
Automatically Estimating iSAX

Parameters

Nuno C. Castro and Paulo J. Azevedo

HASLab / INESC TEC

Department of Informatics

University of Minho, Portugal

{castro,pja}@di.uminho.pt

Abstract. The Symbolic Aggregate Approximation (iSAX) is widely used in time

series data mining. Its popularity arises from the fact that it largely reduces time

series size, it is symbolic, allows lower bounding and is space efficient. However,

it requires setting two parameters: the symbolic length and alphabet size, which

limits the applicability of the technique. The optimal parameter values are highly

application dependent. Typically, they are either set to a fixed value or experimen-

tally probed for the best configuration. In this work we propose an approach to

automatically estimate iSAX’s parameters. The approach – AutoiSAX – not only

discovers the best parameter setting for each time series in the database, but also

finds the alphabet size for each iSAX symbol within the same word. It is based on

simple and intuitive ideas from time series complexity and statistics. The technique

can be smoothly embedded in existing data mining tasks as an efficient sub-routine.

We analyze its impact in visualization interpretability, classification accuracy and

motif mining. Our contribution aims to make iSAX a more general approach as it

evolves towards a parameter-free method.

Keywords. Time Series, Data Mining, Representation, iSAX, Parameters.

1. Introduction

The large dimension of time series databases has generated the need for scalable al-

gorithms to mine these data, including indexing [Agrawal et al., 1995, Camerra et al.,

2010, Faloutsos et al., 1994], classification [Geurts, 2001], clustering [Kalpakis et al.,

2001], anomaly detection [Dasgupta and Forrest, 1996], and motif discovery [Castro and

Azevedo, 2010, Chiu et al., 2003, Mueen et al., 2009]. The key to the efficiency of these

algorithms is to select a suitable representation of the data [Ding et al., 2008, Lin et al.,

2003]. Typically the data do not fit into main memory and disk I/O remains very ineffi-

cient [Lin et al., 2007], making the task of mining massive datasets difficult. Time series

representations reduce the large size of the data while maintaining its overall characteris-

tics [Ding et al., 2008]. From the plethora of existing time series representations [Falout-

sos et al., 1994, Chan and Fu, 1999, Keogh et al., 2001, Chakrabarti et al., 2002, Korn

et al., 1997, Ding et al., 2008], the Symbolic Aggregate Approximation (iSAX) [Shieh

and Keogh, 2008, Lin et al., 2003, Lin et al., 2007] has been widely used in the time

series data mining community [Lin et al., 2007] as it is symbolic, reduces the size of the

time series, allows lower bounding, is space efficient, and robust to noise and missing

values. In practice, iSAX converts a time series of length n to a symbolic sequence of l

symbols from an alphabet of size a. First, it divides the original series in l segments of

size n/l. Then, it splits the amplitude of the series into equiprobable intervals, according

to the Gaussian distribution, by using a set of breakpoints (Table 1). Finally, each seg-

ment is averaged and assigned a symbol according to the interval where the segment’s

average is. This process is shown in Fig. 1.

It can easily be observed that the best number of segments (l) and the segment’s

alphabet size (a) is specific to each time series in the database. Nevertheless, a more

generic approach has been practiced by iSAX adopters: both parameters are typically set

to a fixed value (e.g. 8) [Ding et al., 2008, Lin et al., 2007]. This means that the recipe

is to convert each time series to a length 8 iSAX word, regardless of its origin, size and

behavior. Each symbol should be selected from an alphabet of 8 possible characters. This

recipe does not generalize well, as time series (and databases) have their own intrinsic

dimensionality and cardinality. The crucial step of finding the best parameter setting still

remains a ”black art” [Hu et al., 2011].

The effect of using a fixed representation is shown in Figure 2 where a time series

from the power demand dataset (available at [Castro and Azevedo, 2011]) is shown.

To get an intuition on how much information iSAX is retaining from the original

time series, the original time series is removed from the bottom part of the image and

only the representation is shown. It can be observed that for this particular example,

using fixed iSAX (bottom) does not provide a good visual intuition on the original time

series’ shape. The image highlights the fact that a fixed length and alphabet size should

not be used, as one cannot expect that every time series nicely matches a fixed parameter

setting. An automatic approach to automatically derive a good parameter setting for each

time series is required.

The current alternative to setting fixed parameters is to experimentally re-run the

algorithm until the best parameter setting is found. In large datasets, to test all possible

combinations of parameters is simply unfeasible [Castro and Azevedo, 2011]. For exam-

ple, building an index with 1000000 time series can take as much as 6 days [Camerra

et al., 2010]. Also, in unsupervised data mining tasks (e.g. clustering) it may not be pos-

sible to evaluate what the best parameter setting is, even by testing all possible configura-

tions. Furthermore, to use large alphabet sizes is not space-efficient. The only solution is

to use a fixed parameter setting regardless of the dataset, which is not a correct solution

for all time series, as we have highlighted.

In this work, we introduce a novel technique to automatically derive parameters

for the iSAX representation. This technique, referred as AutoiSAX, finds the symbolic

length that best describes each time series in the database. Furthermore, it also finds the

alphabet size for each iSAX symbol individually, as in iSAX each symbol can have a

different alphabet size (it is this feature that allows iSAX to create time series indexes).

Different sections of the series can behave differently (Figure 2). Similarly to the sym-

bolic length parameter, using the same alphabets for all the symbols in the same series

can lead to incorrect results.

The technique is based on two observations.

Regarding the symbolic length parameter, a more complex time series should need

a larger number of iSAX symbols to capture its larger number of ”peaks and valleys”. A

simpler time series may only need a handful of symbols to be represented (e.g. a constant

time series would only require one symbol).

