
Automatically Extracting Dialog Models from Conversation Transcripts

Sumit Negi∗, Sachindra Joshi∗, Anup Chalamalla†, L Venkata Subramaniam∗

sumitneg@in.ibm.com, jsachind@in.ibm.com, akchalam@uwaterloo.ca, lvsubram@in.ibm.com
∗IBM Research - India

†University of Waterloo, Canada

Abstract—There is a growing need for task-oriented natural
language dialog systems that can interact with a user to accom-
plish a given objective. Recent work on building task-oriented
dialog systems have emphasized the need for acquiring task-
specific knowledge from un-annotated conversational data. In
our work we acquire task-specific knowledge by defining sub-
task as the key unit of a task-oriented conversation. We propose
an unsupervised, apriori like algorithm that extracts the sub-
tasks and their valid orderings from un-annotated human-
human conversations. Modeling dialogues as a combination
of sub-tasks and their valid orderings easily captures the
variability in conversations. It also provides us the ability to
map our dialogue model to AIML constructs and therefore use
off-the-shelf AIML interpreters to build task-oriented chat-
bots. We conduct experiments on real world data sets to
establish the effectiveness of the sub-task extraction process. We
codify the extracted sub-tasks in an AIML knowledge base and
build a chatbot using this knowledge base. We also show the
usefulness of the chatbot in automatically handling customer
requests by performing a user evaluation study.

I. INTRODUCTION

Natural language dialog systems are gaining in impor-
tance. In general, dialog systems are of two types: (1) open
domain dialog systems such as ELIZA 1 and ALICE 2

that aim to engage in open ended conversations and (2)
task oriented dialog systems [1] [2] involving completion
of objectives such as pizza ordering, car booking and hotel
reservation. In an open domain dialog system, the objective
of the system is to present human-like responses to a user.
On the other hand a task oriented dialog system not only
needs to present human-like responses but also needs to
ensure that the dialog objective is achieved by completing
various sub-tasks. As an example, a dialog system for the
car rental domain needs to perform various sub-tasks such as
collect details about the time and date for pick up and drop
off, and gather car preferences for completing the objective
of car booking.

For task oriented dialog systems, the task/domain specific
dialog information such as steps in a task and domain
keywords need to be provided. Specifying this information
manually is a time consuming process. Moreover, the hand-
crafted knowledge may be brittle and rigid [3] and may not

The work was done while Anup was with IBM Research - India
1http://www-ai.ijs.si/
2http://alice.pandorabots.com/

reflect the users perception of a task [4]. Therefore, there
is merit in extracting this information from a collection of
in-domain human-human conversations. In this paper, we
propose a method to extract domain specific task structure
from a real world un-annotated corpus of human-human
conversation. Our task-structure model can be easily mapped
to AIML3 constructs. This provides us the ability to encode
the extracted task structure in an AIML knowledge base with
very little supervision. Existing AIML intepreters can then
be used to create task oriented chatbots.

Unlike the work proposed in [5], we do not assume that
the task structure is pre-specified and focus on learning this
from the data itself. A task may contain various sub-tasks.
As an example Figure 1 describes five sub-tasks that need to
be completed for the task of ‘Reserve a car’. Note that all the
sub-tasks need to be executed to complete the task. Learning
of the task structure is compounded by the fact that there
could be various valid orderings of sub-tasks that can be
adopted to perform the same task. Figure 1 shows various
valid orderings in which these sub-tasks can be executed
for performing the task of ‘Reserve a Car’. In our work,
we extract all the valid orderings of sub-tasks from the data
instead of fixing a particular ordering as this truly models the
actual flow of conversations as against a pre-defined ordering
of sub-tasks. This is in contrast to the work proposed in
[6] where only a fixed ordering of sub-tasks is considered.
We introduce the notion of pre-conditions that specifies the
necessary conditions for initiating a sub-task. These pre-
conditions impose a set of valid orderings over the sub-tasks.

Figure 1. Sub-Tasks and their Valid Orderings

Figure 2 provides an overview of the proposed method. In
order to extract sub-tasks from a corpus, we first normalize
individual utterances. This is quite important as natural

3http://alicebot.blogspot.com/

2009 Ninth IEEE International Conference on Data Mining

1550-4786/09 $26.00 © 2009 IEEE

DOI 10.1109/ICDM.2009.113

890

Figure 2. Overview of the Proposed Method

languages provide different ways to express the same thing.
As an example, can i have your credit card please and what
is your card details both can be used to gather payment
details. Utterance normalization involves discovering a set
of special features that are used to cluster semantically
similar utterances. These special features are discovered
by finding frequently occurring word patterns that may
include gaps. Each call is then represented as a sequence of
utterance clusters and frequent pattern mining is performed
to discover sub-tasks and their valid orderings. The extracted
task structure is encoded as an AIML knowledge base. An
off-the-shelf AIML interpreter is then used to build a task-
oriented chat-bot.

The key contributions of this paper are:
1) We model the domain specific task structure as a com-

bination of sub-tasks and associated pre-conditions.
The set of pre-conditions loosely define the valid
orderings of sub-tasks.

2) We propose an efficient unsupervised method of find-
ing sub-tasks and pre-conditions from human-human
conversations.

