
The University of Manchester Research

Automatically Exploiting the Memory Hierarchy of GPUs
through Just-in-Time Compilation

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Papadimitriou, M., Fumero Alfonso, J., Stratikopoulos, A., & Kotselidis, C-E. (Accepted/In press). Automatically
Exploiting the Memory Hierarchy of GPUs through Just-in-Time Compilation. 57-70. Paper presented at The 17th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE’21).

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:26. Aug. 2022

https://www.research.manchester.ac.uk/portal/en/publications/automatically-exploiting-the-memory-hierarchy-of-gpus-through-justintime-compilation(8c2ba9c6-cef3-42c5-9f49-a87c97eaecd7).html
/portal/juan.fumero.html
/portal/athanasios.stratikopoulos.html
/portal/christos.kotselidis.html
https://www.research.manchester.ac.uk/portal/en/publications/automatically-exploiting-the-memory-hierarchy-of-gpus-through-justintime-compilation(8c2ba9c6-cef3-42c5-9f49-a87c97eaecd7).html
https://www.research.manchester.ac.uk/portal/en/publications/automatically-exploiting-the-memory-hierarchy-of-gpus-through-justintime-compilation(8c2ba9c6-cef3-42c5-9f49-a87c97eaecd7).html

Automatically Exploiting the Memory Hierarchy of
GPUs through Just-in-Time Compilation

Michail Papadimitriou
The University of Manchester

United Kingdom

michail.papadimitriou@manchester.ac.uk

Juan Fumero
The University of Manchester

United Kingdom

juan.fumero@manchester.ac.uk

Athanasios Stratikopoulos
The University of Manchester

United Kingdom

athanasios.stratikopoulos@manchester.ac.uk

Christos Kotselidis
The University of Manchester

United Kingdom

christos.kotselidis@manchester.ac.uk

Abstract

Although Graphics Processing Units (GPUs) have become

pervasive for data-parallel workloads, the e�cient exploita-

tion of their tiered memory hierarchy requires explicit pro-

gramming. The e�cient utilization of di�erent GPU memory

tiers can yield higher performance at the expense of pro-

grammability since developers must have extended knowl-

edge of the architectural details in order to utilize them.

In this paper, we propose an alternative approach based

on Just-In-Time (JIT) compilation to automatically and trans-

parently exploit local memory allocation and data locality on

GPUs. In particular, we present a set of compiler extensions

that allow arbitrary Java programs to utilize local memory

on GPUs without explicit programming. We prototype and

evaluate our proposed solution in the context of TornadoVM

against a set of benchmarks and GPU architectures, show-

casing performance speedups of up to 2.5G compared to

equivalent baseline implementations that do not utilize lo-

cal memory or data locality. In addition, we compare our

proposed solution against hand-written optimized OpenCL

code to assess the upper bound of performance improve-

ments that can be transparently achieved by JIT compilation

without trading programmability. The results showcase that

the proposed extensions can achieve up to 94% of the perfor-

mance of the native code, highlighting the e�ciency of the

generated code.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for pro�t or commercial advantage and that

copies bear this notice and the full citation on the �rst page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c

permission and/or a fee. Request permissions from permissions@acm.org.

VEE ’21, April 16, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8394-3/21/04. . . $15.00

h�ps://doi.org/10.1145/3453933.3454014

CCS Concepts: • Software and its engineering → Just-

in-time compilers.

Keywords: GPU, JIT-Compilation, Tiered-memory

ACM Reference Format:

Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos,

and Christos Kotselidis. 2021. Automatically Exploiting theMemory

Hierarchy of GPUs through Just-in-Time Compilation. In Proceed-

ings of the 17th ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments (VEE ’21), April 16, 2021, Virtual,

USA. ACM, New York, NY, USA, 14 pages. h�ps://doi.org/10.1145/

3453933.3454014

1 Introduction

Heterogeneous hardware accelerators, such as GPUs and

FPGAs, have become prevalent across di�erent computing

domains for accelerating mainly highly data-parallel work-

loads. In particular, GPUs have gained traction for accel-

erating general-purpose workloads due to their �ne-grain

parallel architecture that integrates thousands of cores and

multiple levels of the memory hierarchy. In contrast to tra-

ditional CPU programming, GPUs contain programmable

memory that can be explicitly utilized by developers. Al-

though this results in gaining full control of where data can

be placed, it requires extensive architectural knowledge. The

majority of programming languages used for programming

GPUs (e.g., OpenCL, CUDA, OpenACC) expose to their APIs

speci�c language constructs that developers must explic-

itly use in order to optimize and tune their applications to

harness the underlying computing capabilities.

Recently, the trade-o� between GPU programmability and

performance has been an active research topic. Proposed

solutions mainly revolve around polyhedral models [16, 49]

or enhanced compilers for domain-speci�c languages, such

as Lift [46] and Halide [37]. These approaches either have

high compilation overhead [7], whichmakes them unsuitable

for dynamically compiled languages, or they still require

developers’ intervention to exploit the memory hierarchy of

GPUs through explicit parallel programming constructs [37,

46].

57

https://doi.org/10.1145/3453933.3454014
https://doi.org/10.1145/3453933.3454014
https://doi.org/10.1145/3453933.3454014

VEE ’21, April 16, 2021, Virtual, USA Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, and Christos Kotselidis

In this paper we propose an alternative approach for au-

tomatically exploiting the memory hierarchy of GPUs com-

pletely transparently to the users. Our approach is based on

Just-In-Time (JIT) compilation and abstracts away low-level

architectural intricacies from the user programs, while mak-

ing its application suitable in the context of dynamically com-

piled languages. The proposed compiler extensions are in the

form of enhancements to the Intermediate Representation

(IR) and associated optimization phases, that can automati-

cally exploit local memory allocations and data locality on

GPUs. We implemented the proposed compiler extensions

and optimizations in the context of TornadoVM [12, 21],

an open-source framework for accelerating managed appli-

cations on heterogeneous hardware co-processors via JIT

compilation of Java bytecodes to OpenCL.

The proposed compiler optimizations for exploiting and

optimizing local memory have been evaluated against a set

of reduction and matrix operations across three di�erent

GPU architectures. For our comparative evaluation we use

two di�erent baseline implementations: (i) the original code

produced by TornadoVM that does not exploit GPU local

memory, and (ii) hand-written optimized OpenCL code. The

performance evaluation against the original non-optimized

code produced by TornadoVM, shows that the proposed

compiler extensions for exploiting local memory can achieve

up to 2.5G performance increase. In addition, we showcase

that our proposed extensions can achieve up to 97% of the

performance of hand-written optimized OpenCL code, when

compared to the optimized native code.

In detail, this paper makes the following contributions:

• It presents a JIT compilation approach for automati-

cally exploiting local memory of GPUs.

• It extends the capabilities of compiler snippets to ex-

press local memory optimizations by introducing com-

positional compiler intrinsics, that can be parameterized

and reused for di�erent compiler optimizations.

• It evaluates the proposed technique across a variety

of GPU architectures, against the functionally equiva-

lent auto-generated unoptimized and the handwritten

optimized OpenCL code. Our solution achieves perfor-

mance speedup of up to 2.5G versus the original code

produced by TornadoVM, while reaching up to 94% of

the performance of the manually optimized code.

2 Background

This section gives an overview of the memory hierarchy

of GPUs using the OpenCL [34] memory model. In addi-

tion, it discusses current techniques for exploiting it, while

highlighting their advantages and disadvantages.

2.1 Overview of the OpenCL Memory Model

OpenCL provides cross-platform portability for parallel code

running on heterogeneous hardware, such as CPUs, FPGAs,

Kernel

Global Memory
(GB)

Constant Memory

Workgroup

Workgroup

Workgroup

Local Memory (KB)

Work
item

Private
(KB)

Work
item

Private
(KB)

Work
item

Private
(KB)

Work-item
Scope

Global
Workgroup
Size
Scope

Workgroup
Scope

Figure 1. Overview of the OpenCL memory model.

and, most commonly, GPUs. The parallel code that is of-

�oaded on the GPU corresponds to a kernel, which is sub-

mitted to the device for execution. This code is executed

by the GPU Compute Units (CUs). Each Compute Unit has

several Processing Elements (PEs) which are considered as

virtual scalar processors. These PEs can execute on multi-

ple threads known as work-items, which are grouped into

work-groups. Furthermore, each CU can execute a number

of work-groups.

Additionally, OpenCL provides its own memory model

that consists of four memory tiers (Figure 1): Global mem-

ory provides a space that allows read/write privilege to all

work-items deployed by the OpenCL device driver. Global

memory encapsulates the constant memory tier, which can

be allocated for read-only accesses across all work-items. The

third memory tier is local memory, which can be accessed

(read/write) by all work-items within the same work-group

with the use of synchronization barriers [19]. Finally, the last

memory tier is private memory which belongs exclusively

to one work-item for storing data to a number of registers.

