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Abstract

Although Graphics Processing Units (GPUs) have become

pervasive for data-parallel workloads, the e�cient exploita-

tion of their tiered memory hierarchy requires explicit pro-

gramming. The e�cient utilization of di�erent GPU memory

tiers can yield higher performance at the expense of pro-

grammability since developers must have extended knowl-

edge of the architectural details in order to utilize them.

In this paper, we propose an alternative approach based

on Just-In-Time (JIT) compilation to automatically and trans-

parently exploit local memory allocation and data locality on

GPUs. In particular, we present a set of compiler extensions

that allow arbitrary Java programs to utilize local memory

on GPUs without explicit programming. We prototype and

evaluate our proposed solution in the context of TornadoVM

against a set of benchmarks and GPU architectures, show-

casing performance speedups of up to 2.5G compared to

equivalent baseline implementations that do not utilize lo-

cal memory or data locality. In addition, we compare our

proposed solution against hand-written optimized OpenCL

code to assess the upper bound of performance improve-

ments that can be transparently achieved by JIT compilation

without trading programmability. The results showcase that

the proposed extensions can achieve up to 94% of the perfor-

mance of the native code, highlighting the e�ciency of the

generated code.
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1 Introduction

Heterogeneous hardware accelerators, such as GPUs and

FPGAs, have become prevalent across di�erent computing

domains for accelerating mainly highly data-parallel work-

loads. In particular, GPUs have gained traction for accel-

erating general-purpose workloads due to their �ne-grain

parallel architecture that integrates thousands of cores and

multiple levels of the memory hierarchy. In contrast to tra-

ditional CPU programming, GPUs contain programmable

memory that can be explicitly utilized by developers. Al-

though this results in gaining full control of where data can

be placed, it requires extensive architectural knowledge. The

majority of programming languages used for programming

GPUs (e.g., OpenCL, CUDA, OpenACC) expose to their APIs

speci�c language constructs that developers must explic-

itly use in order to optimize and tune their applications to

harness the underlying computing capabilities.

Recently, the trade-o� between GPU programmability and

performance has been an active research topic. Proposed

solutions mainly revolve around polyhedral models [16, 49]

or enhanced compilers for domain-speci�c languages, such

as Lift [46] and Halide [37]. These approaches either have

high compilation overhead [7], whichmakes them unsuitable

for dynamically compiled languages, or they still require

developers’ intervention to exploit the memory hierarchy of

GPUs through explicit parallel programming constructs [37,

46].
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In this paper we propose an alternative approach for au-

tomatically exploiting the memory hierarchy of GPUs com-

pletely transparently to the users. Our approach is based on

Just-In-Time (JIT) compilation and abstracts away low-level

architectural intricacies from the user programs, while mak-

ing its application suitable in the context of dynamically com-

piled languages. The proposed compiler extensions are in the

form of enhancements to the Intermediate Representation

(IR) and associated optimization phases, that can automati-

cally exploit local memory allocations and data locality on

GPUs. We implemented the proposed compiler extensions

and optimizations in the context of TornadoVM [12, 21],

an open-source framework for accelerating managed appli-

cations on heterogeneous hardware co-processors via JIT

compilation of Java bytecodes to OpenCL.

The proposed compiler optimizations for exploiting and

optimizing local memory have been evaluated against a set

of reduction and matrix operations across three di�erent

GPU architectures. For our comparative evaluation we use

two di�erent baseline implementations: (i) the original code

produced by TornadoVM that does not exploit GPU local

memory, and (ii) hand-written optimized OpenCL code. The

performance evaluation against the original non-optimized

code produced by TornadoVM, shows that the proposed

compiler extensions for exploiting local memory can achieve

up to 2.5G performance increase. In addition, we showcase

that our proposed extensions can achieve up to 97% of the

performance of hand-written optimized OpenCL code, when

compared to the optimized native code.

In detail, this paper makes the following contributions:

• It presents a JIT compilation approach for automati-

cally exploiting local memory of GPUs.

• It extends the capabilities of compiler snippets to ex-

press local memory optimizations by introducing com-

positional compiler intrinsics, that can be parameterized

and reused for di�erent compiler optimizations.

• It evaluates the proposed technique across a variety

of GPU architectures, against the functionally equiva-

lent auto-generated unoptimized and the handwritten

optimized OpenCL code. Our solution achieves perfor-

mance speedup of up to 2.5G versus the original code

produced by TornadoVM, while reaching up to 94% of

the performance of the manually optimized code.

2 Background

This section gives an overview of the memory hierarchy

of GPUs using the OpenCL [34] memory model. In addi-

tion, it discusses current techniques for exploiting it, while

highlighting their advantages and disadvantages.

2.1 Overview of the OpenCL Memory Model

OpenCL provides cross-platform portability for parallel code

running on heterogeneous hardware, such as CPUs, FPGAs,
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Figure 1. Overview of the OpenCL memory model.

and, most commonly, GPUs. The parallel code that is of-

�oaded on the GPU corresponds to a kernel, which is sub-

mitted to the device for execution. This code is executed

by the GPU Compute Units (CUs). Each Compute Unit has

several Processing Elements (PEs) which are considered as

virtual scalar processors. These PEs can execute on multi-

ple threads known as work-items, which are grouped into

work-groups. Furthermore, each CU can execute a number

of work-groups.

Additionally, OpenCL provides its own memory model

that consists of four memory tiers (Figure 1): Global mem-

ory provides a space that allows read/write privilege to all

work-items deployed by the OpenCL device driver. Global

memory encapsulates the constant memory tier, which can

be allocated for read-only accesses across all work-items. The

third memory tier is local memory, which can be accessed

(read/write) by all work-items within the same work-group

with the use of synchronization barriers [19]. Finally, the last

memory tier is private memory which belongs exclusively

to one work-item for storing data to a number of registers.