To explain the intuition for the alphabet parameter, one can think of the smallest

rectangle that can visually enclose a time series section. A section with a large standard

deviation requires a larger rectangle to contain it. On the other hand, a small rectangle

should be enough to enclose a time series section presenting a low standard deviation

(almost constant behavior). Larger rectangles correspond to an alphabet with fewer sym-

bols, each one taking a large chunk of the amplitude space. Smaller rectangles to a larger

alphabet, each one taking only a small portion of the available amplitude space.

We incorporate these observations into iSAX using two simple techniques. To cap-

ture a series complexity the Complexity Estimate (CE) [Batista et al., 2011] is used. It

is computed by simply ”stretching” the time series into a straight line and then measur-

ing the line’s length. It has been experimentally compared to twelve other (more elabo-

rate) measures such as the Kolmogorov complexity and entropy with competitive results

[Batista et al., 2011]. Computing this measure is intuitive, requires low time and space

complexity, and zero parameters. Standard deviation is used to calculate a segment’s

variability. Note that zero extra space is required to add this information to the iSAX

representation. That magic is to take advantage of the actual parameters we are trying to

optimize: symbolic length and alphabet size, to encode the information.

In Figure 3, AutoiSAX is used to derive the representation’s parameters. The gen-

erated symbolic length captures the series behavior more accurately than the fixed pa-

rameter. It also automatically generates a different alphabet size for each symbol, as they

clearly have different behaviors. To fit bigger standard deviations’ segments larger rect-

angles are required (coarser resolution). For smaller deviation segments, smaller rect-

angles suffice (finer resolution). Using AutoiSAX, it is straightforward to perceive the

original time series shape by looking only at its representation (bottom). This is one of

the primary goals of time series representations. We do not intend to show that larger

parameters generate better representations. For example, in the automatic representation

there are alphabet sizes and lengths smaller than the fixed ones. Our aim is solely to au-

tomatically determine the parameters, regardless of the relative order when compared to

the fixed representation.

The main contribution of this work is that it enables automatic efficient parameter

generation for iSAX. Up until now, brute-force search was required. It also automati-

cally derives, for the first time in the literature, different alphabet sizes within the same

iSAX word. Previously, the use of different intra-word resolutions was limited to index-

ing, as it is untenable and cumbersome to manually define multiple resolutions for dif-

ferent symbols of the same iSAX word. In practice, our technique fully exploits iSAX

capabilities to other mining tasks. Besides the parameter estimation is a major feature

per-se, advantages in visualization, classification, motif discovery performance are also

obtained.

This section is organized as follows: in section 2 necessary background and notations

are introduced. Section 3 analyzes existing SAX extensions and parameter estimation

techniques. The AutoiSAX approach is presented in section 4. The experimental analysis

of our approach is laid in section 5. In section 6 we discuss the main work breakthroughs

and discuss future work.

2. Background and Notation

In this section we introduce some notations and useful definitions.

Definition 1. A word W = w1w2 . . .wl is the symbolic representation of a time series T ,

with wi ∈ ∑.

The symbolic length of word W is l. The ∑ is the representation alphabet. For exam-

ple, ∑ = a,b,c,d. The alphabet size is called the representation cardinality or resolution.

The representation of time series S by a generic representation technique R is denoted by

R(T) = W . For the scope of this work, the matching between two time series T1 and T2

can be defined as follows.

Definition 2. Time series T1 and T2 match if R(T1) = R(T2).

In this work we explore an approach that has shown to be general and competitive in

many domains and problems available in the literature, as experimentally shown in [Ding

et al., 2008] – iSAX. For completeness, we also introduce its first version – SAX – in this

chapter. As a symbolic approximation, SAX takes two parameters l and a, and converts

the raw time series T of length n into a sequence of l symbols (word) with an alphabet

size a. This operation is represented by the following notation: SAX(T, l,a), or simply

SAX(l,a), and operates as follows: First, the dimensionality of the time series is reduced

by dividing it into l segments (word length) with the same length n/l using the Piecewise

Aggregate Approximation (PAA) algorithm. This algorithm assigns to each segment its

average value. Then, the amplitude of the time series is divided into a intervals, so that a

symbol can be assigned to each interval. To obtain equiprobable intervals, a− 1 break-

points are used. They produce the same area under the Normal curve, as shown in Figure

1. These breakpoints can be obtained by using a statistical table and are shown in Table

1 for alphabet sizes 2, 4, 8, 16 and 32. Finally, symbols are obtained from the intervals.

The segments below the smallest breakpoint are assigned the 0 symbol. The segments

between the first and second breakpoints the symbol 1, and so forth.

The iSAX representation extends classic SAX by allowing different alphabet sizes

within the same word. To avoid ambiguity, the resolution of each symbol needs to be

clearly stated in the iSAX word. For example, W = 24,08,78,916. This enhancement en-

ables the creation of a time series index. In practice, the use of this feature has been lim-

ited to indexing, as it is both cumbersome and untenable to manually set the resolution

of each symbol. The problem is further aggravated by possibly having millions of iSAX

words in the database. This is a central feature of our work. As we automatically calcu-

late each symbol’s alphabet size, our approach effectively enables to fully exploit iSAX

capabilities in other tasks such as classification, motif discovery and visualization. For

consistency, and because iSAX subsumes classical SAX, we will only refer iSAX for

the remainder of the paper. The exception will be section 3, as we refer works proposed

before iSAX was introduced.