The GPU memory hierarchy is similar to the memory hi-

erarchy of conventional CPUs. The global memory (in the

range of GBs) corresponds to the main memory, whereas

local memory (up to hundreds of KBs) corresponds to the

L2 cache as it is shared among multiple work-items. Finally,

private memory (up to tens of KBs) is exclusive for each

work-item, and it is therefore semantically equivalent to the

L1 cache of the CPU. However, unlike CPUs, which have

hardware support for cache coherency, GPUs require com-

munication barriers for coherency. In addition, the access

latency between the di�erent memory tiers of GPUs can

vary in a range from ~40 to ~450 cycles for local and global

memory, respectively [51]. Thus, it is essential for develop-

ers to manually explore for an optimal point in the GPU

memory hierarchy for storing data, in order to achieve high

performance when processing large volumes of data.

58

Automatically Exploiting the Memory Hierarchy of GPUs through Just-in-Time Compilation VEE ’21, April 16, 2021, Virtual, USA

Detection Compositional Intrinsics

Detection &
Analysis

Marking
Attach New

Nodes

Memory Transformations

Memory
Access Space

Loop &
Memory

Allocation

Application Dependent Application &
Architecture Dependent

Architecture Dependent

Figure 2. Overview of the proposed JIT compilation �ow for automatically exploiting the GPU memory hierarchy.

2.2 Data Locality & Loop Transformations

Data locality is crucial for performance on the vast majority

of applications executed on both homogenous and hetero-

geneous computing systems. Modern optimizing compilers

targeting CPUs improve the spatial and temporal locality of

coherent caches by employing optimizations, such as loop

transformations. These transformations attempt to alleviate

cache misses, while reducing any bank con�icts and TLB

misses [32]. Therefore, optimizing compilers apply a number

of loop transformations, such as loop unrolling, loop tilling,

and loop un-switching [1, 2, 33].

Loop transformations have been also studied onGPUs [48].

For instance, loop tiling has been used to improve data local-

ity and load balancing among the parallel threads on GPUs;

since data split in smaller batches (tiles) can be accessed

more e�ciently, thereby improving the spatial locality. Ex-

cluding the programmability e�ort for manually achieving

loop tiling, a prime challenge for compilers is the decision

for the optimal tile size. This decision must be adaptive to

the memory characteristics, such as the size of local memory.

Thus, the decision for the optimal tile size has high com-

plexity and is often taken based on heuristics. Polyhedral

compilation [8, 16, 24, 49] is currently the state-of-the-art

approach to automatically apply loop tiling for code tar-

geting GPUs. This approach can yield high performance

and often performs comparably to manually optimized li-

braries [4]. Nonetheless, polyhedral compilers are more suit-

able for ahead-of-time compilation due to the overhead in

the analysis phase and the code generation [41], compared

to other traditional compilers (e.g. Java HotSpot C1/C2).

2.3 Enabling GPU Tier-Memory via JIT compilation

As mentioned in the previous subsection, and will be further

discussed in Section 5, current polyhedral approaches for ex-

ploiting the GPU memory hierarchy at compile time are not

viable for dynamically compiled languages, due to their in-

creased overhead in the analysis and code generation phases.

Hence, current solutions for exploiting and optimizing local

memory of GPUs typically expose low-level programming

constructs [40] to the API. This way, the responsibility is

passed to developers who must have advanced architectural

knowledge to utilize the memory tiers e�ciently and safely.

In this work, we present a technique that allows JIT compilers

to use local memory and perform loop tiling, transparently

to the developers.

3 GPU Memory-Aware JIT Compilation

This section presents our main contributions towards auto-

matically exploiting and optimizing the memory hierarchy

on GPUs via JIT compilation.

3.1 Overview

Figure 2 presents an overview of the JIT compilation pro-

cess for exploiting local memory. The proposed approach

includes three di�erent phases: detection, compositional in-

trinsics, and memory transformations. All phases are applied

to the common IR of the TornadoVM JIT compiler (which

is a superset of the Graal IR [18]). The TornadoVM IR uses

the sea-of-nodes [13] common representation, which en-

compasses both the control-�ow and data-�ow nodes. This

representation allows the compilation and optimization of

Java bytecodes to OpenCL by performing IR transformations.

The detection phase scans the IR to locate speci�c nodes,

such as accesses to/from arrays through read andwrite nodes,

as well as the induction variables. To use local memory, nodes

that are commonly used to read and write from/to memory

are �rst located (by default, the JIT compiler assumes all

accesses target GPU’s global memory). These array accesses

are detected via indexed read and write nodes in the IR. The

detection phase is crucial for the compilation process as: a) it

provides the exact place in the IR to read/write from/to local,

instead of global memory, and b) it analyzes all nodes accessi-

ble from the indexed read/write nodes, such as the induction

variables and the parameters of the compiled method. This

information is accounted during the detection phase to in-

troduce and attach a new node. The newly introduced node

encloses the read and write nodes and it is used by the next

phases to perform aggressive optimizations regarding GPUs’

local memory (Sections 3.3) and loop tiling (Section 3.4).

The compositional intrinsics phase adds to the IR the

nodes needed for performing memory allocation, and pre-

pares the IR for code generation. In a nutshell, this phase

starts by specializing the IR for GPU architectures based on

the new nodes that were trailed from the detection phase. Al-

though the previous phase was only application dependent,

from this stage and onwards application and architecture

dependent optimizations are being applied to the IR. Dur-

ing this process, the high-level IR is lowered into a more

concrete lower IR (known as the lowering process) which

has a closer mapping to the underlying target architecture.

Since this process involves the introduction of a number of

59

VEE ’21, April 16, 2021, Virtual, USA Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, and Christos Kotselidis

LoopNode
Parameter

Parameter Index

Index

... ...

a) Detection

b) Marking
LocalArrayAlloc

LoopNode

WriteIndexedLocal

Parameter
Index

...

c) Copy
CopyToLocal

CopyToGlobal

Size

ReadIndexedNode

Parameter Index

LoopNode
Parameter Index

ReadIndexedNode

Size LocalArrayAlloc

SizeSize

ReadIndexedLocal

WriteIndexedNodeWriteIndexedNode

Figure 3. IR transformations for the compiler intrinsics of local memory allocation, and data copies.

new IR nodes, we opted for creating and utilizing a set of

parameterized compiler intrinsics that can be composed at

run time to form larger graphs. These compiler intrinsics are

in the form of snippets [42] and they are essentially methods,

completely written in Java, that represent low-level opera-

tions that are being attached to the IR at runtime. Section 3.2

explains in detail, all the compiler intrinsics introduced for

automatically utilizing local memory.

Finally, the memory transformations phase is an archi-

tecture dependent optimization process. In this phase, the

JIT compiler processes the new nodes introduced during low-

ering, and completes the IR with the correct information to

access local memory. This low-level information includes the

base addresses and the o�set arithmetic nodes. In summary,

this phase introduces new IR operations for: 1) copying data

from global to local memory, 2) materializing the indices to

read/write from/to local memory, and 3) copying the �nal

data from local to global memory upon �nishing executing

a kernel. In addition, this phase invokes the OpenCL API

for obtaining device speci�c information to optimize local

memory sizes, based on the number of work-items deployed

and the available local memory.

3.2 Compositional Compiler Intrinsics

Compiler intrinsics are low-level code segments that are

typically expressed in low-level programming languages,

such as assembly or C. They represent optimized code for

common operations, such as the use of vector operations

or memory allocation. The JIT compilers of Graal and Max-

ineVM [31, 50] introduced the concept of compiler snippets

as a high-level representation of low-level operations [42].

With snippets, low-level operations are implemented in a

high-level programming language (Java) instead of the as-

sembly code. Since the aforementioned JIT compilers are

also implemented in Java, they do not need to cross lan-

guage boundaries to implement their intrinsics and, hence,

their code can be further optimized by applying common

compiler optimizations (e.g., loop unrolling, constant propa-

gation, etc.).

Fumero et al. [20] extended the use of compiler snippets to

express e�cient parallel skeletons for GPUs in TornadoVM.

In this paper, we extend the capabilities of compiler snip-

pets to express local memory optimizations by introducing

compositional compiler intrinsics, that can be parameterized

and reused for di�erent compiler optimizations. With this

approach, we can further increase the performance of input

applications by automatically exploiting local memory.

