform.jmir.org/2021/5/e14755
(page number not for citation purposes)

Pan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.2196/14755
http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Examples of lumbar MR images. (A) A sagittal lumbar MR image in which 5 IVDs are labeled. (B) A sagittal lumbar MR image in which
6 vertebral bodies are enclosed in boxes. (C) An axial lumbar MR image of a normal disk. (D) An axial lumbar MR image of disk bulge. (E) An axial
lumbar MR image of disk herniation. L: lumbar vertebra; MR: magnetic resonance; S: sacral.

Overall Diagnosis System
Our system consists of 4 steps, as shown in Figure 2. In the first
step, the six lumbar vertebral bodies (lumbar vertebra [L] 1, L2,
L3, L4, L5, and sacral vertebra [S] 1) in midsagittal images
were detected and located. The second step was to identify the
corresponding IVDs in each axial MR image. Afterward, these

axial images were grouped into five categories (L1-L2, L2-L3,
L3-L4, L4-L5, and L5-S1). In the third step, the IVD regions
of interest (ROIs) in axial images were segmented to decrease
the noise of the images. In the fourth step, each ROI image that
included the five IVDs was classified as normal disk, disk bulge,
or disk herniation.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e14755 | p. 3https://medinform.jmir.org/2021/5/e14755
(page number not for citation purposes)

Pan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Overall diagnosis system. This system consists of 4 steps. First, vertebral bodies (L1, L2, L3, L4, and L5) in sagittal lumbar magnetic resonance
images were automatically located by using the faster R-CNN, and the middle point of each vertebral body was calculated. Second, the axial images
were grouped into 5 categories. Each category corresponded to an intervertebral disk (ie, the L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1 intervertebral
disks). Third, the intervertebral disk regions of interest in each axial MR image were segmented using the faster R-CNN. Finally, in each category, the
region-of-interest images were classified as images of normal disks, disk bulge, and disk herniation using ResNet101. L: lumbar vertebra; R-CNN:
region-based convolutional neural network; S: sacral.

Automatically Locating Vertebral Bodies in
Midsagittal Images
The faster region-based CNN (R-CNN) [19] was developed
from the R-CNN [22] and the fast R-CNN [23], which unifies
the target detection process (including candidate region
generation, feature extraction, classification, and position
refinement) into 1 deep network framework and greatly
improves operational speed. In step 1, the faster R-CNN was
used to locate the vertebral bodies in sagittal MR images.

First, the six vertebral bodies (L1-S1) in 200 midsagittal images
were manually located under the guidance of a radiologist.
Second, the faster R-CNN was trained to detect and locate each
vertebral body. We detected vertebral bodies instead of disks
because they were easier to manually locate. Finally, the middle
point coordinate of each vertebral body was calculated based
on bounding box coordinates, as the precise location of the
vertebral bodies would be used to locate the vertebrae in axial
MR images, as shown in Figure 1 (step 1).

The faster R-CNN was implemented with Caffe [24] (Berkeley
Vision and Learning Center deep learning framework) and
trained in parallel on 4 Nvidia Titan X graphics processing units.

Accuracy, sensitivity, and specificity [25,26] were analyzed to
comprehensively evaluate the performance of this system.

Identifying the Corresponding IVD in Each Axial MR
Image
For each subject, 15 axial slices were needed to identify the
corresponding IVDs (L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1)
in each axial MR image. In step 1, the center point coordinates
of the six vertebral bodies in the sagittal images were calculated.
The directed distances from these center points to each axial
image were calculated for each subject based on the spatial
location relationship between sagittal images and axial images.
The directed distances indicated which IVDs were closer to the
corresponding IVDs in each axial image and which IVDs were
located above or below the corresponding IVDs, as shown in
Figure 3. Based on these distances, the axial slices were
classified into 5 categories (L1-L2, L2-L3, L3-L4, L4-L5, and
L5-S1). The conversion from DICOM patient-based coordinates
to 2D computer coordinates was conducted in order to establish
the relationship between the primitively processed images and
the 3D DICOM coordinates. The detailed procedures are
depicted in Multimedia Appendix 1.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e14755 | p. 4https://medinform.jmir.org/2021/5/e14755
(page number not for citation purposes)

Pan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. The intervertebral disks (from L1-L2 to L5-S1) in each axial image were located by calculating directed distances. The red dot shows the
middle point of each vertebral body in a sagittal image. The blue line depicts the directed distance from the red dot to a specific axial image. L: lumbar
vertebra; S: sacral.