3. Related Work

The iSAX representation has been widely used in a large range of application domains

and data mining tasks [Lin et al., 2007]. Surprisingly, maybe due to the generality of the

original approach, a very small number of works attempt to modify the actual represen-

tation technique [Lin et al., 2007]. In [Lkhagva et al., 2006], SAX is extended by adding

two points to each symbol: the minimum and maximum points of that segment. The rea-

soning behind is that in some domains, e.g. financial data, the averaging process behind

PAA can miss some important information. Adding maxima and minima information to

segments yields further insight about the series that just the average simply cannot per-

ceive. Preliminary results show the usefulness of the technique in some domains. Their

goal is in principle similar to ours. We implicitly encode segment variability informa-

tion in the representation. Rather than obtaining it through extreme points, we use the

standard deviation. Also, we encode it in the original representation (accessing higher

or lower resolutions), rather than using extra space along each symbol. This enables the

user to capture more information about the raw time series in a space efficient way. Pham

et al. [Pham et al., 2010] attempt to improve SAX by adding a pre-processing step where

adaptive, rather than fixed (equiprobable) intervals, are discovered using clustering tech-

niques. Experimental results show that it can outperform iSAX. In [Yankov et al., 2007]

a motif discovery algorithm is proposed. The algorithm’s parameter setting (including

SAX’s) is experimentally estimated in a smaller subset of training data. We aim to auto-

matically derive the best parameter setting by using analytical tools, rather than using an

iterative approach.To the best of our knowledge, there is no iSAX extension to automat-

ically derive the parameters without experimentally probing the best configuration. An

approach to find the best representation, cardinality and dimensionality of time series us-

ing the Minimum Description Length (MDL) principle has been introduced in [Hu et al.,

2011]. This algorithm can be used to select the best parameter setting for a particular

representation. In practice, it calculates the reduced description length – the number of

bits required to rebuild the raw time series – for every possible parameter configuration

and selects the parameter configuration with the minimum length. The output configu-

ration is the intrinsic cardinality and dimensionality of the time series. This approach

is more generic than ours, as it can also detect the best model to use among the DFT,

APCA, PLA representations, while also being parameter-free. AutoiSAX is specifically

tailored to find the best parameter configuration of the iSAX representation. We ana-

lytically compute the best parameter configuration, rather than taking a brute-force ap-

proach, resulting into better computational complexity (section 5). Furthermore, our ap-

proach yields a specific parameter configuration for each symbol, rather than one single

configuration for the entire (possibly long) time series. The per-symbol automatic con-

figuration effectively enables to fully exploit iSAX intra-word multiresolution capability

to other applications beyond indexing.

4. AutoiSAX

In this section we describe our approach to automatically discover the iSAX symbolic

length and alphabet size parameters. The approach is straightforward to interpret as it is

based on two very simple concepts. To derive the symbolic length parameter we focus

on time series complexity. For the alphabet size we look into the time series standard

deviation.

A complex time series can be intuitively defined as having more ”peaks, valleys, and

features” than a simpler one [Batista et al., 2011]. Our intuition is that a complex time

series needs larger iSAX words, i.e. symbolic length, to better capture their complexity.

On the other hand, simpler time series require smaller symbolic lengths. Complexity can

be measured using many approaches, including information theory related (e.g. entropy),

chaos based, Kolmogorov estimates, etc. In this work an alternative measure is used.

The complexity estimate (CE) [Batista et al., 2011] is a simple measure of time series

complexity. The idea is to ”stretch” the time series into a straight line and measuring the

line’s length. It is based on the intuition that in a complex series, the distance between

every two consecutive points is larger than in a simpler time series. Is it computed by

simply square rooting the sum of every two consecutive points’ differences:

CE(T) =

√

n−1

∑
i=1

(ti− ti+1)2

It was empirically compared to several more elaborate measures with surprisingly

competitive results [Batista et al., 2011]. Furthermore, it has low space and time com-

plexity, is intuitive and parameter-free. In order to maintain coherence between different

length time series, the average per-point complexity estimate (ACE) is computed:

ACE(T) =CE(T)/|T |

This corresponds to step 1 in Algorithm 1.

The smoothing effect caused by the average calculation of each time series segment

in iSAX can miss some features of the raw data [Lkhagva et al., 2006]. For example,

extreme points can be absorbed by the mean. To tackle this issue, an interesting approach

is to consider the variability of each segment’s points regarding the segment’s mean. That

is, how ”spread” the points are with respect to the mean. To capture this intuition the

simple standard deviation is selected. A segment with a large standard deviation needs a

coarser rectangle to capture its variability towards the mean. Hence it requires a coarser

resolution (alphabet size) to fit the original time series behavior. A segment with small

standard deviation presents slight variation around the mean. This behavior ”fits” in a

narrower rectangle. The space-efficiency in our approach arises from using the actual

iSAX representation resolution to encode the standard deviation, rather than requiring

any extra space. That is, each segment’s standard deviation is encoded within the alphabet

size parameter.

The AutoiSAX approach is presented in Algorithm 1. The actual parameter esti-

mation consists of steps 2 (symbolic length) and 4 (alphabet size), which are explored

separately in algorithms 2 and 3, respectively. For simplicity, the algorithm is hereby

presented without any optimizations. First, the time series average complexity (ACE) is

computed. The word length parameter is then calculated by framing the ACE between

the minimum and maximum word length for the series, 2 and (|T |)/2, respectively. Then,

a modified PAA algorithm is executed in order to output, besides each segment’s mean,

its standard deviation. Next, the standard deviation of each segment (pre-symbol) is con-

verted to an alphabet size between the minimum (2) and maximum (32) resolution. In

section 5 we show why resolutions larger than 32 are not used in our approach. Finally,

each segment’s mean is mapped to the corresponding symbol, according to the previously

calculated symbol’s alphabet size.