We implemented a set of parameterized compiler intrin-

sics that allow us to gradually lower the IR and generate

e�cient GPU code that makes use of local memory. These

compiler intrinsics are involved in two di�erent compilation

phases: the compositional intrinsics phase, in which we in-

sert the actual compiler intrinsics into the compiled graph

(IR), and the memory transformations phase, in which the

IR is optimized after inlining the intrinsics into the graph.

This approach o�ers a degree of �exibility to the compiler

to apply a number of optimizations, as well as to combine

intrinsics to express multiple optimizations. In detail, the

following intrinsics are introduced:

Local Memory Allocation: This intrinsic modi�es the IR

to emit code for allocating arrays in local memory. Input

and output variables that have been detected in the �rst

phase, are marked as candidates for using local memory.

In this case, this compiler intrinsic introduces the logic to

declare and instantiate arrays in local memory. By design,

snippets do not support dynamic memory allocation, and

consequently, the Local Memory Allocation intrinsic does

not either. Therefore, array lengths have to be statically set.

To address this limitation, we provide the lengths of the

arrays to be stored in local memory as a parameter node

that can be dynamically changed and updated in the mem-

ory transformations phase. The actual size depends on the

amount of local memory available on the target device and

the number of threads to be deployed. In this way, multi-

ple combinations of local memory sizes can be generated

during runtime. Figure 3 illustrates the use of this compiler

intrinsic in our JIT Compiler. The left-hand side of Figure 3

shows the IR that represents an indexed read and an indexed

60

Automatically Exploiting the Memory Hierarchy of GPUs through Just-in-Time Compilation VEE ’21, April 16, 2021, Virtual, USA

LoopNode

ReadIndexed

WriteIndexed

Parameter

Parameter Index

Index

...

a) Detection LoopNode

ReadIndexed

WriteIndexed

Parameter

Parameter Index

Index

...

b) Marking

LoopTiling

ReadIndexedLocal

WriteIndexedLocal

Parameter

Index

...

c) Copy
LocalArrayAlloc

CopyToLocal

CopyToGlobal

LoopNode

LoopTiling

LocalArrayAlloc

Figure 4. IR transformations for the compiler intrinsics of loop tiling, local memory allocation, and data copies.

write from/to an array inside a loop. The graph is read as

follows: the control �ow nodes are connected with red ar-

rows, while the data-�ow nodes are connected with black

dashed arrows. In addition, the introduction of a compiler

intrinsic is represented by a red node, while a blue node

represents a node needed to perform an optimization. In

this phase, the JIT compiler runs the detection phase, look-

ing for reads and writes that are enclosed in loops. Upon

the detection of the ReadIndexedNode/WriteIndexedNode

nodes (Figure 3(a)), the compiler marks them as candidates

to use local memory and introduces a set of new nodes (i.e.,

LocalArrayAlloc, Size) in the IR (Figure 3(b)).

Copy To Local Memory/Copy To Global Memory: These

compiler intrinsics introduce a copy from global to local

memory, and vice versa. These memory copies are presented

in Figure 3(c) by two new IR intrinsics CopyToLocal and

CopyToGlobal. Both intrinsics are performed during themem-

ory transformations phase and accept as inputs the local array

nodes and the corresponding indices from global and local

memory.

Load/Store Operations in Local Memory: This pair of intrin-

sics performs loads and stores operations from arrays that

reside in local memory to privatememory, and vice versa. Fig-

ure 3(c) illustrates these operations with two new IR intrin-

sics ReadIndexedLocal and WriteIndexedLocal that repre-

sent the load and store operations, respectively. This pair of

compiler intrinsics enables our JIT compiler to access the

local memory address space, as opposed to the TornadoVM

IR indices (ReadIndexed and WriteIndexed in Figure 3(b))

that do not support this functionality.

Reductions with Local Memory: This intrinsic improves

the reduction operations proposed by Fumero et al. [20], by

adding local memory support. By using the same technique

as described for the two previous compiler intrinsics, we uti-

lize the GPU local memory so as to increase the performance

of reduction operations on GPUs. Section 3.3 explains all

the IR transformations involved to generate e�cient GPU

reductions using local memory via our compiler intrinsics.

Parameterized Loop Tiling for Local Memory:We also intro-

duced a set of compiler intrinsics that can be combined with

common loop optimizations, such as loop tiling and loop

unrolling. Although these loop optimizations are orthogonal

to the use of local memory, they can facilitate the use of local

memory. To do so, we introduced a compiler intrinsic in the

JIT compiler to perform loop tiling. This intrinsic receives,

as parameters, all arrays stored in local memory and all loop

indices that access local memory. Through the parameter-

ized architectural design of the compiler intrinsics, we can

further combine this optimization with loop unrolling. Fig-

ure 4 illustrates an example of this compiler intrinsic that

combines the local memory allocation with loop tiling. Fig-

ure 4(a) shows the detection phase with three primary nodes:

a loop node and two indexed read and write nodes. During

the detection phase the loop node is selected as a candidate

node for loop-tiling. The second graph shows the expansion

of the IR through the introduction of the compiler intrinsic

for loop-tiling. This new set of nodes in the IR enables a

new marking phase to apply local memory and loop tiling

(Figure 4(b)). Figure 4(c) shows the new IR after applying

local memory allocation, loop tiling, and the copies from

global to local memory (and vice versa once the loop tiling

optimization is performed).

For the rest of this section, we use two di�erent use cases

to showcase how compositional compiler intrinsics are in-

troduced in the IR, and how they are optimized to e�ciently

utilize the GPU memory hierarchy. Note that, although we

demonstrate our approach in the context of the TornadoVM

JIT compiler, the proposed technique can be used by other

compilation frameworks that provide similar features, such

as LLVM and GCC.

3.3 Exploiting Local Memory: Parallel Reductions

The �rst use-case that we utilize to showcase the proposed

technique regards the reduction operations, which are de-

�ned as the accumulation of input values from a vector into

a single scalar value. Reductions are one of the basic primi-

tives for many parallel programming frameworks, such as

61

VEE ’21, April 16, 2021, Virtual, USA Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, and Christos Kotselidis

OpenCL.get_local_id

OpenCL.get_local_size

OpenCL.get_group_size

Invoke#OCL.alloc

WriteIndexedNode

SizeNode

ReadIndexedNode

AddressNode

AddressNode

get_local_id(0)Node

get_local_size(0)Node

get_group_size(0)Node

LocalMemoryAlloc

WriteIndexedNode

SizeNode

ReadIndexedLocal

AddressNode

AddressNode

Figure 5. Node replacements during the lowering phase for the reduction compiler intrinsic.

Google Map/Reduce [15], Apache Spark [53], Flink [9], and

common libraries such as Thrust [6]. Therefore, optimizing

parallel reductions has been a well studied topic, especially

with regards to memory optimizations such as local mem-

ory [10, 14].

To perform high performance reductions on GPUs, Tor-

nadoVM currently makes use of compiler intrinsics [42] to

express parallel skeletons [20]. TornadoVM already solves

the problem of seamlessly expressing parallel reductions in

the compiler, albeit without exploiting data locality and GPU

local memory. As follows, we describe each compiler phase

of the proposed technique for adding local memory support

to reduction operations.

Detection. To express reductions in TornadoVM, develop-

ers use the@Reduce annotation. Upon adding the annotation,

the TornadoVM JIT compiler detects the reduction pattern

which is subsequently used by our solution to add local mem-

ory support.

In a nutshell, TornadoVM targets only the global memory

space by automatically dividing the iteration space in smaller

chunks (one chunk per work-group), and it performs a full

reduction within each chunk.

Lowering. TornadoVM implements parallel reductions

with the use of intrinsics (further information can be found

in [20]). Listing 1 exempli�es the compiler intrinsic (snippet)

that is used to perform a reduction operation. As shown,

the compiler intrinsic is also written in Java and during

compilation its generated IR is appended to the rest of the

compiled method’s IR graph. Consequently, the merged IR

can be re-optimized iteratively; a key advantage in compari-

son to intrinsics written in low-level languages which are

treated as native functions from the compiler.

We augmented the existing intrinsic to add support for

local memory by adding the statements in gray color (List-

ing 1). To achieve this, we implemented additional compiler

intrinsics to express local memory regions in a high-level

1 @CompilerIntrinsinc

2 void reductionIntrinsic(float[] input,

3 float[] output){

4 int idx = OpenCL.get_local_id(0);

5 int lgs = OpenCL.get_local_size(0);

6 int gID = OpenCL.get_group_id(0);

7 float[] local = OCL.alloc(SIZE, float.class);

8 local[idx] = input[OpenCL.get_global_id(0)];

9 for(int i = (lgs/2); i > 0; i/=2) {

10 OpenCL.localBarrier();

11 if (idx < i) local[idx] *= local[idx + i];

12 }

13 if (idx == 0) output[gID] = local[0];

14 }

Listing 1. Code of a compiler intrinsic in our JIT compiler

to utilize the GPU’s local memory for reductions.

manner. In this case, we explicitly use a local memory re-

gion by allocating the corresponding arrays in the generated

OpenCL source code, instead of de�ning a parameter to the

generated OpenCL kernel with a local memory region. Line

6 shows the allocation of the local array in local memory.