The GPU memory hierarchy is similar to the memory hi-

erarchy of conventional CPUs. The global memory (in the

range of GBs) corresponds to the main memory, whereas

local memory (up to hundreds of KBs) corresponds to the

L2 cache as it is shared among multiple work-items. Finally,

private memory (up to tens of KBs) is exclusive for each

work-item, and it is therefore semantically equivalent to the

L1 cache of the CPU. However, unlike CPUs, which have

hardware support for cache coherency, GPUs require com-

munication barriers for coherency. In addition, the access

latency between the di�erent memory tiers of GPUs can

vary in a range from ~40 to ~450 cycles for local and global

memory, respectively [51]. Thus, it is essential for develop-

ers to manually explore for an optimal point in the GPU

memory hierarchy for storing data, in order to achieve high

performance when processing large volumes of data.
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Figure 2. Overview of the proposed JIT compilation �ow for automatically exploiting the GPU memory hierarchy.

2.2 Data Locality & Loop Transformations

Data locality is crucial for performance on the vast majority

of applications executed on both homogenous and hetero-

geneous computing systems. Modern optimizing compilers

targeting CPUs improve the spatial and temporal locality of

coherent caches by employing optimizations, such as loop

transformations. These transformations attempt to alleviate

cache misses, while reducing any bank con�icts and TLB

misses [32]. Therefore, optimizing compilers apply a number

of loop transformations, such as loop unrolling, loop tilling,

and loop un-switching [1, 2, 33].

Loop transformations have been also studied onGPUs [48].

For instance, loop tiling has been used to improve data local-

ity and load balancing among the parallel threads on GPUs;

since data split in smaller batches (tiles) can be accessed

more e�ciently, thereby improving the spatial locality. Ex-

cluding the programmability e�ort for manually achieving

loop tiling, a prime challenge for compilers is the decision

for the optimal tile size. This decision must be adaptive to

the memory characteristics, such as the size of local memory.

Thus, the decision for the optimal tile size has high com-

plexity and is often taken based on heuristics. Polyhedral

compilation [8, 16, 24, 49] is currently the state-of-the-art

approach to automatically apply loop tiling for code tar-

geting GPUs. This approach can yield high performance

and often performs comparably to manually optimized li-

braries [4]. Nonetheless, polyhedral compilers are more suit-

able for ahead-of-time compilation due to the overhead in

the analysis phase and the code generation [41], compared

to other traditional compilers (e.g. Java HotSpot C1/C2).

2.3 Enabling GPU Tier-Memory via JIT compilation

As mentioned in the previous subsection, and will be further

discussed in Section 5, current polyhedral approaches for ex-

ploiting the GPU memory hierarchy at compile time are not

viable for dynamically compiled languages, due to their in-

creased overhead in the analysis and code generation phases.

Hence, current solutions for exploiting and optimizing local

memory of GPUs typically expose low-level programming

constructs [40] to the API. This way, the responsibility is

passed to developers who must have advanced architectural

knowledge to utilize the memory tiers e�ciently and safely.

In this work, we present a technique that allows JIT compilers

to use local memory and perform loop tiling, transparently

to the developers.

3 GPU Memory-Aware JIT Compilation

This section presents our main contributions towards auto-

matically exploiting and optimizing the memory hierarchy

on GPUs via JIT compilation.

3.1 Overview

Figure 2 presents an overview of the JIT compilation pro-

cess for exploiting local memory. The proposed approach

includes three di�erent phases: detection, compositional in-

trinsics, and memory transformations. All phases are applied

to the common IR of the TornadoVM JIT compiler (which

is a superset of the Graal IR [18]). The TornadoVM IR uses

the sea-of-nodes [13] common representation, which en-

compasses both the control-�ow and data-�ow nodes. This

representation allows the compilation and optimization of

Java bytecodes to OpenCL by performing IR transformations.

The detection phase scans the IR to locate speci�c nodes,

such as accesses to/from arrays through read andwrite nodes,

as well as the induction variables. To use local memory, nodes

that are commonly used to read and write from/to memory

are �rst located (by default, the JIT compiler assumes all

accesses target GPU’s global memory). These array accesses

are detected via indexed read and write nodes in the IR. The

detection phase is crucial for the compilation process as: a) it

provides the exact place in the IR to read/write from/to local,

instead of global memory, and b) it analyzes all nodes accessi-

ble from the indexed read/write nodes, such as the induction

variables and the parameters of the compiled method. This

information is accounted during the detection phase to in-

troduce and attach a new node. The newly introduced node

encloses the read and write nodes and it is used by the next

phases to perform aggressive optimizations regarding GPUs’

local memory (Sections 3.3) and loop tiling (Section 3.4).

The compositional intrinsics phase adds to the IR the

nodes needed for performing memory allocation, and pre-

pares the IR for code generation. In a nutshell, this phase

starts by specializing the IR for GPU architectures based on

the new nodes that were trailed from the detection phase. Al-

though the previous phase was only application dependent,

from this stage and onwards application and architecture

dependent optimizations are being applied to the IR. Dur-

ing this process, the high-level IR is lowered into a more

concrete lower IR (known as the lowering process) which

has a closer mapping to the underlying target architecture.

Since this process involves the introduction of a number of
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Figure 3. IR transformations for the compiler intrinsics of local memory allocation, and data copies.

new IR nodes, we opted for creating and utilizing a set of

parameterized compiler intrinsics that can be composed at

run time to form larger graphs. These compiler intrinsics are

in the form of snippets [42] and they are essentially methods,

completely written in Java, that represent low-level opera-

tions that are being attached to the IR at runtime. Section 3.2

explains in detail, all the compiler intrinsics introduced for

automatically utilizing local memory.