Algorithm 1 AutoiSAX(time series T)

1: Compl← ACE(T)
2: l← complexityToLength(Compl)
3: paa stds← PAA′(T, l)
4: resolutions← stdevsToResolutions(paa stds)
5: W = mapToSymbols(PAA′,resolutions)
6: return W

The symbolic length parameter is estimated in step 2 by the complexityToLength

function. It takes a complexity average and maps it into a symbolic length. As the time se-

ries is normalized with zero average and one standard deviation, the average complexity

ranges between 0 and the maximum complexity. The maximum possible average com-

plexity is experimentally determined to be 0.16. This function simply performs a linear

interpolation of the series complexity (c) into the symbolic length range between 2 and

(|T |)/2. The complexityToLength function is computed using the following formula:

f loor

(

(c− c0)× l1

c1− c0
+ l0

)

where c0← 0.00001;c1←maxComplexity; l0← 2; l1← |T |/2

The minimum ACE is set to 0.00001 to obtain a 5 digit precision in the calculations.

The stdevsToResolutions function (step 4) takes a list of segments’ standard deviations

and maps it to the final word list of resolutions. The mapping is based on a simple inter-

polation between the minimum (2) and maximum alphabet sizes. The maximum alphabet

size is set to 32, as any further increase generates meaningless results in symbolic motif

discovery. The intuition of this approach is based on a simple idea taken from the break-

points table 1. Let βzero be the zero crossing breakpoint for a given alphabet size (shown

in bold). The minimum resolution difference (MRD) for that resolution is βzero−βzero−1.

For example, considering resolution 8, βzero = 4 and MRD= 0.16. Table 2 shows the

MRD for the resolutions 2 up to 32.

In practice, the MRD is a symbol’s rectangle size for a given resolution. That is,

the minimum rectangle where a segment’s mean can lie in order to be assigned a given

symbol. Figure 4 shows the size of MRD rectangle for the above resolutions.

The larger the resolution, the narrower is the rectangle. As the maximum standard

deviation we aim to enclose corresponds to an alphabet size of 2, we can safely as-

sume maxStd = 2×MRD(4). Generally speaking, if the segment’s standard deviation is

smaller than a resolution’s minimum rectangle size, then the symbol is assigned to that

resolution. Thus, the linear interpolation technique seamlessly interleaves between the

target resolutions, according to the obtained standard deviation (Algorithm 2).

The base of every time series data mining task is time series similarity [Ding et al.,

2008], which is typically measured as dissimilarity in the form of distance measures.

One of the main iSAX features is that it enables the definition of a distance measure

(mindist) that lower bounds the Euclidean Distance in the original time series. In this

work, two same-length time series can generate different length iSAX words. The iSAX

Algorithm 2 stdevsToResolutions (paa stds[])

1: for sdi in paa stds do

2: s0← 0;s1← maxStd

3: a0← 2;a1← 32

4: a′ =
(sdi− s0)×a1

s1− s0
+a0

5: a = (a1−a′)+a0

6: ri = f loor(a)
7: end for

8: return r

mindist function is only defined to compare words with the same length. In order to

enable AutoiSAX to be used in classification, motif discovery, etc., we slightly modify

the original mindist function to enable the comparison of different length iSAX words.

The modified mindist’ between Q̂ and Q̂ is shown in Equation 1.

Let m = min(|Q̂|, |Ĉ|),M = max(|Q̂|, |Ĉ|)

mindist ′(Q̂,Ĉ) =

√

√

√

√

n

M
×

√

M

∑
i=1

(dist(q̂ j, ĉk))2 (1)

The intuition is as follows: one time series is aligned on top of the other for com-

parison. In case they have the same symbolic length, each symbol compares to the one

to which it is aligned. If they have different symbolic lengths, first the smallest series

is stretched to the size of the largest and then the comparison takes place. This is not

a problem since the raw time series have the same size. Also, in practice this is done

analytically, rather than performing an actual stretching of the iSAX word. To compare

them, an iteration is performed over the largest word: each symbol is compared to the

other series’ symbol, the one that it is aligned to. Notice that one each symbol of the

smallest word may be used multiple times as a comparison. For example, when compar-

ing (38,48,24,22,516,22) with (312,416,516) the following comparisons are performed:

38 and 48 compare to 312, 24 and 22 to 416, 516 and 22 to 516, as every symbol in the

smaller word will represent one or more symbols from the larger word. As observed in

this example, it is not required that the word sizes are multiple, as symbol j of one series

is compared to its aligned symbol k in the other series. Thus, the admissible lower bound

provided in the original iSAX’s mindist is preserved [Shieh and Keogh, 2008].

5. Experimental Analysis

In this section we perform the experimental analysis to show the validity and impact of

our approach. The experimental analysis uses different benchmark datasets for execution

time (5.2), classification (5.3) and motif mining (5.4). Each dataset is briefly described

in the beginning of each subsection. All experiments were executed on a machine with

an Intel R© CoreTMi5−530 processor with 4GB of RAM. Unless explicitly stated other-

wise, Java implementations compiled with JDK 6 were used. The experimental analysis

proceeds as follows. 5.1 analyzes the danger of using too high resolutions. The compu-

tational performance of the approach is described in 5.2. In subsection 5.3 the impact of

using AutoiSAX in classification is assessed. Finally, in 5.4 we apply our approach to

motif mining.