Note that the allocation is performed via an invocation to the

static method OCL.alloc, in which we pass the size and the

type of the array. Consequently, line 7 copies data from global

memory to local memory. Then, the actual reduction is com-

puted using local memory (line 10). Finally, line 12 performs

the �nal copy from local to global memory. These intrinsics

are lowered by the JIT compiler to generate OpenCL C code

that corresponds to the high level Java code. By using this

strategy of computing with local memory, the execution �ow

from global memory is transformed to local memory.

During the lowering phase, the IR generated by the com-

piler intrinsic includes new nodes associated with allocating,

indexing, and storing data to the local memory region. Then,

the new nodes are inlined to the IR graph of the compiled

62

Automatically Exploiting the Memory Hierarchy of GPUs through Just-in-Time Compilation VEE ’21, April 16, 2021, Virtual, USA

OpenCL.localBarrierNode

LoopEndNode

LoopNode
LocalArrayAlloc

ReadIndexedLocal

OCL.Compute

OpenCL.localBarrierNode

ValueNode

LocalArrayAlloc

TileSize

ReadIndexedLocal

ValueNode

Figure 6. IR nodes from the compiler intrinsic in Listing 2.

method. Figure 5 depicts the IR transformations upon replac-

ing the IR nodes introduced by the intrinsic in Listing 1 with

the corresponding lowered IR nodes (via substitution) for

local memory allocation. Similar to Figure 3, control-�ow

nodes are connected with red arrows, while data-�ow nodes

are connected using black dashed arrows. The left graph in

Figure 5 represents the IR when the code for the reduction

intrinsic is built. This graph includes the Invoke#OCL.alloc

node that represents an array allocation using local memory.

This node contains information about the size, that is used

as a data-�ow node, allowing us to dynamically change the

size. Therefore, the same compiler intrinsic can generate pa-

rameterizable code for various local memory sizes. The right

graph shows the IR graph after applying the substitution to

allocate local memory.

Memory Transformations. A challenge in this phase

is that the upfront decision for the allocated size of local

memory has to be taken in accordance with the deployed

GPU threads (work-items). However the number of deployed

threads is determined at runtime and depends on the in-

put data size of the application. To tackle this challenge,

we attach the sizes of the local arrays as a data-�ow node

(SizeNode) in the IR, as illustrated in Figure 5. In this case,

if the same reduction is executed, during runtime, with a

di�erent input size, the generated code will be dynamically

adapted by changing only the size node that is attached to

the LocalMemoryAlloc node in the IR.

3.4 Data Locality for Local Memory using MxM

The second use-case that we use to express the e�cacy of

the proposed technique is the $ (# 3) matrix multiplication

operation. This code has three nested loops that can be paral-

lelized via TornadoVMwith the employment of the@Parallel

annotation. This section explains all the phases in the JIT

compilation �ow that facilitate the utilization of data locality

in the local memory.

Detection. The detection phase of our JIT compiler tra-

verses the IR graph and seeks for the ReadIndexed and

1 @CompilerIntrinsinc

2 void tile(float sum, float[] arrA, float[] arrB,

3 int size, ValueNode operator,

4 ValueNode reduceOperator) {

5 OpenCL.localBarrier();

6 for (int x = 0; x < size; x++) {

7 sum = OCL.compute(arrA[x], arrB[x],

8 operator, reductionOperator);

9 OpenCL.localBarrier();

10 }

11 }

Listing 2. Example of a compositional compiler intrinsic for

processing loop tiling using local memory.

WriteIndexed nodes, which represent the memory accesses

to the global memory. Figure 4(a) illustrates this process in

which all the derived information about the induction vari-

ables and the parameters of the method contributes to the

addition of two new nodes that apply two compiler intrin-

sics; one for local memory allocation and a second for loop

tiling at the innermost loop.

Lowering. Figure 4(b) presents the marking of the two

nodes that were added in the previous phase (LocalArray-

Alloc and LoopTiling). During the lowering phase, the IR

nodes are replaced by the respective compiler intrinsics. As

the local memory allocation intrinsic was discussed in Sec-

tion 3.2, we describe here the application of the loop tiling

intrinsic. Listing 2 shows the code that implements the com-

piler intrinsic in our JIT compiler for loop tiling. This intrin-

sic accepts as inputs a set of arrays, the size for the loop tiling

and the operators to be applied inside the loop tiling. Line 6

shows the new loop to perform the tiling and line 7 shows a

method invocation that introduces the compute logic inside

this new loop. Note also that two OpenCL local barriers are

required to guarantee consistency. The �rst barrier in line 5

is used prior to loop tiling to ensure that the data have been

copied to the allocated space in the local memory, whereas

the second barrier (line 9) synchronizes the processing of the

tile across all work-items before the �nal copy to the global

memory. Note that developers do not need to worry about

maintaining memory consistency when using local memory,

since the barriers are automatically inserted by the JIT com-

piler. Figure 6 shows the IR representation for this compiler

intrinsic. The new loop is introduced as a control �ow node

(LoopNode) right after the node of the OpenCL local barrier.

The loop body is represented by a compiler intrinsic called

OCL.Compute. This intrinsic acts as a placeholder for insert-

ing the IR nodes that represent the core computation within

the loop tiling, which, in the case of matrix multiplication, it

corresponds to a multiplication, followed by a sum. In turn,

all these new nodes will be replaced during the memory

transformations phase.

63

VEE ’21, April 16, 2021, Virtual, USA Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, and Christos Kotselidis

LoopNode

WriteIndexed

LoopNode

...

*

+

ReadIndexedLocal

LoopEndNode

LoopNode

ReadIndexedLocal

OCL.Compute

OpenCL.localBarrierNode

ValueNode

ValueNode

LocalArrayAlloc

LocalArrayAlloc

OpenCL.localBarrierNode

LoopNode

CopyToGlobal

LoopNode

...

ReadIndexedLocal

LoopEndNode

LoopNode

ReadIndexedLocal

LocalBarierNode

LocalArrayAlloc
LocalBarrierNode

CopyToLocal

LocalArrayAlloc

WriteIndexedLocal

TileSize
TileSize

LoopNode
LoopNode

NumberOfTiles
NumberOfTiles

Figure 7. IR node replacements during the memory transformation phase for the Matrix Multiplication application.

Memory Transformations. Figure 7 illustrates the tran-

sition of the IR from lowering (left graph) to the �nal memory

transformations phase (right graph). In the last phase before

the OpenCL C code generation, a set of new compiler intrin-

sics (e.g., CopyToLocal, CopyToGlobal) is introduced to use

local memory. The WriteIndexedLocal intrinsic of the right

graph in Figure 7 is used to store the �nal result from the

sum variable (Listing 2 - line 7). This phase has been previ-

ously discussed with regard to the local memory allocation

in Section 3.3.

Regarding the loop tiling optimization, the left graph in

Figure 7 shows the IR of the loop tiling compiler intrinsic

(Figure 6). During the memory transformations phase all the

IR nodes of the compiler intrinsic are lowered to OpenCL

instructions. In particular, this phase inlines the call of the

OCL.Compute method that was introduced in the previous

phase into a set of nodes that performs the computation of

the method. In this case, the call inlines all nodes involved

in the matrix multiplication operation within the loop tiling

(see right graph in Figure 7).

As the loop tiling compiler intrinsic is applied to the in-

nermost loop, three more nodes (LoopNode) are illustrated in

Figure 7 representing the three outermost loops. Therefore,

the lowering process of loop tiling starts by �rst traversing

the IR graph from the innermost loop, and then replacing

its loop bound with a TileSize node, and the bounds of

the third innermost loop with a NumberOfTiles node. The

two outermost loops remain the same as they represent the

sizes of parallel dimensions. To decide the tile size during

JIT compilation, the OpenCL driver is invoked to provide

the maximum number of the available work-items which is

device-speci�c. Similarly, the number of deployed threads

(GlobalWorkItems) is obtained from the OpenCL driver as

it matches the input data size of the application. This infor-

mation is used to calculate the number of total tiles.

Finally, due to our parameterizable compiler intrinsics,

existing compiler intrinsics can be combined with more ag-

gressive optimizations, such as loop unrolling and partial

escape analysis.