Finally, the memory transformations phase is an archi-

tecture dependent optimization process. In this phase, the

JIT compiler processes the new nodes introduced during low-

ering, and completes the IR with the correct information to

access local memory. This low-level information includes the

base addresses and the o�set arithmetic nodes. In summary,

this phase introduces new IR operations for: 1) copying data

from global to local memory, 2) materializing the indices to

read/write from/to local memory, and 3) copying the �nal

data from local to global memory upon �nishing executing

a kernel. In addition, this phase invokes the OpenCL API

for obtaining device speci�c information to optimize local

memory sizes, based on the number of work-items deployed

and the available local memory.

3.2 Compositional Compiler Intrinsics

Compiler intrinsics are low-level code segments that are

typically expressed in low-level programming languages,

such as assembly or C. They represent optimized code for

common operations, such as the use of vector operations

or memory allocation. The JIT compilers of Graal and Max-

ineVM [31, 50] introduced the concept of compiler snippets

as a high-level representation of low-level operations [42].

With snippets, low-level operations are implemented in a

high-level programming language (Java) instead of the as-

sembly code. Since the aforementioned JIT compilers are

also implemented in Java, they do not need to cross lan-

guage boundaries to implement their intrinsics and, hence,

their code can be further optimized by applying common

compiler optimizations (e.g., loop unrolling, constant propa-

gation, etc.).

Fumero et al. [20] extended the use of compiler snippets to

express e�cient parallel skeletons for GPUs in TornadoVM.

In this paper, we extend the capabilities of compiler snip-

pets to express local memory optimizations by introducing

compositional compiler intrinsics, that can be parameterized

and reused for di�erent compiler optimizations. With this

approach, we can further increase the performance of input

applications by automatically exploiting local memory.

We implemented a set of parameterized compiler intrin-

sics that allow us to gradually lower the IR and generate

e�cient GPU code that makes use of local memory. These

compiler intrinsics are involved in two di�erent compilation

phases: the compositional intrinsics phase, in which we in-

sert the actual compiler intrinsics into the compiled graph

(IR), and the memory transformations phase, in which the

IR is optimized after inlining the intrinsics into the graph.

This approach o�ers a degree of �exibility to the compiler

to apply a number of optimizations, as well as to combine

intrinsics to express multiple optimizations. In detail, the

following intrinsics are introduced:

Local Memory Allocation: This intrinsic modi�es the IR

to emit code for allocating arrays in local memory. Input

and output variables that have been detected in the �rst

phase, are marked as candidates for using local memory.

In this case, this compiler intrinsic introduces the logic to

declare and instantiate arrays in local memory. By design,

snippets do not support dynamic memory allocation, and

consequently, the Local Memory Allocation intrinsic does

not either. Therefore, array lengths have to be statically set.

To address this limitation, we provide the lengths of the

arrays to be stored in local memory as a parameter node

that can be dynamically changed and updated in the mem-

ory transformations phase. The actual size depends on the

amount of local memory available on the target device and

the number of threads to be deployed. In this way, multi-

ple combinations of local memory sizes can be generated

during runtime. Figure 3 illustrates the use of this compiler

intrinsic in our JIT Compiler. The left-hand side of Figure 3

shows the IR that represents an indexed read and an indexed
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write from/to an array inside a loop. The graph is read as

follows: the control �ow nodes are connected with red ar-

rows, while the data-�ow nodes are connected with black

dashed arrows. In addition, the introduction of a compiler

intrinsic is represented by a red node, while a blue node

represents a node needed to perform an optimization. In

this phase, the JIT compiler runs the detection phase, look-

ing for reads and writes that are enclosed in loops. Upon

the detection of the ReadIndexedNode/WriteIndexedNode

nodes (Figure 3(a)), the compiler marks them as candidates

to use local memory and introduces a set of new nodes (i.e.,

LocalArrayAlloc, Size) in the IR (Figure 3(b)).

Copy To Local Memory/Copy To Global Memory: These

compiler intrinsics introduce a copy from global to local

memory, and vice versa. These memory copies are presented

in Figure 3(c) by two new IR intrinsics CopyToLocal and

CopyToGlobal. Both intrinsics are performed during themem-

ory transformations phase and accept as inputs the local array

nodes and the corresponding indices from global and local

memory.

Load/Store Operations in Local Memory: This pair of intrin-

sics performs loads and stores operations from arrays that

reside in local memory to privatememory, and vice versa. Fig-

ure 3(c) illustrates these operations with two new IR intrin-

sics ReadIndexedLocal and WriteIndexedLocal that repre-

sent the load and store operations, respectively. This pair of

compiler intrinsics enables our JIT compiler to access the

local memory address space, as opposed to the TornadoVM

IR indices (ReadIndexed and WriteIndexed in Figure 3(b))

that do not support this functionality.

Reductions with Local Memory: This intrinsic improves

the reduction operations proposed by Fumero et al. [20], by

adding local memory support. By using the same technique

as described for the two previous compiler intrinsics, we uti-

lize the GPU local memory so as to increase the performance

of reduction operations on GPUs. Section 3.3 explains all

the IR transformations involved to generate e�cient GPU

reductions using local memory via our compiler intrinsics.