5.1. The danger of selecting large resolutions

In section 1 a simple example from motif mining is shown to explain why one should

not select too large resolutions. In this section, we aim to empirically demonstrate why

this is the case. First, let us properly motivate the need for such experiment. We have

observed that the alphabet size parameter is typically set to very large values. For exam-

ple, tightness of lower bound (TLB) is widely used to compare representation techniques

and their distance measures [Ding et al., 2008, Shieh and Keogh, 2008]. It provides a

good approximation of indexing performance, as it is hardware and implementation in-

dependent [Esling, P. and Agon, C., 2011]. Intuitively, it calculates how closely a rep-

resentation’s distance measure approximates the Euclidean Distance (ED). It is used for

the comparison between different representation techniques (e.g. iSAX to DFT, etc.). In

these experiments, the iSAX alphabet size parameter is often hard-coded to 256 [Ding

et al., 2008, Shieh and Keogh, 2008]. The authors argue that as iSAX is more space effi-

cient, as it can afford to encode a higher resolution using the same space than, for exam-

ple, DFT. Indeed this is true. However, setting the alphabet size to 256 different symbols

in a normalized series with mean 0 and standard deviation of 1 does not seem to bring

any advantage. The minimum interval size corresponding to a 256 resolution is of 0.01.

To use such a small interval to distinguish between different iSAX symbols at such fine

resolution is similar to using the raw data itself. We claim that using such resolutions

is both unpractical and unfair to competing representations. It is expected that by using

a resolution so close to the raw data one obtains a much tighter lower bound. It is also

straightforward to observe, and has been shown 10 years ago [Lin et al., 2003], that in

tasks where the degree of proximity to the raw data is important, higher resolutions will

outperform lower ones.

To analyze the impact of resolutions in motif discovery, 52 datasets from a wide vari-

ety of sources, aggregated in [Castro and Azevedo, 2011], are selected. For each dataset,

we interleave between the resolutions 2, 4, 8, 16, 32, and 64, and record the number of

symbolic motifs extracted. The motif extraction algorithm is simply to generate an iSAX

word for each time series received as input and counting the number of times each word

appears. The MrMotif algorithm [Castro and Azevedo, 2010] is suitable for this task, as

it gracefully interleaves between resolutions and outputs the symbolic motifs discovered

for each resolutions. In Figure 5, the number of discovered motifs (Nd) for each resolu-

tion and dataset are shown. For space, 7 datasets are displayed. Results for the remainder

of the datasets are similar. The names eeg and EEG refer to different datasets.

It can be observed that Nd decreases as one increases the alphabet size. By looking

closely, very few motifs can be found at resolution 32 or larger. In fact, at resolution 64,

either no motifs or only identical motifs can be found. The larger the resolution, the finer

are the intervals available for the time series’ segments. This makes it hard in practice for

two non-identical time series to match. This suggests that using resolutions larger than

32 in approximate motif discovery is of little value, and is therefore meaningless.

5.2. Computational Performance

In this subsection we study the proposal’s execution time and compare it to the MDL

based parameter estimation approach [Hu et al., 2011]. The authors’ MATLAB R© code

for the competing approach is used. For the sake of fair comparison, we use an AutoiSAX

MATLAB R© implementation. Ten different sets of increasing size from [Mueen et al.,

2009] are used, ranging from 10000 to 100000 time series of length 1024. We use these

data for two reasons: they have been used before and results on similar datasets are

encouraged; in addition, the size (in the gigabytes) makes them attractive to test any

approach. All the time series in each set are concatenated generating ten time series with

lengths 10240000 up to 102400000. We apply both techniques to each time series ten

times and record the average execution time for each series. Results are presented in

Figure 6.

For the 10 million-sized time series, the techniques execution time is as follows. For

iSAX: 0.40 seconds, AutoiSAX: 1.45 seconds, MDL: 102s. It can be observed that the

MDL approach’s execution time increases quadratically with the time series size. The

AutoiSAX and iSAX methods increase linearly, as highlighted in Figure 7 in a separate

plot.

The MDL is about two orders of magnitude slower than iSAX and about 70 times

slower than AutoiSAX, on average. In practice, for estimating the parameters of a sin-

gle time series taking 1s to convert to the AutoiSAX representation, MDL would take

longer than one minute. As an exhaustive search approach, it needs to scan all possible

models from lengths 2 up to 64, and the (simplified) resolutions 2, 4, 8, 16, 32 and 64.

To calculate one single model costs just slightly higher than AutoiSAX. However, the

approach requires that all models are computed, in order to select the best. This effec-

tively makes it perform 372 model calculations instead of just one. To further inspect

the impact of MDL approach’ execution time, we performed an experiment with a small

dataset (”50words”) from the UCR classification benchmark [Keogh et al., 2009]. The

dataset consists of 450 training and 455 test series of length 270, and 50 classes. The

MDL approach was selected for estimating the iSAX parameters for 1-NN classification

using the iSAX’s mindist distance measure. After one hour of execution, the approach

had not yet terminated execution. As the approach’s execution time makes it untenable

to use in real word data mining tasks, we omit it from the remainder of the experimen-

tal analysis. The AutoiSAX presents linear complexity having a constant factor larger

than the fixed iSAX. Another scan over the original series is required for the complexity

(ACE) and standard deviation computation.

5.3. Classification Accuracy

In this section the 1-NN classification experiment performed in the previous subsection

is extended. The AutoiSAX and fixed iSAX (using several resolutions) are compared for

all datasets in the UCR classification benchmark in terms of classification accuracy. One-

NN if often used to argue the suitability of a distance measure or representation [Ding

et al., 2008]. Our aim is not to analyze the applicability of AutoiSAX for classification.