4 Evaluation

This section presents the performance evaluation of the

proposed technique against two baseline implementations:

(i) the original code produced by TornadoVM1 that does

not exploit GPU local memory, and (ii) hand-written opti-

mized OpenCL code. The OpenCL baseline implementation

includes the same set of optimizations as our extended JIT

compiler. Table 1 presents the hardware speci�cations of

the three GPU devices used in our testbed. The system runs

CentOS 7.4 with Linux kernel 3.10, and for all experiments

we use the OpenJDK JVM 1.8 (u242) 64-Bit with 16GB of

Java heap memory. In order to ensure that the JVM has been

warmed up, we execute 100 iterations per benchmark, and

we report the geometric mean.

1The exact commit point is: 81c70437800c252899a56e78ddbe80697f273973.

64

Automatically Exploiting the Memory Hierarchy of GPUs through Just-in-Time Compilation VEE ’21, April 16, 2021, Virtual, USA

Table 1.Device and driver speci�cation for the experimental

setup.

Device Vendor Work-Items Global Local Driver

GFX900 AMD 1024x1024x1024 8GB 64KiB 2766.4

GeForce 1650 Nvidia 1024x1024x64 4GB 48KiB 435.21

HD Graphics Intel 256x256x256 25GB 64KiB 19.43.14583

Table 2. The list of benchmarks used in the evaluation.

Benchmark
Input

Sizes

Method/Kernel LOC Opts

Java Gen OpenCL Lc Tile

Reduction

(Min)
2
8 to 2

24 5 40 19 Y N

Reduction

(Add)
2
8 to 2

24 5 40 19 Y N

Reduction

(Mul)
2
8 to 2

24 5 40 19 Y N

Transpose

Matrix
2
8 to 2

24 6 77 14 Y N

Matrix

Multiplication

2
5x25 to

2
12x212

11 63 25 Y Y

Matrix Vector

Multiplication

2
6x23 to

2
16x28

9 55 20 Y Y

4.1 Benchmarks

We evaluate our technique against three reduction opera-

tions (Minimum, Addition, and Multiplication), and three ma-

trix operations (Matrix Multiplication, Matrix Transpose, and

Matrix Vector Multiplication). Table 2 presents the various pa-

rameters used for each benchmark including the input data

size, the lines of code (LOC), and the combination of optimiza-

tions applied per benchmark; namely local memory usage

(Lc) and loop tiling (Tile). The evaluated benchmarks have

been implemented in Java, for execution with TornadoVM,

and in OpenCL C for comparisons against hand-written opti-

mized native code. The third column (Java) of Table 2 shows

the LOC for the TornadoVM Java implementations, while the

fourth column (Gen) shows the LOC of the auto-generated

GPU code. Finally, the �fth column (OpenCL) shows the LOC

of the manually written OpenCL C codes. We present the

LOC of the implementations in order to provide an insight of

the complexity of the developed code with respect to utiliz-

ing the GPU memory hierarchy. Note that the OpenCL code

generation in TornadoVM (Gen) derives from SSA (Static

Single Assignment) representation (in which each operation

is assigned exactly once). Therefore, more lines of code are

generated. Regarding optimizations, all reductions exploit

local memory as explained in Section 3.3, whereas the matrix

operations exploit the di�erent combinations (Lc, Tile), as

discussed in Section 3.4.

4.2 Performance Comparison vs. TornadoVM

Figure 8 presents the performance speedup achieved by the

proposed compiler optimizations, against TornadoVM which

does not support local memory. For both �gures, the x-axis

shows the input size for each benchmark, while the y-axis

shows the speedup against TornadoVM.

In general, our approach outperforms TornadoVM by up

to 2.5x and 1.6x for matrix and reduction operations, re-

spectively. Additionally, all benchmarks exhibit performance

speedups across all data sizes. For Intel and NVidia GPUs,

the reported times include only the kernel execution on the

GPUs. On the contrary, for the AMD GPU the reported times

include also data transfers. This is due to a limitation of the

AMDOpenCL driver which can only report kernel execution

and data transfer times combined. For this reason we also

separate the discussion regarding performance between the

di�erent GPUs.

AMDGPU Performance. As shown in Figure 8, our com-

piler optimizations yield performance speedups ranging from

1.02G to 1.58G on the AMD GPU. Regarding all reduction

operations (Figure 8(a-c)), we observe that the execution for

small input data sizes yields higher performance compared

to larger input sizes when utilizing local memory (up to

1.58x at 28 data elements in Figure 8(a)). Since the reported

times of the AMD GPU include also data transfers, the ob-

served speedups degrade as the input data sizes increase due

to the costly data transfers. Nevertheless, these overheads

do not result in slowdowns. Regarding matrix operations

(Figure 8(d-f)), the execution on the AMD GPU obtains a

maximum performance of 2.3x for matrix multiplication and

1.23x for matrix transpose, following similar trends with the

reduction operations.

Nvidia and Intel GPU Performance. As shown in Fig-

ure 8, the execution with local memory on Intel HD Graphics

(second bars) performs up to 35% faster than the baseline

con�guration (216 data elements in Figure 8(a)). Regarding

the execution on the Nvidia GPU (third bars), performance

improvements of up to 48% are observed (212 data elements

in Figure 8(b)). As the data sizes increase, the relative per-

formance speedups of the proposed optimizations decrease.

This is attributed to the additional global barrier that had

to be placed into the generated code before the �nal read

from local to global memory. As the number of threads in-

creases and surpasses the amount of physical threads that

can run in parallel on the device, the overhead of the barrier

also increases. We plan to address the barrier overheads by

applying node hoisting in future work.

Concerning matrix operations (Figure 8(d-f)), the largest

speedup (up to 2.5x) is observed when running on the Intel

HD Graphics (218 data elements in Figure 8(e)). In general,

the observed speedups for matrix operations are higher than

those in reduction operations, mainly due to the combina-

tion of the applied optimizations (i.e., loop tiling and local

memory). Finally, as shown in Figure 8(e-f), for small data

sizes we observe no performance increases. This is attributed

to the loop unrolling optimization taking place at the early

65

VEE ’21, April 16, 2021, Virtual, USA Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, and Christos Kotselidis

(a) Reduction Minimum. (b) Reduction Addition. (c) Reduction Multiplication.

(d) Matrix Transpose. (e) Matrix Multiplication. (f) Matrix Vector Multiplication.

Figure 8. Performance comparison against vanilla TornadoVM (the higher, the better). The x-axis represents the input size for

each benchmark, while the y-axis shows the performance speedup against TornadoVM.

Figure 9. Relative performance of the code generated by

our extended JIT compiler against hand-written optimized

OpenCL implementation (the higher, the better).

stage of the optimizations which consequently negates the

local memory optimizations proposed in this paper. Never-

theless, it is possible to apply the proposed optimizations on

unrolled loops in future work.

4.3 Performance Comparison vs. Hand-Written

OpenCL

Figure 9 shows the relative performance of the code gener-

ated by the JIT compiler against the functionally equivalent

optimized (using local memory and loop tiling) OpenCL code.

Similarly to the previous experiments, the times reported on

the AMD GPU include both kernel and data transfer times

in contrary to Intel and Nvidia GPUs that report only kernel

times.

As shown in Figure 9, the performance of the JIT-compiled

code compared to native OpenCL C implementations for

reductions, reaches up to 53% on the AMD GPU, up to 83%

Table 3. Compilation times per phase.

Time (ms)

Benchmark TornadoVM
Nvidia

Driver

Intel

Driver

AMD

Driver

Reduction Add 64.59 47.04 224.38 18.54

Reduction Mul 73.23 54.60 251.16 19.64

Reduction Min 81.38 57.70 258.61 18.85

Matrix Transpose 55.43 43.20 227.73 17.42

Matrix Mul. 62.21 48.10 250.68 21.32

Matrix-vector Mul. 61.31 52.40 254.68 19.32

GeoMean 65.81 50.39 239.06 19.16

on the Intel HD GPU, and up to 94% on the Nvidia GPU.

Regarding matrix operations (Figure 9), the JIT-compiled

code performs up to 78% on the AMD GPU, up to 92% on the

Intel HD GPU, and up to 82% on the Nvidia GPU, compared

to the native OpenCL C code. As expected, the results shown

in Figure 9 demonstrate that the performance of the JIT-

compiled code does not match that of the optimized OpenCL

C native code. However, the auto-generated code performs

competitively especially after considering the fact that no

user intervention for performance tuning is required.

4.4 Compilation overhead

Table 3 presents the time spent for JIT compilation sepa-

rated into two categories: TornadoVM and driver compilation

times. The TornadoVM compilation time is the time taken to

JIT-compile the Java bytecodes to OpenCL code, while the

driver compilation times are the reported times of the device

drivers for compiling the OpenCL code to machine code.