Parameterized Loop Tiling for Local Memory:We also intro-

duced a set of compiler intrinsics that can be combined with

common loop optimizations, such as loop tiling and loop

unrolling. Although these loop optimizations are orthogonal

to the use of local memory, they can facilitate the use of local

memory. To do so, we introduced a compiler intrinsic in the

JIT compiler to perform loop tiling. This intrinsic receives,

as parameters, all arrays stored in local memory and all loop

indices that access local memory. Through the parameter-

ized architectural design of the compiler intrinsics, we can

further combine this optimization with loop unrolling. Fig-

ure 4 illustrates an example of this compiler intrinsic that

combines the local memory allocation with loop tiling. Fig-

ure 4(a) shows the detection phase with three primary nodes:

a loop node and two indexed read and write nodes. During

the detection phase the loop node is selected as a candidate

node for loop-tiling. The second graph shows the expansion

of the IR through the introduction of the compiler intrinsic

for loop-tiling. This new set of nodes in the IR enables a

new marking phase to apply local memory and loop tiling

(Figure 4(b)). Figure 4(c) shows the new IR after applying

local memory allocation, loop tiling, and the copies from

global to local memory (and vice versa once the loop tiling

optimization is performed).

For the rest of this section, we use two di�erent use cases

to showcase how compositional compiler intrinsics are in-

troduced in the IR, and how they are optimized to e�ciently

utilize the GPU memory hierarchy. Note that, although we

demonstrate our approach in the context of the TornadoVM

JIT compiler, the proposed technique can be used by other

compilation frameworks that provide similar features, such

as LLVM and GCC.

3.3 Exploiting Local Memory: Parallel Reductions

The �rst use-case that we utilize to showcase the proposed

technique regards the reduction operations, which are de-

�ned as the accumulation of input values from a vector into

a single scalar value. Reductions are one of the basic primi-

tives for many parallel programming frameworks, such as
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Google Map/Reduce [15], Apache Spark [53], Flink [9], and

common libraries such as Thrust [6]. Therefore, optimizing

parallel reductions has been a well studied topic, especially

with regards to memory optimizations such as local mem-

ory [10, 14].

To perform high performance reductions on GPUs, Tor-

nadoVM currently makes use of compiler intrinsics [42] to

express parallel skeletons [20]. TornadoVM already solves

the problem of seamlessly expressing parallel reductions in

the compiler, albeit without exploiting data locality and GPU

local memory. As follows, we describe each compiler phase

of the proposed technique for adding local memory support

to reduction operations.

Detection. To express reductions in TornadoVM, develop-

ers use the@Reduce annotation. Upon adding the annotation,

the TornadoVM JIT compiler detects the reduction pattern

which is subsequently used by our solution to add local mem-

ory support.

In a nutshell, TornadoVM targets only the global memory

space by automatically dividing the iteration space in smaller

chunks (one chunk per work-group), and it performs a full

reduction within each chunk.

Lowering. TornadoVM implements parallel reductions

with the use of intrinsics (further information can be found

in [20]). Listing 1 exempli�es the compiler intrinsic (snippet)

that is used to perform a reduction operation. As shown,

the compiler intrinsic is also written in Java and during

compilation its generated IR is appended to the rest of the

compiled method’s IR graph. Consequently, the merged IR

can be re-optimized iteratively; a key advantage in compari-

son to intrinsics written in low-level languages which are

treated as native functions from the compiler.

We augmented the existing intrinsic to add support for

local memory by adding the statements in gray color (List-

ing 1). To achieve this, we implemented additional compiler

intrinsics to express local memory regions in a high-level

1 @CompilerIntrinsinc

2 void reductionIntrinsic(float[] input,

3 float[] output){

4 int idx = OpenCL.get_local_id(0);

5 int lgs = OpenCL.get_local_size(0);

6 int gID = OpenCL.get_group_id(0);

7 float[] local = OCL.alloc(SIZE, float.class);

8 local[idx] = input[OpenCL.get_global_id(0)];

9 for(int i = (lgs/2); i > 0; i/=2) {

10 OpenCL.localBarrier();

11 if (idx < i) local[idx] *= local[idx + i];

12 }

13 if (idx == 0) output[gID] = local[0];

14 }

Listing 1. Code of a compiler intrinsic in our JIT compiler

to utilize the GPU’s local memory for reductions.

manner. In this case, we explicitly use a local memory re-

gion by allocating the corresponding arrays in the generated

OpenCL source code, instead of de�ning a parameter to the

generated OpenCL kernel with a local memory region. Line

6 shows the allocation of the local array in local memory.

Note that the allocation is performed via an invocation to the

static method OCL.alloc, in which we pass the size and the

type of the array. Consequently, line 7 copies data from global

memory to local memory. Then, the actual reduction is com-

puted using local memory (line 10). Finally, line 12 performs

the �nal copy from local to global memory. These intrinsics

are lowered by the JIT compiler to generate OpenCL C code

that corresponds to the high level Java code. By using this

strategy of computing with local memory, the execution �ow

from global memory is transformed to local memory.

During the lowering phase, the IR generated by the com-

piler intrinsic includes new nodes associated with allocating,

indexing, and storing data to the local memory region. Then,

the new nodes are inlined to the IR graph of the compiled
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Figure 6. IR nodes from the compiler intrinsic in Listing 2.

method. Figure 5 depicts the IR transformations upon replac-

ing the IR nodes introduced by the intrinsic in Listing 1 with

the corresponding lowered IR nodes (via substitution) for

local memory allocation. Similar to Figure 3, control-�ow

nodes are connected with red arrows, while data-�ow nodes

are connected using black dashed arrows. The left graph in

Figure 5 represents the IR when the code for the reduction

intrinsic is built. This graph includes the Invoke#OCL.alloc

node that represents an array allocation using local memory.