Locating IVD ROIs in Axial MR Images
Axial lumbar MR images contain large amounts of unrelated
areas. In order to focus on IVDs and extract more relevant
features, IVD areas were labeled manually in 1237 axial images,
including normal disk areas, bulging disk areas, disk herniation
areas, and the L1-L2 to L5-S1 IVD areas. The IVD areas of
each ROI image needed to be located to train the faster R-CNN,
and our fourfold cross-validation showed 100% accuracy.
Afterward, the ROIs in each axial lumbar image were detected
and extracted using the faster R-CNN, as shown in Figure 2
(step 3). We reserved a larger area for the components
surrounding IVDs, as they may also help with identifying the
condition of the disks (eg, the compression of the spinal canal).

Classification of ROI Images
It is worth mentioning that the degradation problem of the
ultradeep CNN may result in reduced classification accuracy
as the depth of the CNN increases. He et al [27] proposed a
deep residual network framework that can solve this problem
by using the residual block method, and this was proven to have
significant accuracy for the ImageNet validation set [27-29].
The residual architecture of ResNet101 is shown in Figure 2
(step 4).

According to the diagnosis reports, in every category (L1-L2
to L5-S1), a total of 3555 axial MR images were labeled as
normal disk, disk bulge, or disk herniation. All 3555 ROI images
were reviewed by an expert radiologist to confirm whether the
images conformed to the labels. Afterward, ResNet101 was
used to conduct the 3-class classification for each category, and
our fourfold cross-validation showed classification accuracies
of 92.7%, 84.4%, 92.1%, 90.4% and 84.2% for the L1-L2,
L2-L3, L3-L4, L4-L5, and L5-S1 IVDs, respectively. In this
step, a cost-sensitive CNN was used to test for imbalances in
the 3-class classification data set [30]. Relevant mathematical
theory is provided in Multimedia Appendix 1.

Results

We focused on images that showed disk bulge, disk herniation,
and normal disks. From Table 1, we can see that the probabilities
of disk bulge and disk herniation in the L1-L2 and L2-L3 IVDs
are low, and disk bulge tended to occur more commonly in the

L3-L4, L4-L5, and L5-S1 IVDs. The L5-S1 IVD is the most
common location of disk herniation. This is probably because
it bears more weight and pressure than the other locations.

Discussion

Principal Findings
Our system is comprised of 4 steps. First, the system
automatically located vertebral bodies (from L1 to S1) in sagittal
images by using the faster R-CNN, which was trained on 200
manually cropped images. Our fourfold cross-validations
showed 100% accuracy. This high location accuracy shows that
the faster R-CNN method can more accurately locate vertebral
bodies than many other methods, such as the Gabor filter bank
method [31], which is a method based on measurements of disk
signal intensity and structure [7]. Second, the disk positions
(from L1-L2 to L5-S1) in each axial image were calculated
based on the equations for coordinate conversion. We achieved
an accuracy of 100%. Third, the system automatically segmented
IVD ROIs in axial MR images by using the faster R-CNN,
which was trained on 1300 manually boxed images that included
all five types of disks (from L1-L2 to L5-S1) and the disk
conditions (normal, herniation, and bulge). The mean average
precision [21] reached 100%. This high accuracy was the result
of the excellent performance of the faster R-CNN. Finally, all
ROI images were classified as normal, bulge, and herniation
by using ResNet101. The average accuracies for the 3-class
classification of the L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1
IVDs were 92.7%, 84.4%, 92.1%, 90.4%, and 84.2%,
respectively. All relevant results are shown in Figure 4. Previous
studies have mainly focused on comparing IVDs affected by 1
disease (disk bulge or herniation) with normal IVDs. This is
known as a binary classification. For example, the performance
value of one IVD classification system was 86.5%, and this was
based on a sparse shape reconstruction from a statistical shape
model [32]. Additionally, an accuracy of 92.78% was reported
by a study that classified normal disks and disk bulge by using
a program called IVD Descriptor [13]. Compared to the
accuracies of these previous studies, our accuracies were roughly
the same or slightly inferior. This was mainly because a 3-class
classification system is often less accurate than a binary
classification system.
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Figure 4. Results of the 3-class classification (normal disk, disk bulge, and disk herniation). (A) The average accuracies of the classification system
(calculated using ResNet101) for the following five categories: L1-L2, L2-L3, L3-L4, L4-L5 and L5-S1. The rows and columns of all heat maps represent
ground truth labels and predicted labels, respectively. The x-axis shows the five intervertebral disks. (B) A heat map of the classification accuracies for
category L1-L2. The color scale expresses the accuracy. (C) A heat map of the classification accuracies for category L2-L3. The color scale expresses
the accuracy. (D) A heat map of the classification accuracies for category L3-L4. The color scale expresses the accuracy. (E) A heat map of the
classification accuracies for category L4-L5. The color scale expresses the accuracy. (F) A heat map of the classification accuracies for category L5-S1.
The color scale expresses the accuracy. L: lumbar vertebra; S: sacral.