66

Automatically Exploiting the Memory Hierarchy of GPUs through Just-in-Time Compilation VEE ’21, April 16, 2021, Virtual, USA

In order to better understand the JIT-compilation over-

heads, we investigated the Matrix Multiplication benchmark,

since it combines both the local memory allocation and loop

tiling. The JIT-compilation of that benchmark exhibits up to

63.7% of additional compilation time compared to the original

TornadoVM JIT compiler. From that additional compilation

time, the newly introduced optimization phases account for

up to 25%. The rest of the overhead is distributed amongst

the rest of compilation phases and they are attributed to the

increased size of the IR graph. The addition of local memory

and loop tiling awareness to the IR graph results up to 50%

additional nodes that are processed by subsequent optimiza-

tion. The occurrence of extra nodes that are processed by

the consequent optimization phases is translated to approx-

imately 35% increase of compilation time. In addition, the

percentage of compilation time in the total execution time is

less than 5% and, as in any other optimizing JIT-compilers,

this overhead is encountered only once during execution

(the initial compilation).

4.5 Automatically Exploiting Private Memory

Similarly to local memory, we also introduce private memory

array allocation on GPUs for arrays that are allocated and

used within the scope of each work-item. All Java objects

(including arrays) are allocated on the Java heap. However, if

the Java objects do not escape a certain scope (e.g., a method

scope), modern JIT compilers might apply a compiler tech-

nique called partial escape analysis (PEA) [43]. This opti-

mization aims to avoid the object allocation on the heap, and

instead, to use the Java stack and the internal registers.

We extend this model by using the private memory array

allocation for objects that do not escape the scope in which

they are declared. We analyze in the IR the data access pat-

terns, which track the usage per work-item of the declared

arrays. If arrays are only used within the work-item scope,

we replace the object allocation by an explicit allocation in

private memory of the required sized. This means that, if

the array is declared either within a sequential loop in Java

(without the @Parallel annotation), or in a parallel loop

without any data dependencies between its accesses, and the

array does not escape the method’s scope, then we replace

the allocation from the global memory into private memory.

Note that due to the limited number of physical registers, the

OpenCL driver might allocate the array in global memory.

Since our extensions to TornadoVM are tightly integrated

into the Graal compiler infrastructure, it is not possible to

isolate this optimization and measure its e�ect. Additionally,

by disabling PEA, arrays would be allocated in global mem-

ory; an operation which is not supported by TornadoVM.

Nevertheless, we implemented a synthetic benchmark to

demonstrate the e�ect of private memory usage in our com-

piler infrastructure. We run a reduction per work-item using

an array allocated in private memory versus an array us-

ing global memory on an NVIDIA GPU. To avoid compiler

optimizations from the NVIDIA CUDA compiler, we also

disabled compiler optimizations (cl-opt-disable). By an-

alyzing the PTX generated by the NVCC CUDA compiler,

we found that the private arrays are allocated in constant

memory, and the load operations are performed into local

memory. This version performs up to 2.3G times faster than

using only the global memory.

5 Related Work

This section discusses the related work regarding the expo-

sure of GPU memory optimizations into programming lan-

guages and implementations, and optimizations techniques

for memory transformations.

We classify the related work into two groups. The �rst

group describes approaches for exposing GPU features to

a wide range of high-level programming languages. The

second group focuses on various memory transformations

at the compiler level.

5.1 GPU Features into Programming Languages

In the context of dynamically compiled languages (e.g., Java)

several frameworks [3, 21] have been proposed to exploit

GPU acceleration. Aparapi [3] and TornadoVM [21] are Java-

based frameworks that dynamically compile Java bytecodes

to OpenCL code. Aparapi exposes speci�c language con-

structs for memory allocation (i.e., local memory) and mem-

ory synchronization (i.e., barriers) that programmers must

explicitly use [3]. On the contrary, TornadoVM generates

high-level bytecodes to abstract programmers from the GPU

programming model. However, it does not automatically

exploit �ne-grain memory and does not expose low-level

constructs to developers. Moreover, IBM J9 [27] is another ex-

ample of a JIT compiler for GPU o�oading, but it exclusively

compiles Java streams to CUDA-PTX code. The only memory

optimization supported by J9 is the placement of read-only

data to read-only caches. Similarly, the Marawacc [23] com-

piler and FastR-GPU [22] only exploited global and constant

memory via the Graal JIT compiler.

In addition, several parallel programming frameworks

exist [11, 17, 23, 29, 38, 44, 45, 47] that enable the compilation

of domain-speci�c languages on GPUs. Lift [26, 46] extends

its existing data parallel primitive types to accommodate loop

tiling (e.g., slide,pad) and its low-level OpenCL with local

memory (e.g., toLocal) allocation for stencil computations.

Ragan-Kelley et al. [37] introduced Halide, a domain-speci�c

language (based on C++) for executing high-performance

image processing code on GPUs. However, the exposure of

the GPU features at the programming language increases

the development cost, as the resulting performance is tightly

coupled with the programmer’s experience.

Our work di�ers from all aforementioned frameworks as

we propose an approach that automatically exploits the GPU

67

VEE ’21, April 16, 2021, Virtual, USA Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, and Christos Kotselidis

memory hierarchy, without exposing any speci�c language

constructs to the developers.

5.2 Compiler Techniques for Memory

Transformations

Verdoolaege et al. [49] used polyhedral models to automati-

cally transform C code to CUDA while utilizing shared mem-

ory and loop tiling. Similarly, Bondhugula et al. [8] proposed

PLUTO, an automatic loop nest parallelizer to exploit data lo-

cality via shared memory. In addition, Grosser et al. [24] have

extended the polyhedral models in PLUTO with loop split-

ting for stencil workloads. PolyJIT of Simburger et al. [41]

combines polyhedral optimization with multi-versioning at

run time; a technique that poses signi�cant overhead during

code generation. A number of studies [4, 5, 30, 39] target

loop tiling optimizations and code generation for GPUs for

a�ne loops. Moreover, Di et al. [16] proposed an algorithm

to improve tiling hyperplanes by using dependency analy-

sis, while Grosser et al. [24] developed a polyhedral-based

parametric scheme leveraging run-time exploration of parti-

tioning parameters.

In addition, a number of non-polyhedral based approaches

have been also proposed. Kim et al. [28] presented an ap-

proach to map tensor contractions directly to GPUs, while us-

ing shared memory by a parametric code generation strategy

that utilizes a cost model for data movement. Chen et al. [11]

extended Halide’s support for new optimizations that tar-

get the memory hierarchy by introducing the concept of

memory score in the compiler. Yang et al. [52] introduced an

optimizing source to source compiler for C programs that

exploits a number of memory optimizations, such as con-

verting non-coalesced accesses, vectorization for memory

access, and tiling with shared memory. Additionally, Hage-

dorn et al. [25] proposed Elevate, a new functional language

to express various optimizations such as vectorization, tiling,

splitting, and others.

Our work improves upon the approaches above that em-

ploy exhaustive techniques to optimize memory transforma-

tions, as it provides a trade-o� between compilation time

and achieved performance, making it more suitable for inter-

preted and dynamically compiled programming languages.

6 Conclusions

In this paper we presented an approach to e�ciently exploit

the memory hierarchy of GPUs from dynamically compiled

languages. This is achieved by extending the capabilities of

compiler snippets to express local memory optimizations

by introducing compositional compiler intrinsics, that can

be parameterized and reused for di�erent JIT compiler opti-

mizations. Our solution provides a trade-o� between compi-

lation times and achieved performance, making it suitable for

JIT-compiled languages. The presented work has been pro-

totyped in the context of TornadoVM and includes compiler

extensions and optimizations to exploit GPU local memory

and loop tiling. Our proposed technique has been evaluated

across three GPU architectures and the results indicate that

it can achieve performance speedups of up to 1.58G and 2.5G

for reduce and matrix operations, respectively. We also show-

cased that the performance of the proposed extensions can

achieve up to 94% of the performance of themanually written

OpenCL code. Most importantly, the aforementioned per-

formance increases come at no programmability costs since

they are transparently applied to unmodi�ed user programs

at compile time.

In the future, we plan to apply our work to other types

of computations (e.g., stencil computations) while devising

further optimizations. Furthermore, we plan to expand the

proposed technique for other niche accelerators (e.g., FP-

GAs [35, 36]).