This node contains information about the size, that is used

as a data-�ow node, allowing us to dynamically change the

size. Therefore, the same compiler intrinsic can generate pa-

rameterizable code for various local memory sizes. The right

graph shows the IR graph after applying the substitution to

allocate local memory.

Memory Transformations. A challenge in this phase

is that the upfront decision for the allocated size of local

memory has to be taken in accordance with the deployed

GPU threads (work-items). However the number of deployed

threads is determined at runtime and depends on the in-

put data size of the application. To tackle this challenge,

we attach the sizes of the local arrays as a data-�ow node

(SizeNode) in the IR, as illustrated in Figure 5. In this case,

if the same reduction is executed, during runtime, with a

di�erent input size, the generated code will be dynamically

adapted by changing only the size node that is attached to

the LocalMemoryAlloc node in the IR.

3.4 Data Locality for Local Memory using MxM

The second use-case that we use to express the e�cacy of

the proposed technique is the $ (# 3) matrix multiplication

operation. This code has three nested loops that can be paral-

lelized via TornadoVMwith the employment of the@Parallel

annotation. This section explains all the phases in the JIT

compilation �ow that facilitate the utilization of data locality

in the local memory.

Detection. The detection phase of our JIT compiler tra-

verses the IR graph and seeks for the ReadIndexed and

1 @CompilerIntrinsinc

2 void tile(float sum, float[] arrA, float[] arrB,

3 int size, ValueNode operator,

4 ValueNode reduceOperator) {

5 OpenCL.localBarrier();

6 for (int x = 0; x < size; x++) {

7 sum = OCL.compute(arrA[x], arrB[x],

8 operator, reductionOperator);

9 OpenCL.localBarrier();

10 }

11 }

Listing 2. Example of a compositional compiler intrinsic for

processing loop tiling using local memory.

WriteIndexed nodes, which represent the memory accesses

to the global memory. Figure 4(a) illustrates this process in

which all the derived information about the induction vari-

ables and the parameters of the method contributes to the

addition of two new nodes that apply two compiler intrin-

sics; one for local memory allocation and a second for loop

tiling at the innermost loop.

Lowering. Figure 4(b) presents the marking of the two

nodes that were added in the previous phase (LocalArray-

Alloc and LoopTiling). During the lowering phase, the IR

nodes are replaced by the respective compiler intrinsics. As

the local memory allocation intrinsic was discussed in Sec-

tion 3.2, we describe here the application of the loop tiling

intrinsic. Listing 2 shows the code that implements the com-

piler intrinsic in our JIT compiler for loop tiling. This intrin-

sic accepts as inputs a set of arrays, the size for the loop tiling

and the operators to be applied inside the loop tiling. Line 6

shows the new loop to perform the tiling and line 7 shows a

method invocation that introduces the compute logic inside

this new loop. Note also that two OpenCL local barriers are

required to guarantee consistency. The �rst barrier in line 5

is used prior to loop tiling to ensure that the data have been

copied to the allocated space in the local memory, whereas

the second barrier (line 9) synchronizes the processing of the

tile across all work-items before the �nal copy to the global

memory. Note that developers do not need to worry about

maintaining memory consistency when using local memory,

since the barriers are automatically inserted by the JIT com-

piler. Figure 6 shows the IR representation for this compiler

intrinsic. The new loop is introduced as a control �ow node

(LoopNode) right after the node of the OpenCL local barrier.

The loop body is represented by a compiler intrinsic called

OCL.Compute. This intrinsic acts as a placeholder for insert-

ing the IR nodes that represent the core computation within

the loop tiling, which, in the case of matrix multiplication, it

corresponds to a multiplication, followed by a sum. In turn,

all these new nodes will be replaced during the memory

transformations phase.
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Figure 7. IR node replacements during the memory transformation phase for the Matrix Multiplication application.

Memory Transformations. Figure 7 illustrates the tran-

sition of the IR from lowering (left graph) to the �nal memory

transformations phase (right graph). In the last phase before

the OpenCL C code generation, a set of new compiler intrin-

sics (e.g., CopyToLocal, CopyToGlobal) is introduced to use

local memory. The WriteIndexedLocal intrinsic of the right

graph in Figure 7 is used to store the �nal result from the

sum variable (Listing 2 - line 7). This phase has been previ-

ously discussed with regard to the local memory allocation

in Section 3.3.

Regarding the loop tiling optimization, the left graph in

Figure 7 shows the IR of the loop tiling compiler intrinsic

(Figure 6). During the memory transformations phase all the

IR nodes of the compiler intrinsic are lowered to OpenCL

instructions. In particular, this phase inlines the call of the

OCL.Compute method that was introduced in the previous

phase into a set of nodes that performs the computation of

the method. In this case, the call inlines all nodes involved

in the matrix multiplication operation within the loop tiling

(see right graph in Figure 7).

As the loop tiling compiler intrinsic is applied to the in-

nermost loop, three more nodes (LoopNode) are illustrated in

Figure 7 representing the three outermost loops. Therefore,

the lowering process of loop tiling starts by �rst traversing

the IR graph from the innermost loop, and then replacing

its loop bound with a TileSize node, and the bounds of

the third innermost loop with a NumberOfTiles node. The

two outermost loops remain the same as they represent the

sizes of parallel dimensions. To decide the tile size during

JIT compilation, the OpenCL driver is invoked to provide

the maximum number of the available work-items which is

device-speci�c. Similarly, the number of deployed threads

(GlobalWorkItems) is obtained from the OpenCL driver as

it matches the input data size of the application. This infor-

mation is used to calculate the number of total tiles.