It has been shown that using 1-NN with the Euclidean Distance directly in the raw data

is surprisingly competitive when compared to other distance measures or classification

algorithms, and it is also computationally more efficient [Ding et al., 2008]. Rather, we

aim to show that AutoiSAX can obtain results as accurate as fixed iSAX, without the has-

sle of manually optimizing the parameters. The benchmark is composed of 42 datasets

with training sets containing 16 to 1000 and testing sets with 28 up to 3582 time series.

Each time series length ranges from 24 to 1882, with 2 up to 50 classes. The MATLAB R©

classification framework provided in the benchmark is used. The single obvious modifi-

cation is changing the distance measure for the selected representation. A scatter-plot of

the AutoiSAX and fixed iSAX pairs of results for each dataset are displayed in Figure 8.

Thus, one point represents the classification accuracy of the pair (AutoiSAX,iSAX) for

one dataset. Points above the identity function (blue) mean that AutoiSAX outperforms

fixed iSAX for that dataset and vice-versa.

In general, the AutoiSAX approach showed better classification accuracy than the

fixed one. For the remainder of the datasets, the approaches showed similar accuracy.

This suggests that our approach approximates the raw data in a more realistic way, and

this fact has repercussions in classification accuracy.

5.4. Motif Discovery

In this subsection we apply AutoiSAX to the task of motif discovery. We use the same

simple algorithm as in 5.1: generating an AutoiSAX word for each time series and count-

ing repetitions. We compare the approach to fixed iSAX with length and resolution 8, and

with an average of fixed iSAX resolutions ranging from 2 up to 64. MrMotif is selected

as it can seamlessly provide these results. The 52 dataset benchmark (aggregated in [Cas-

tro and Azevedo, 2011]) is selected for the experiment. The question we would like to

be able to answer is whether the derived motifs are more meaningful, as we are using

two further implicit dimensions to filter motifs: complexity and standard deviation. To

answer the question the average Euclidean Distance between each match in the dataset is

measured. Matching time series should present a small ED for the motif to be interesting.

In Figure 9 we show the scatter-plot of the pairs of average intra-motif distance for the

approaches. Results are normalized in the [0,1] interval. Distances are only shown for

the datasets motifs were found.

It can be observed that the intra-motif distance of the AutoiSAX approach is smaller

than the other two approaches’, for most datasets. This is expected, as AutoiSAX adds

two other dimensions (besides the average) to further restrict the motifs: complexity and

standard deviation. If the motifs size and alphabet size are not previously fixed, their

natural length and variability will cause matches to be more accurate. For example, let

us consider two iSAX(8,8) words with standard deviations of 0.1 and 1.2. If by chance

their mean is the same, they would match with fixed iSAX, but would generate two very

different words using AutoiSAX. Using our approach, only very similar time series can

match. To investigate whether this also affects the number of discovered motifs, we count

the number of motifs returned for each approach and dataset. For the majority of the

datasets the number of returned motifs is smaller using AutoiSAX approach. This sug-

gests that using AutoiSAX to extract symbolic motifs can act as a filter to prune spurious

motifs. The effect of using our approach in motif mining is shown with a representative

example in Figure 10. The iMotifs Visualization Tool [Castro, 2011] is used to visualize

the extracted motifs from the projectiles shape dataset from [Yankov et al., 2007] using

the fixed iSAX and AutoiSAX approaches.

The first thing to notice is that the number of extracted motifs (enclosed in paren-

theses) is larger in the fixed iSAX approach. Also, some incorrect motifs are found with

this approach. For instance, the motif in Figure 10 at the fourth and fifth symbols is a

false discovery. As only the mean is used to match time series, the approach is unable to

prune out motifs with a different standard deviation. The AutoiSAX approach exploits

more information on the series to obtain fewer and more similar matches. This suggests

AutoiSAX can be used as a parameter-free alternative to mine symbolic motifs. Never-

theless, in some domains the validation of the discovered motifs is important and may

require validation of a domain expert. When the number of motifs is prohibitively large,

automatic evaluation techniques may be required, such as the one proposed in [Castro

and Azevedo, 2011].

6. Discussion

The major advantage of AutoiSAX is estimating the symbolic length and alphabet size

parameters for the iSAX representation. As a consequence of the techniques used to ob-

tain these parameters, two more dimensions become available (for free) for analyzing

the represented time series. First, complexity estimation allows to assign more symbols

to complex time series. Second, standard deviation computation permits to adjust the

representation’s resolution. Furthermore, it enables different resolutions within the same

symbolic word. This is a major feature, as time series are typically long and present large

variations in behavior along their length. Even small time series can have wildly chang-

ing behavior, which a single resolution per-series simply cannot capture. This fully ex-

ploits iSAX’s multiresolution to applications beyond indexing. In this task, interleaving

between different resolutions is performed by the indexing algorithm. The resolutions

are doubled whenever the count of a time series container surpasses a given threshold

[Shieh and Keogh, 2008]. In other mining tasks, such as visualization, classification and

motif discovery, this was not previously possible as the only way to use intra-word mul-

tiresolution was to manually set the iSAX word’s parameters. One potential feature of

our approach is that it seems to be more suitable to deal with extreme values than classi-

cal iSAX. The standard deviation calculation appears to compensate for the information

loss caused by average smoothing. These two dimensions provide further information

for visualization, classification and motif discovery algorithms, which are leveraged to

obtain more accurate results, as we have seen in section 5. In visualization, one can get

a more intuitive grasp at the original series shape just by looking at the representation.