Acknowledgments

Thework presented in this paper is partially funded by grants

from Intel Corporation and the European Union’s Horizon

2020 E2Data 780245 and ELEGANT 957286 projects.

References
[1] 2014. Loop optimizations in Hotspot Server VM Compiler (C2). h�ps:

//wiki.openjdk.java.net/pages/viewpage.action?pageId=20415918

[2] Qurrat Ul Ain, Saqib Ahmed, Abdullah Zafar, Muhammad Amir

Mehmood, and Abdul Waheed. 2018. Analysis of Hotspot Methods in

JVM for Best-E�ort Run-Time Parallelization. In Proceedings of the 9th

International Conference on E-Education, E-Business, E-Management

and E-Learning (IC4E). h�ps://doi.org/10.1145/3183586.3183607

[3] AMD. Accessed in 2020. Aparapi project. h�ps://aparapi.github.io/

[4] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele

Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,

Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: A Polyhe-

dral Compiler for Expressing Fast and Portable Code. In Proceedings

of the IEEE/ACM International Symposium on Code Generation and

Optimization (CGO).

[5] MuthuManikandan Baskaran, Uday Bondhugula, SriramKrishnamoor-

thy, J. Ramanujam, Atanas Rountev, and P. Sadayappan. 2008. A Com-

piler Framework for Optimization of A�ne Loop Nests for GPGPUs.

In Proceedings of the 22nd Annual International Conference on Super-

computing (ICS). h�ps://doi.org/10.1145/1375527.1375562

[6] Nathan Bell and Jared Hoberock. 2012. Thrust: Productivity-Oriented

Library for CUDA. Astrophysics Source Code Library (2012).

[7] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Co-

hen, and Cédric Bastoul. 2010. The Polyhedral Model Is More Widely

Applicable Than You Think. In Compiler Construction (CC). Springer

Berlin Heidelberg.

[8] Uday Bondhugula, J. Ramanujam, and P. Sadayappan. 2007. PLuTo:

A Practical and Fully Automatic Polyhedral Parallelizer and Locality

Optimizer. Technical Report OSU-CISRC-10/07-TR70.

[9] P. Carbone, Asterios Katsifodimos, Stephan Ewen, V. Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache Flink: Stream and Batch Processing

in a Single Engine. IEEE Data Eng. Bull. 38 (2015), 28–38.

[10] Linchuan Chen and Gagan Agrawal. 2012. Optimizing MapReduce for

GPUs with E�ective Shared Memory Usage. In Proceedings of the 21st

International Symposium on High-Performance Parallel and Distributed

Computing (HPDC).

68

https://wiki.openjdk.java.net/pages/viewpage.action?pageId=20415918
https://wiki.openjdk.java.net/pages/viewpage.action?pageId=20415918
https://doi.org/10.1145/3183586.3183607
https://aparapi.github.io/
https://doi.org/10.1145/1375527.1375562

Automatically Exploiting the Memory Hierarchy of GPUs through Just-in-Time Compilation VEE ’21, April 16, 2021, Virtual, USA

[11] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q.

Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind

Krishnamurthy. 2018. TVM: End-to-End Optimization Stack for Deep

Learning. ArXiv abs/1802.04799 (2018).

[12] James Clarkson, Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak,

Maria Xekalaki, Christos Kotselidis, and Mikel Luján. 2018. Exploiting

High-Performance Heterogeneous Hardware for Java Programs Using

Graal. In Proceedings of the 15th International Conference on Managed

Languages & Runtimes (ManLang). h�ps://doi.org/10.1145/3237009.

3237016

[13] Cli� Click and Michael Paleczny. 1995. A Simple Graph-Based Inter-

mediate Representation. In ACM SIGPLAN Workshop on Intermediate

Representations (IR).

[14] Simon Garcia De Gonzalo, Sitao Huang, Juan Gómez-Luna, Simon

Hammond, Onur Mutlu, and Wen-mei Hwu. 2019. Automatic Genera-

tion of Warp-Level Primitives and Atomic Instructions for Fast and

Portable Parallel Reduction on GPUs. In Proceedings of the IEEE/ACM

International Symposium on Code Generation and Optimization (CGO).

[15] Je�rey Dean and Sanjay Ghemawat. 2008. MapReduce: Simpli�ed

Data Processing on Large Clusters. 51, 1 (2008). h�ps://doi.org/10.

1145/1327452.1327492

[16] P. Di, D. Ye, Y. Su, Y. Sui, and J. Xue. 2012. Automatic Parallelization of

Tiled Loop Nests with Enhanced Fine-Grained Parallelism on GPUs.

In 41st International Conference on Parallel Processing (ICPP).

[17] Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and

Stephen J. Fink. 2012. Compiling a High-Level Language for GPUs: (Via

Language Support for Architectures and Compilers). In Proceedings of

the 33rd ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI). h�ps://doi.org/10.1145/2254064.2254066

[18] G. Duboscq, L. Stadler, T. Würthinger, D. Simon, C. Wimmer, and H.

Mössenböck. 2013. Graal IR: An Extensible Declarative Intermediate

Representation. In Asia-Paci�c Programming Languages and Compilers

(APPLC).

[19] Jianbin Fang, Henk Sips, and Ana Lucia Varbanescu. 2014. Aristotle:

A Performance Impact Indicator for the OpenCL Kernels Using Local

Memory. Sci. Program. (2014). h�ps://doi.org/10.1155/2014/623841

[20] Juan Fumero and Christos Kotselidis. 2018. Using Compiler Snippets

to Exploit Parallelism on Heterogeneous Hardware: A Java Reduction

Case Study. In Proceedings of the 10th ACM SIGPLAN International

Workshop on Virtual Machines and Intermediate Languages (VMIL).

h�ps://doi.org/10.1145/3281287.3281292

[21] Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria Xekalaki,

James Clarkson, and Christos Kotselidis. 2019. Dynamic Application

Recon�guration on Heterogeneous Hardware. In Proceedings of the

15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-

tion Environments (VEE). h�ps://doi.org/10.1145/3313808.3313819

[22] Juan Fumero, Michel Steuwer, Lukas Stadler, and Christophe Dubach.

2017. Just-In-Time GPU Compilation for Interpreted Languages with

Partial Evaluation. In Proceedings of the 13th ACM SIGPLAN/SIGOPS In-

ternational Conference on Virtual Execution Environments. Association

for Computing Machinery. h�ps://doi.org/10.1145/3050748.3050761

[23] Juan José Fumero, Toomas Remmelg, Michel Steuwer, and Christophe

Dubach. 2015. Runtime Code Generation and Data Management for

Heterogeneous Computing in Java. In Proceedings of the Principles

and Practices of Programming on The Java Platform (PPPJ). h�ps:

//doi.org/10.1145/2807426.2807428

[24] Tobias Grosser, Albert Cohen, Paul H. J. Kelly, J. Ramanujam, P. Sa-

dayappan, and Sven Verdoolaege. 2013. Split Tiling for GPUs: Auto-

matic Parallelization Using Trapezoidal Tiles. In Proceedings of the 6th

Workshop on General Purpose Processor Using Graphics Processing Units

(GPGPU). h�ps://doi.org/10.1145/2458523.2458526

[25] Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch,

and Michel Steuwer. 2020. A Language for Describing Optimization

Strategies. arXiv:2002.02268 [cs.PL]

[26] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch,

and Christophe Dubach. 2018. High Performance Stencil Code Genera-

tion with Lift. In Proceedings of the IEEE/ACM International Symposium

on Code Generation and Optimization (CGO). h�ps://doi.org/10.1145/

3168824

[27] K. Ishizaki, A. Hayashi, G. Koblents, and V. Sarkar. 2015. Compiling

and Optimizing Java 8 Programs for GPU Execution. In International

Conference on Parallel Architecture and Compilation (PACT).

[28] Jinsung Kim, Aravind Sukumaran-Rajam, Vineeth Thumma, Sriram

Krishnamoorthy, Ajay Panyala, Louis-Noël Pouchet, Atanas Rountev,

and P. Sadayappan. 2019. A Code Generator for High-Performance

Tensor Contractions on GPUs. In Proceedings of the IEEE/ACM Inter-

national Symposium on Code Generation and Optimization (CGO).

[29] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,

Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram,

Christos Kozyrakis, and Kunle Olukotun. 2018. Spatial: A Language

and Compiler for Application Accelerators. In Proceedings of the 39th

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation (PLDI). h�ps://doi.org/10.1145/3192366.3192379

[30] Athanasios Konstantinidis, Paul H. J. Kelly, J. Ramanujam, and P. Sa-

dayappan. 2014. Parametric GPU Code Generation for A�ne Loop

Programs. In Languages and Compilers for Parallel Computing (LCPC).

[31] Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nisbet,

John Mawer, and Mikel Luján. 2017. Heterogeneous Managed Runtime

Systems: A Computer Vision Case Study. In Proceedings of the 13th

ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments (VEE). h�ps://doi.org/10.1145/3050748.3050764

[32] Markus Kowarschik and Christian Weiß. 2003. An Overview of Cache

Optimization Techniques and Cache-Aware Numerical Algorithms. In

Algorithms for Memory Hierarchies - Advanced Lectures, volume 2625

of Lecture Notes in Computer Science. Springer.