Finally, due to our parameterizable compiler intrinsics,

existing compiler intrinsics can be combined with more ag-

gressive optimizations, such as loop unrolling and partial

escape analysis.

4 Evaluation

This section presents the performance evaluation of the

proposed technique against two baseline implementations:

(i) the original code produced by TornadoVM1 that does

not exploit GPU local memory, and (ii) hand-written opti-

mized OpenCL code. The OpenCL baseline implementation

includes the same set of optimizations as our extended JIT

compiler. Table 1 presents the hardware speci�cations of

the three GPU devices used in our testbed. The system runs

CentOS 7.4 with Linux kernel 3.10, and for all experiments

we use the OpenJDK JVM 1.8 (u242) 64-Bit with 16GB of

Java heap memory. In order to ensure that the JVM has been

warmed up, we execute 100 iterations per benchmark, and

we report the geometric mean.

1The exact commit point is: 81c70437800c252899a56e78ddbe80697f273973.
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Table 1.Device and driver speci�cation for the experimental

setup.

Device Vendor Work-Items Global Local Driver

GFX900 AMD 1024x1024x1024 8GB 64KiB 2766.4

GeForce 1650 Nvidia 1024x1024x64 4GB 48KiB 435.21

HD Graphics Intel 256x256x256 25GB 64KiB 19.43.14583

Table 2. The list of benchmarks used in the evaluation.

Benchmark
Input

Sizes

Method/Kernel LOC Opts

Java Gen OpenCL Lc Tile

Reduction

(Min)
2
8 to 2

24 5 40 19 Y N

Reduction

(Add)
2
8 to 2

24 5 40 19 Y N

Reduction

(Mul)
2
8 to 2

24 5 40 19 Y N

Transpose

Matrix
2
8 to 2

24 6 77 14 Y N

Matrix

Multiplication

2
5x25 to

2
12x212

11 63 25 Y Y

Matrix Vector

Multiplication

2
6x23 to

2
16x28

9 55 20 Y Y

4.1 Benchmarks

We evaluate our technique against three reduction opera-

tions (Minimum, Addition, and Multiplication), and three ma-

trix operations (Matrix Multiplication, Matrix Transpose, and

Matrix Vector Multiplication). Table 2 presents the various pa-

rameters used for each benchmark including the input data

size, the lines of code (LOC), and the combination of optimiza-

tions applied per benchmark; namely local memory usage

(Lc) and loop tiling (Tile). The evaluated benchmarks have

been implemented in Java, for execution with TornadoVM,

and in OpenCL C for comparisons against hand-written opti-

mized native code. The third column (Java) of Table 2 shows

the LOC for the TornadoVM Java implementations, while the

fourth column (Gen) shows the LOC of the auto-generated

GPU code. Finally, the �fth column (OpenCL) shows the LOC

of the manually written OpenCL C codes. We present the

LOC of the implementations in order to provide an insight of

the complexity of the developed code with respect to utiliz-

ing the GPU memory hierarchy. Note that the OpenCL code

generation in TornadoVM (Gen) derives from SSA (Static

Single Assignment) representation (in which each operation

is assigned exactly once). Therefore, more lines of code are

generated. Regarding optimizations, all reductions exploit

local memory as explained in Section 3.3, whereas the matrix

operations exploit the di�erent combinations (Lc, Tile), as

discussed in Section 3.4.

4.2 Performance Comparison vs. TornadoVM

Figure 8 presents the performance speedup achieved by the

proposed compiler optimizations, against TornadoVM which

does not support local memory. For both �gures, the x-axis

shows the input size for each benchmark, while the y-axis

shows the speedup against TornadoVM.

In general, our approach outperforms TornadoVM by up

to 2.5x and 1.6x for matrix and reduction operations, re-

spectively. Additionally, all benchmarks exhibit performance

speedups across all data sizes. For Intel and NVidia GPUs,

the reported times include only the kernel execution on the

GPUs. On the contrary, for the AMD GPU the reported times

include also data transfers. This is due to a limitation of the

AMDOpenCL driver which can only report kernel execution

and data transfer times combined. For this reason we also

separate the discussion regarding performance between the

di�erent GPUs.

AMDGPU Performance. As shown in Figure 8, our com-

piler optimizations yield performance speedups ranging from

1.02G to 1.58G on the AMD GPU. Regarding all reduction

operations (Figure 8(a-c)), we observe that the execution for

small input data sizes yields higher performance compared

to larger input sizes when utilizing local memory (up to

1.58x at 28 data elements in Figure 8(a)). Since the reported

times of the AMD GPU include also data transfers, the ob-

served speedups degrade as the input data sizes increase due

to the costly data transfers. Nevertheless, these overheads

do not result in slowdowns. Regarding matrix operations

(Figure 8(d-f)), the execution on the AMD GPU obtains a

maximum performance of 2.3x for matrix multiplication and

1.23x for matrix transpose, following similar trends with the

reduction operations.

Nvidia and Intel GPU Performance. As shown in Fig-

ure 8, the execution with local memory on Intel HD Graphics

(second bars) performs up to 35% faster than the baseline

con�guration (216 data elements in Figure 8(a)). Regarding

the execution on the Nvidia GPU (third bars), performance

improvements of up to 48% are observed (212 data elements

in Figure 8(b)). As the data sizes increase, the relative per-

formance speedups of the proposed optimizations decrease.

This is attributed to the additional global barrier that had

to be placed into the generated code before the �nal read

from local to global memory. As the number of threads in-

creases and surpasses the amount of physical threads that

can run in parallel on the device, the overhead of the barrier

also increases. We plan to address the barrier overheads by

applying node hoisting in future work.