This is relevant as domain experts can more effectively visually detect interesting pat-

terns in their data using tools such as the aforementioned iMotifs [Castro, 2011]. One

can also obtain better classification accuracy. It seems that this measure is highly corre-

lated with the resolution used. However, too high resolutions can be harmful as we have

shown. AutoiSAX appears to provide a nice trade-off between the minimum resolution

required to discriminate between the classes and a not too high resolution that can overfit

the data. Finally, more interesting motifs can be found as closer matches are retrieved

and spurious motifs discarded. The addition of complexity and deviation information in

the motif computation seems to impose an important filter in the process. It remains to

be investigated whether these motifs are also statistically more significant by using our

motifs statistical significance approach, tailored for fixed iSAX [Castro and Azevedo,

2011]. It also remains as future work to research whether a more efficient indexing algo-

rithm can be obtained by mixing AutoiSAX in the original iSAX indexing framework.

Preliminary results with the benchmark datasets [Castro and Azevedo, 2011] show that

the Tightness of Lower Bound measure depends highly on the resolution at hand, as

expected. Nevertheless, further experimentation is required to reach a firm conclusion

whether the measure is appropriate in the current settings. We are also currently investi-

gating whether the application of AutoiSAX to streaming data is trivial or requires more

elaboration. Finally, we stress out that almost all these mining techniques can effectively

become parameter-free as a consequence of using our approach.

7. Conclusion

We have proposed an approach to automatically estimate the parameters of the iSAX

time series representation. The novelty of our work is that it enables efficient computa-

tion of the symbolic length and alphabet size parameters. Furthermore, it permits to cal-

culate the alphabet size for each symbol within the same time series. The approach, re-

ferred as AutoiSAX, is based on two very simple ideas. First, complex time series require

larger symbolic lengths to better capture their behavior. Second, as time series segments

present different deviations from the mean, they should be represented using different al-

phabet sizes. Our technique allows to leverage iSAX’s intra-word multiresolution, which

effectively brings iSAX to other tasks besides time series indexing. We have shown that

AutoiSAX improves visualization interpretability, classification accuracy and motif min-

ing results. We also aim to highlight the importance of making iSAX a parameter-free

approach, as the large number of researchers and practitioners using it can benefit from

it.

Reproducibility Note

All experiments, source code and datasets are available online at [Castro, 2014].

References

[Agrawal et al., 1995] Agrawal, R., Psaila, G., Wimmers, E., and Zaı̈t, M. (1995). Querying shapes of his-

tories. In Proceedings of the 21th International Conference on Very Large Data Bases, pages 502–514.

Morgan Kaufmann Publishers Inc.

[Batista et al., 2011] Batista, G., Wang, X., and Keogh, E. (2011). A complexity-invariant distance measure

for time series. In SDM-2011: Proceedings of SIAM International Conference on Data Mining, Philadel-

phia, PA, USA.

[Camerra et al., 2010] Camerra, A., Palpanas, T., Shieh, J., and Keogh, E. (2010). isax 2.0: Indexing and

mining one billion time series. In Data Mining (ICDM), 2010 IEEE 10th International Conference on,

pages 58–67. IEEE.

[Castro, 2011] Castro, N. (2011). iMotifs: Interactive Time Series Motif Discovery and Visualization Tool.

http://www.di.uminho.pt/∼castro/imotifs.

[Castro, 2014] Castro, N. (2014). Autoisax website. http://www.di.uminho.pt/∼castro/autoisax.

[Castro and Azevedo, 2010] Castro, N. and Azevedo, P. (2010). Multiresolution Motif Discovery in Time

Series. In Proceedings of the SIAM International Conference on Data Mining, SDM 2010, 2010, Columbus,

Ohio, USA, pages 665–676. SIAM.

[Castro and Azevedo, 2011] Castro, N. and Azevedo, P. (2011). Time Series Motifs Statistical Significance.

In Proceedings of the SIAM International Conference on Data Mining, SDM 2011, 2011, Mesa, Arizona,

USA, pages 687–698. SIAM.

[Chakrabarti et al., 2002] Chakrabarti, K., Keogh, E., Mehrotra, S., and Pazzani, M. (2002). Locally adaptive

dimensionality reduction for indexing large time series databases. ACM Trans. Database Syst., 27(2):188–

228.

[Chan and Fu, 1999] Chan, K.-P. and Fu, A. W.-C. (1999). Efficient time series matching by wavelets. In

ICDE, pages 126–133.

[Chiu et al., 2003] Chiu, B., Keogh, E., and Lonardi, S. (2003). Probabilistic discovery of time series motifs.

In KDD ’03: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 493–498, New York, NY, USA. ACM.

[Dasgupta and Forrest, 1996] Dasgupta, D. and Forrest, S. (1996). Novelty detection in time series data using

ideas from immunology. In Proceedings of the International Conference on Intelligent Systems, pages

82–87.

[Ding et al., 2008] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and Keogh, E. (2008). Querying

and mining of time series data: experimental comparison of representations and distance measures. Pro-

ceedings of the VLDB Endowment, 1(2):1542–1552.

[Esling, P. and Agon, C., 2011] Esling, P. and Agon, C. (2011). Time series data mining and analysis. ACM

Computing Surveys (to appear).

[Faloutsos et al., 1994] Faloutsos, C., Ranganathan, M., and Manolopoulos, Y. (1994). Fast subsequence

matching in time-series databases. In SIGMOD ’94: Proceedings of the 1994 ACM SIGMOD international

conference on Management of data, pages 419–429, New York, NY, USA. ACM.