[33] David Leopoldseder, Roland Schatz, Lukas Stadler, Manuel Rigger,

Thomas Wurthinger, and Hanspeter Mossenbock. 2018. Fast-Path

Loop Unrolling of Non-Counted Loops to Enable Subsequent Compiler

Optimizations. In Proceedings of the 15th International Conference on

Managed Languages and Runtimes (ManLang). h�ps://doi.org/10.1145/

3237009.3237013

[34] A. Munshi. 2009. The OpenCL Speci�cation. In IEEE Hot Chips 21

Symposium (HCS). h�ps://doi.org/10.1109/HOTCHIPS.2009.7478342

[35] M. Papadimitriou, J. Fumero, A. Stratikopoulos, and C. Kotselidis.

2019. Towards Prototyping and Acceleration of Java Programs onto

Intel FPGAs. In IEEE 27th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM). h�ps://doi.org/

10.1109/FCCM.2019.00051

[36] Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos,

Foivos S. Zakkak, and Christos Kotselidis. 2020. Transparent Compiler

and Runtime Specializations for Accelerating Managed Languages on

FPGAs. The Art, Science, and Engineering of Programming 5, 2 (2020).

h�ps://doi.org/10.22152/programming-journal.org/2021/5/8

[37] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain

Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-

guage and Compiler for Optimizing Parallelism, Locality, and Recom-

putation in Image Processing Pipelines. In Proceedings of the 34th ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI). h�ps://doi.org/10.1145/2499370.2462176

[38] Toomas Remmelg, Thibaut Lutz, Michel Steuwer, and Christophe

Dubach. 2016. Performance Portable GPU Code Generation for Ma-

trix Multiplication. In Proceedings of the 9th Annual Workshop on

General Purpose Processing Using Graphics Processing Unit (GPGPU).

h�ps://doi.org/10.1145/2884045.2884046

[39] Gabe Rudy, Malik Murtaza Khan, Mary Hall, Chun Chen, and Jacque-

line Chame. 2011. A Programming Language Interface to Describe

Transformations and Code Generation. In Languages and Compilers

for Parallel Computing (LCPC).

69

https://doi.org/10.1145/3237009.3237016
https://doi.org/10.1145/3237009.3237016
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/2254064.2254066
https://doi.org/10.1155/2014/623841
https://doi.org/10.1145/3281287.3281292
https://doi.org/10.1145/3313808.3313819
https://doi.org/10.1145/3050748.3050761
https://doi.org/10.1145/2807426.2807428
https://doi.org/10.1145/2807426.2807428
https://doi.org/10.1145/2458523.2458526
https://arxiv.org/abs/2002.02268
https://doi.org/10.1145/3168824
https://doi.org/10.1145/3168824
https://doi.org/10.1145/3192366.3192379
https://doi.org/10.1145/3050748.3050764
https://doi.org/10.1145/3237009.3237013
https://doi.org/10.1145/3237009.3237013
https://doi.org/10.1109/HOTCHIPS.2009.7478342
https://doi.org/10.1109/FCCM.2019.00051
https://doi.org/10.1109/FCCM.2019.00051
https://doi.org/10.22152/programming-journal.org/2021/5/8
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/2884045.2884046

VEE ’21, April 16, 2021, Virtual, USA Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, and Christos Kotselidis

[40] O. Segal, P. Colangelo, N. Nasiri, Z. Qian, and M. Margala. 2015.

Aparapi-UCores: A High Level Programming Framework for Uncon-

ventional Cores. In IEEE High Performance Extreme Computing Confer-

ence (HPEC). h�ps://doi.org/10.1109/HPEC.2015.7322440

[41] Andreas Simburger, Sven Apel, Armin Größlinger, and Christian

Lengauer. 2019. PolyJIT: Polyhedral Optimization Just in Time. Inter-

national Journal of Parallel Programming (2019).

[42] Doug Simon, Christian Wimmer, Bernhard Urban, Gilles Duboscq,

Lukas Stadler, and Thomas Würthinger. 2015. Snippets: Taking the

High Road to a Low Level. ACM Transactions on Architecture and Code

Optimization (TACO) (2015). h�ps://doi.org/10.1145/2764907

[43] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014.

Partial Escape Analysis and Scalar Replacement for Java. In Proceedings

of the IEEE/ACM International Symposium on Code Generation and

Optimization (CGO). h�ps://doi.org/10.1145/2544137.2544157

[44] M. Steuwer, P. Kegel, and S. Gorlatch. 2011. SkelCL - A Portable Skele-

ton Library for High-Level GPU Programming. In IEEE International

Symposium on Parallel and Distributed Processing Workshops and Phd

Forum. h�ps://doi.org/10.1109/IPDPS.2011.269

[45] M. Steuwer, T. Remmelg, and C. Dubach. 2016. Matrix Multiplica-

tion Beyond Auto-Tuning: Rewrite-based GPU Code Generation. In

International Conference on Compilers, Architectures, and Sythesis of

Embedded Systems (CASES). h�ps://doi.org/10.1145/2968455.2968521

[46] M. Steuwer, T. Remmelg, and C. Dubach. 2017. LIFT: A functional data-

parallel IR for high-performance GPU code generation. In Proceedings

of the IEEE/ACM International Symposium on Code Generation and

Optimization (CGO). h�ps://doi.org/10.1109/CGO.2017.7863730

[47] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf,

Hassan Cha�, Martin Odersky, and Kunle Olukotun. 2014. Delite: A

Compiler Architecture for Performance-Oriented Embedded Domain-

Speci�c Languages. ACM Transactions on Embedded Computing Sys-

tems (TECS) (2014).

[48] Xiaonan Tian, Rengan Xu, Yonghong Yan, Sunita Chandrasekaran,

Deepak Eachempati, and Barbara Chapman. 2015. Compiler Transfor-

mation of Nested Loops for General Purpose GPUs. Concurrency and

Computation: Practice and Experience (2015). h�ps://doi.org/10.1002/

cpe.3648

[49] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Igna-

cio Gómez, Christian Tenllado, and Francky Catthoor. 2013. Polyhedral

Parallel Code Generation for CUDA. ACM Transactions on Architecture

and Code Optimization (TACO) (2013). h�ps://doi.org/10.1145/2400682.

2400713

[50] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick

Jordan, Laurent Daynès, and Douglas Simon. 2013. Maxine: An Ap-

proachable Virtual Machine for, and in, Java. ACM Transactions on

Architecture and Code Optimization (TACO) (2013). h�ps://doi.org/10.

1145/2400682.2400689

[51] H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos.

2010. DemystifyingGPUMicroarchitecture ThroughMicrobenchmark-

ing. In 2010 IEEE International Symposium on Performance Analysis

of Systems Software (ISPASS). h�ps://doi.org/10.1109/ISPASS.2010.

5452013

[52] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. 2010. A GPGPU

Compiler for Memory Optimization and Parallelism Management. In

Proceedings of the 31st ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI). h�ps://doi.org/10.1145/

1806596.1806606

[53] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott

Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with Work-

ing Sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in

Cloud Computing (Boston, MA) (HotCloud’10). USENIX Association,

USA, 10.

70

https://doi.org/10.1109/HPEC.2015.7322440
https://doi.org/10.1145/2764907
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1109/IPDPS.2011.269
https://doi.org/10.1145/2968455.2968521
https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.1002/cpe.3648
https://doi.org/10.1002/cpe.3648
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/2400682.2400689
https://doi.org/10.1145/2400682.2400689
https://doi.org/10.1109/ISPASS.2010.5452013
https://doi.org/10.1109/ISPASS.2010.5452013
https://doi.org/10.1145/1806596.1806606
https://doi.org/10.1145/1806596.1806606

	Abstract
	1 Introduction
	2 Background
	2.1 Overview of the OpenCL Memory Model
	2.2 Data Locality & Loop Transformations
	2.3 Enabling GPU Tier-Memory via JIT compilation

	3 GPU Memory-Aware JIT Compilation
	3.1 Overview
	3.2 Compositional Compiler Intrinsics
	3.3 Exploiting Local Memory: Parallel Reductions
	3.4 Data Locality for Local Memory using MxM

	4 Evaluation
	4.1 Benchmarks
	4.2 Performance Comparison vs. TornadoVM
	4.3 Performance Comparison vs. Hand-Written OpenCL
	4.4 Compilation overhead
	4.5 Automatically Exploiting Private Memory

	5 Related Work
	5.1 GPU Features into Programming Languages
	5.2 Compiler Techniques for Memory Transformations

	6 Conclusions
	References