Concerning matrix operations (Figure 8(d-f)), the largest

speedup (up to 2.5x) is observed when running on the Intel

HD Graphics (218 data elements in Figure 8(e)). In general,

the observed speedups for matrix operations are higher than

those in reduction operations, mainly due to the combina-

tion of the applied optimizations (i.e., loop tiling and local

memory). Finally, as shown in Figure 8(e-f), for small data

sizes we observe no performance increases. This is attributed

to the loop unrolling optimization taking place at the early
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(a) Reduction Minimum. (b) Reduction Addition. (c) Reduction Multiplication.

(d) Matrix Transpose. (e) Matrix Multiplication. (f) Matrix Vector Multiplication.

Figure 8. Performance comparison against vanilla TornadoVM (the higher, the better). The x-axis represents the input size for

each benchmark, while the y-axis shows the performance speedup against TornadoVM.

Figure 9. Relative performance of the code generated by

our extended JIT compiler against hand-written optimized

OpenCL implementation (the higher, the better).

stage of the optimizations which consequently negates the

local memory optimizations proposed in this paper. Never-

theless, it is possible to apply the proposed optimizations on

unrolled loops in future work.

4.3 Performance Comparison vs. Hand-Written

OpenCL

Figure 9 shows the relative performance of the code gener-

ated by the JIT compiler against the functionally equivalent

optimized (using local memory and loop tiling) OpenCL code.

Similarly to the previous experiments, the times reported on

the AMD GPU include both kernel and data transfer times

in contrary to Intel and Nvidia GPUs that report only kernel

times.

As shown in Figure 9, the performance of the JIT-compiled

code compared to native OpenCL C implementations for

reductions, reaches up to 53% on the AMD GPU, up to 83%

Table 3. Compilation times per phase.

Time (ms)

Benchmark TornadoVM
Nvidia

Driver

Intel

Driver

AMD

Driver

Reduction Add 64.59 47.04 224.38 18.54

Reduction Mul 73.23 54.60 251.16 19.64

Reduction Min 81.38 57.70 258.61 18.85

Matrix Transpose 55.43 43.20 227.73 17.42

Matrix Mul. 62.21 48.10 250.68 21.32

Matrix-vector Mul. 61.31 52.40 254.68 19.32

GeoMean 65.81 50.39 239.06 19.16

on the Intel HD GPU, and up to 94% on the Nvidia GPU.

Regarding matrix operations (Figure 9), the JIT-compiled

code performs up to 78% on the AMD GPU, up to 92% on the

Intel HD GPU, and up to 82% on the Nvidia GPU, compared

to the native OpenCL C code. As expected, the results shown

in Figure 9 demonstrate that the performance of the JIT-

compiled code does not match that of the optimized OpenCL

C native code. However, the auto-generated code performs

competitively especially after considering the fact that no

user intervention for performance tuning is required.

4.4 Compilation overhead

Table 3 presents the time spent for JIT compilation sepa-

rated into two categories: TornadoVM and driver compilation

times. The TornadoVM compilation time is the time taken to

JIT-compile the Java bytecodes to OpenCL code, while the

driver compilation times are the reported times of the device

drivers for compiling the OpenCL code to machine code.
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In order to better understand the JIT-compilation over-

heads, we investigated the Matrix Multiplication benchmark,

since it combines both the local memory allocation and loop

tiling. The JIT-compilation of that benchmark exhibits up to

63.7% of additional compilation time compared to the original

TornadoVM JIT compiler. From that additional compilation

time, the newly introduced optimization phases account for

up to 25%. The rest of the overhead is distributed amongst

the rest of compilation phases and they are attributed to the

increased size of the IR graph. The addition of local memory

and loop tiling awareness to the IR graph results up to 50%

additional nodes that are processed by subsequent optimiza-

tion. The occurrence of extra nodes that are processed by

the consequent optimization phases is translated to approx-

imately 35% increase of compilation time. In addition, the

percentage of compilation time in the total execution time is

less than 5% and, as in any other optimizing JIT-compilers,

this overhead is encountered only once during execution

(the initial compilation).

4.5 Automatically Exploiting Private Memory

Similarly to local memory, we also introduce private memory

array allocation on GPUs for arrays that are allocated and

used within the scope of each work-item. All Java objects

(including arrays) are allocated on the Java heap. However, if

the Java objects do not escape a certain scope (e.g., a method

scope), modern JIT compilers might apply a compiler tech-

nique called partial escape analysis (PEA) [43]. This opti-

mization aims to avoid the object allocation on the heap, and

instead, to use the Java stack and the internal registers.

We extend this model by using the private memory array

allocation for objects that do not escape the scope in which

they are declared. We analyze in the IR the data access pat-

terns, which track the usage per work-item of the declared

arrays. If arrays are only used within the work-item scope,

we replace the object allocation by an explicit allocation in

private memory of the required sized. This means that, if

the array is declared either within a sequential loop in Java

(without the @Parallel annotation), or in a parallel loop

without any data dependencies between its accesses, and the

array does not escape the method’s scope, then we replace

the allocation from the global memory into private memory.

Note that due to the limited number of physical registers, the

OpenCL driver might allocate the array in global memory.

Since our extensions to TornadoVM are tightly integrated

into the Graal compiler infrastructure, it is not possible to

isolate this optimization and measure its e�ect. Additionally,

by disabling PEA, arrays would be allocated in global mem-

ory; an operation which is not supported by TornadoVM.