[Geurts, 2001] Geurts, P. (2001). Pattern extraction for time series classification. Principles of Data Mining

and Knowledge Discovery, pages 115–127.

[Hu et al., 2011] Hu, B., Rakthanmanon, T., Hao, Y., Evans, S., Lonardi, S., and Keogh, E. (2011). Discov-

ering the intrinsic cardinality and dimensionality of time series using mdl. In Data Mining (ICDM), 2011

IEEE 11th International Conference on, pages 1086–1091. IEEE.

[Kalpakis et al., 2001] Kalpakis, K., Gada, D., and Puttagunta, V. (2001). Distance measures for effective

clustering of arima time-series. In Data Mining, 2001. ICDM 2001, Proceedings IEEE International

Conference on, pages 273–280. IEEE.

[Keogh et al., 2001] Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S. (2001). Dimensionality re-

duction for fast similarity search in large time series databases. Knowledge and Information Systems,

3(3):263–286.

[Keogh et al., 2009] Keogh, E., Xi, X., Wei, L., and Ratanamahatana, C. (2009). Ucr time series classifica-

tion/clustering page. Training and testing data sets: Available online: http://www.cs.ucr.edu/eamonn/time

series data/(accessed on 18 July 2011).

[Korn et al., 1997] Korn, F., Jagadish, H. V., and Faloutsos, C. (1997). Efficiently supporting ad hoc queries

in large datasets of time sequences. In SIGMOD ’97: Proceedings of the 1997 ACM SIGMOD international

conference on Management of data, pages 289–300, New York, NY, USA. ACM.

[Lin et al., 2003] Lin, J., Keogh, E., Lonardi, S., and Chiu, B. (2003). A symbolic representation of time

series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD workshop on

Research issues in data mining and knowledge discovery, page 11. ACM.

[Lin et al., 2007] Lin, J., Keogh, E., Wei, L., and Lonardi, S. (2007). Experiencing SAX: a novel symbolic

representation of time series. Data mining and knowledge discovery, 15(2):107–144.

[Lkhagva et al., 2006] Lkhagva, B., Suzuki, Y., and Kawagoe, K. (2006). New Time Series Data Repre-

sentation ESAX for Financial Applications. Proceedings of the 22nd International Conference on Data

Engineering Workshops (ICDEW’06)-Volume 00.

[Mueen et al., 2009] Mueen, A., Keogh, E., Zhu, Q., Cash, S., and Westover, B. (2009). Exact discovery of

time series motifs. In Proceedings of the SIAM International Conference on Data Mining (SDM 2009),

pages 473–484. Citeseer.

[Pham et al., 2010] Pham, N., Le, Q., and Dang, T. (2010). Two novel adaptive symbolic representations for

similarity search in time series databases. In Web Conference (APWEB), 2010 12th International Asia-

Pacific, pages 181–187. IEEE.

[Shieh and Keogh, 2008] Shieh, J. and Keogh, E. (2008). iSAX: indexing and mining terabyte sized time

series. In Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 623–631.

[Yankov et al., 2007] Yankov, D., Keogh, E., Medina, J., Chiu, B., and Zordan, V. (2007). Detecting time

series motifs under uniform scaling. In Proceedings of the 13th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 844–853. ACM.

Tables

Table 1. SAX breakpoints for resolutions from 2 until 32

a 2 4 8 16 32

βi

β1 0.00 -0.67 -1.15 -1.53 -1.87

β2 0.00 -0.67 -1.15 -1.54

β3 0.67 -0.32 -0.89 -1.32

β4 0.00 -0.67 -1.16

β5 0.32 -0.49 -1.01

β6 0.67 -0.32 -0.89

β7 1.15 -0.16 -0.78

β8 0.00 -0.68

β9 0.16 -0.58

.

β14 1.15 -0.16

β15 1.53 -0.08

β16 0.00

β17 0.07

β18 0.15

.

β31 1.86

Table 2. βzero and MRD for several resolutions

a 2 4 8 16 32

βzero β1 β2 β4 β8 β16

MRD ∞ 0.67 0.32 0.16 0.08

Figures

Figure 1. Conversion of a time series of length 128 to the length-8 iSAX word (2,5,7,5,3,0,3,3)

Figure 2. Top: Time series of five days’ electric power consumption and iSAX representation with fixed l = 8

and a = 8, generating the (38,38,88,68,68,48,38,38) word. Bottom: Showing only the iSAX representation

without the original time series.

Figure 3. Same time series as before, now represented with AutoiSAX. Top: The

(38,48,24,22,516,22,38,48,516,932) word of length 11 (top) is generated. Bottom: Showing only the iSAX

representation without the original time series.

Figure 4. Size of the MRD rectangles for several resolutions

Figure 5. Number of symbolic motifs found for several resolutions and datasets.

Figure 6. Execution time of AutoiSAX, fixed iSAX and MDL approaches in ten increasingly sized time series.

Figure 7. Execution time of AutoiSAX and fixed iSAX approaches displayed separately.

Figure 8. Accuracy of 1-NN classification on 42 datasets: auto SAX vs fixed iSAX (8,8). Above the identity

line means AutoiSAX outperforms fixed iSAX.

Figure 9. Intra-motif normalized distances. Circles: AutoiSAX vs iSAX(8,8). Squares: AutoiSAX vs average

iSAX. Above the line the distance is smaller (better).

Figure 10. Motifs extracted from the projectile shapes dataset using the iSAX(8,8) (top) and AutoiSAX (bot-

tom) approaches, using the iMotifs Visualization Tool.