Based on our results, the classification accuracies for the L2-L3
and L5-S1 IVDs were lower than those for other disks. The
shape of a normal disk is somewhat different from the L1-L2
to L5-S1 IVDs. With regard to the L2-L3 disks, several images
were blurry, and it was difficult to identify subtle differences.
This, coupled with our small sample of herniated disks, had a
considerable impact on our classification accuracy. Data quality
may become a crucial factor that could restrict the performance
of algorithms used in research [33]. With regard to the L5-S1
disks, the normal disks were similar in shape to that of bulged
disks in axial images. There were also a few images that were

wrongfully classified by our system, which resulted in a lower
classification accuracy.

Web-Based Diagnosis System

We used the Django framework [34] to develop an automatic
diagnosis system for radiologists that could analyze inputted
medical images and show results as normalized diagnosis reports
(a PDF file). The appearance and functions of the reports are
shown in Figure 5. This system can be deployed in multiple
radiology departments to analyze patients’ lumbar MR images
and collect more images to improve radiologists’ IVD
interpretation performance. This system is freely available [35].
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Figure 5. Appearance and functions of the reports of the web-based automatic diagnostic system. (A) This is the page for uploading a folder. (B)
Diagnostic results in tabular form. (C) The diagnostic report in the Unified format. LDP: lumbar disk protrusion.

In this paper, we present an automatic diagnosis system for
diagnosing disk bulge and disk herniation with axial MR images
via deep convolutional neural networks. This system can
automatically determine the position and the condition of IVDs
in axial MR images. Therefore, this system could help reduce
the workloads of radiologists by analyzing lumbar MR images
via a standardized method. In addition, this system can be
expanded to analyze other types of lumbar diseases, such as

cervical spondylosis. However, there are some limitations to
using this system. Data from this system could be fundamentally
limited by the quality of images (eg, when the image is blurry),
making it difficult to identify subtle differences. The system is
also limited by the size of the total data set, as it is relatively
small for deep convolutional neural networks. Our future work
will focus on the following two aspects: (1) developing this
system by using a more targeted method that analyzes the
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specific features of MR images, and (2) gathering more MR
images to train a more practical and complete automatic

diagnosis system.
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MR: magnetic resonance
MRI: magnetic resonance imaging
R-CNN: region-based convolutional neural network
ROI: region of interest
S: sacral vertebra

Edited by G Eysenbach, Q Zeng; submitted 18.05.19; peer-reviewed by G Lim, S Kim, Z Li; comments to author 02.09.20; revised
version received 27.10.20; accepted 15.04.21; published 21.05.21

Please cite as:
Pan Q, Zhang K, He L, Dong Z, Zhang L, Wu X, Wu Y, Gao Y
Automatically Diagnosing Disk Bulge and Disk Herniation With Lumbar Magnetic Resonance Images by Using Deep Convolutional
Neural Networks: Method Development Study
JMIR Med Inform 2021;9(5):e14755
URL: https://medinform.jmir.org/2021/5/e14755
doi: 10.2196/14755
PMID:

©Qiong Pan, Kai Zhang, Lin He, Zhou Dong, Lei Zhang, Xiaohang Wu, Yi Wu, Yanjun Gao. Originally published in JMIR
Medical Informatics (https://medinform.jmir.org), 21.05.2021. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The
complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright
and license information must be included.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e14755 | p. 10https://medinform.jmir.org/2021/5/e14755
(page number not for citation purposes)

Pan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://medinform.jmir.org/2021/5/e14755
http://dx.doi.org/10.2196/14755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