Nevertheless, we implemented a synthetic benchmark to

demonstrate the e�ect of private memory usage in our com-

piler infrastructure. We run a reduction per work-item using

an array allocated in private memory versus an array us-

ing global memory on an NVIDIA GPU. To avoid compiler

optimizations from the NVIDIA CUDA compiler, we also

disabled compiler optimizations (cl-opt-disable). By an-

alyzing the PTX generated by the NVCC CUDA compiler,

we found that the private arrays are allocated in constant

memory, and the load operations are performed into local

memory. This version performs up to 2.3G times faster than

using only the global memory.

5 Related Work

This section discusses the related work regarding the expo-

sure of GPU memory optimizations into programming lan-

guages and implementations, and optimizations techniques

for memory transformations.

We classify the related work into two groups. The �rst

group describes approaches for exposing GPU features to

a wide range of high-level programming languages. The

second group focuses on various memory transformations

at the compiler level.

5.1 GPU Features into Programming Languages

In the context of dynamically compiled languages (e.g., Java)

several frameworks [3, 21] have been proposed to exploit

GPU acceleration. Aparapi [3] and TornadoVM [21] are Java-

based frameworks that dynamically compile Java bytecodes

to OpenCL code. Aparapi exposes speci�c language con-

structs for memory allocation (i.e., local memory) and mem-

ory synchronization (i.e., barriers) that programmers must

explicitly use [3]. On the contrary, TornadoVM generates

high-level bytecodes to abstract programmers from the GPU

programming model. However, it does not automatically

exploit �ne-grain memory and does not expose low-level

constructs to developers. Moreover, IBM J9 [27] is another ex-

ample of a JIT compiler for GPU o�oading, but it exclusively

compiles Java streams to CUDA-PTX code. The only memory

optimization supported by J9 is the placement of read-only

data to read-only caches. Similarly, the Marawacc [23] com-

piler and FastR-GPU [22] only exploited global and constant

memory via the Graal JIT compiler.

In addition, several parallel programming frameworks

exist [11, 17, 23, 29, 38, 44, 45, 47] that enable the compilation

of domain-speci�c languages on GPUs. Lift [26, 46] extends

its existing data parallel primitive types to accommodate loop

tiling (e.g., slide,pad) and its low-level OpenCL with local

memory (e.g., toLocal) allocation for stencil computations.

Ragan-Kelley et al. [37] introduced Halide, a domain-speci�c

language (based on C++) for executing high-performance

image processing code on GPUs. However, the exposure of

the GPU features at the programming language increases

the development cost, as the resulting performance is tightly

coupled with the programmer’s experience.

Our work di�ers from all aforementioned frameworks as

we propose an approach that automatically exploits the GPU
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memory hierarchy, without exposing any speci�c language

constructs to the developers.

5.2 Compiler Techniques for Memory

Transformations

Verdoolaege et al. [49] used polyhedral models to automati-

cally transform C code to CUDA while utilizing shared mem-

ory and loop tiling. Similarly, Bondhugula et al. [8] proposed

PLUTO, an automatic loop nest parallelizer to exploit data lo-

cality via shared memory. In addition, Grosser et al. [24] have

extended the polyhedral models in PLUTO with loop split-

ting for stencil workloads. PolyJIT of Simburger et al. [41]

combines polyhedral optimization with multi-versioning at

run time; a technique that poses signi�cant overhead during

code generation. A number of studies [4, 5, 30, 39] target

loop tiling optimizations and code generation for GPUs for

a�ne loops. Moreover, Di et al. [16] proposed an algorithm

to improve tiling hyperplanes by using dependency analy-

sis, while Grosser et al. [24] developed a polyhedral-based

parametric scheme leveraging run-time exploration of parti-

tioning parameters.

In addition, a number of non-polyhedral based approaches

have been also proposed. Kim et al. [28] presented an ap-

proach to map tensor contractions directly to GPUs, while us-

ing shared memory by a parametric code generation strategy

that utilizes a cost model for data movement. Chen et al. [11]

extended Halide’s support for new optimizations that tar-

get the memory hierarchy by introducing the concept of

memory score in the compiler. Yang et al. [52] introduced an

optimizing source to source compiler for C programs that

exploits a number of memory optimizations, such as con-

verting non-coalesced accesses, vectorization for memory

access, and tiling with shared memory. Additionally, Hage-

dorn et al. [25] proposed Elevate, a new functional language

to express various optimizations such as vectorization, tiling,

splitting, and others.

Our work improves upon the approaches above that em-

ploy exhaustive techniques to optimize memory transforma-

tions, as it provides a trade-o� between compilation time

and achieved performance, making it more suitable for inter-

preted and dynamically compiled programming languages.

6 Conclusions

In this paper we presented an approach to e�ciently exploit

the memory hierarchy of GPUs from dynamically compiled

languages. This is achieved by extending the capabilities of

compiler snippets to express local memory optimizations

by introducing compositional compiler intrinsics, that can

be parameterized and reused for di�erent JIT compiler opti-

mizations. Our solution provides a trade-o� between compi-

lation times and achieved performance, making it suitable for

JIT-compiled languages. The presented work has been pro-

totyped in the context of TornadoVM and includes compiler

extensions and optimizations to exploit GPU local memory

and loop tiling. Our proposed technique has been evaluated

across three GPU architectures and the results indicate that

it can achieve performance speedups of up to 1.58G and 2.5G

for reduce and matrix operations, respectively. We also show-

cased that the performance of the proposed extensions can

achieve up to 94% of the performance of themanually written

OpenCL code. Most importantly, the aforementioned per-

formance increases come at no programmability costs since

they are transparently applied to unmodi�ed user programs

at compile time.

In the future, we plan to apply our work to other types

of computations (e.g., stencil computations) while devising

further optimizations. Furthermore, we plan to expand the

proposed technique for other niche accelerators (e.g., FP-

GAs [35, 36]).
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