3) We show how the extracted task structure can easily be
encoded as an AIML construct to build a task-oriented
chat-bot

The rest of the paper is organized as follows. We describe
the utterance normalization in Section III. In Section IV we
describe the method adopted for mining the task-structure
from call transcripts. In Section V we provide details of how
the extracted task-structure can be encoded into AIML con-
structs. In Section VI, we provide experimental results and
details of the user study. Finally, we present our conclusion
in Section VII.

II. RELATED WORK

Acquiring task-specific knowledge using data-driven tech-
niques for configuring dialog systems is a relatively new
research area. Previously, supervised learning approaches
have been used to acquire a task model [7], [2]. The
work done by [3] for automatically creating dialog models
using dialog act and task/sub-task information is also worth
mentioning. Their approach involves the use of a dialog
corpus which has been manually labeled with hierarchical
information.

Several methods have been proposed for building spoken
dialogue systems that allow a human user to interact with a
machine using voice as the primary communication medium
[8]. However, the problem of building spoken dialogue
systems have additional problems of speech understanding
and speech generation that fall outside the scope of our work.

Other data-driven approaches include the CU’s dialog
manager [9] and the AMITIES project [10]. The AMITIES
project aims at building a dialog system from conversa-
tion transcripts. The “Frame Agents”, implemented in the
AMITIES dialog manager, handles tasks such as verifying
customer’s identity, etc. This is similar to our idea of sub-
tasks. However, in their case the Frame Agent definitions
are pre-specified.

Chotimongkol and Rudincky [6] proposed a method for
acquiring domain specific information from task oriented
and unannotated human-human conversations. They use
structural representation (form based dialog structure) and
use existing machine learning methods to acquire various
components of this representation such as concepts, sub-
tasks and tasks. However, they do not focus on extracting
the valid ordering of sub-tasks that can be adopted for
achieving a given task. In our work we not only extract,
in an unsupervised manner, the sub-tasks, but also their
valid orderings from un-annotated data. To the best of
our knowledge our work of automatically building a task-
oriented chat-bot from unannotated in-domain dialogs is a
first.

III. UTTERANCE NORMALIZATION

As pointed out in the Introduction section, natural lan-
guages provide different ways to express the same thing.
As an example, Figure 3 shows various ways in which a
customer can express his intention of picking up a car from
a particular location. We need to cluster and canonicalize
the semantically similar utterances so that they are referred
to by their canonical form or simply a cluster label. We
first replace all the named entities by their types and then
generate a feature vector for each utterance. The feature
vectors are then clustered to group together semantically
similar utterances. In the following subsections we first
describe the named entity annotator that we use and then
discuss clustering of utterances.

891

I would like to pick the car at SFO Airport.
Can I pick it up at the City Center.
I want to pick up the car from Wisconsin Avenue.

Figure 3. Examples of Similar Utterances

A. Name Entity Annotation

We employ a rule-based named entity annotator that uses
a set of dictionaries and rules to annotate various types
of entities in the transcript data. The types of entities that
we annotate are LOCATION, DATE, TIME, AMOUNT.
We also handle a few domain specific named-entities such
as CAR-MAKE (Chevrolet,Toyota), and VEHICLE-TYPE
(car, van). All entities that are annotated in an utterance are
replaced by their corresponding type.

B. Utterance Clustering

For each utterance, we generate a feature vector. We
use n-grams (n ≤ 2) that appear in an utterance as fea-
tures. However, using only n-gram features for clustering
utterances does not work well. As an example consider
the following three utterances: (1) do you have a valid
credit card, (2) do you have a valid AAA member card and
(3) do you have your credit card. While these utterances
have a good number of n-grams in common, they are not
semantically similar. Using just n-grams would have grouped
them together. Considering non-consecutive N-gram features
such as valid#member#card and valid#credit#card we are
able to distinguish these sentences as dissimilar. Where #
signifies a gap of a few tokens.

Thus in addition to unigram and bigram features we use
frequent non-consecutive word-sequences as features. These
features are extracted from all utterances present in the
transcripts by using the algorithm given in [11]. Agent and
customer utterances are clustered separately. Weka’s 4 K
means clustering is used on the feature vectors to group
together semantically similar utterances. For completeness,
we present the method employed for generating frequent
non-consecutive word sequences briefly in the following
section. We also use the same method for discovering sub-
tasks from normalized calls later in the paper.

1) Extraction of Frequent Non-Consecutive Item Se-
quences: In this section we describe a variation of apriori
algorithm for association rule mining. Patterns that cap-
ture non-consecutive items (items could be words, entities,
canonical question-cluster labels, etc.) Natural language ex-
pressions allow inclusion of complex modifiers. The inter-
vening modifiers improve the richness of expressions and are
thus important to natural languages. However, these varia-
tions make certain highly correlated words non-consecutive.
Figure 4, presents a set of example sentences. All questions

4http://www.cs.waikato.ac.nz/ml/weka/

in Figure 4 are semantically similar, however they differ in
their surface forms due to the use of modifiers and other
intervening words.

have you rented a car before from us.

have you rented a car from us before.
have you rented a car from <a_rental_agency>

before.

Figure 4. Example Similar Utterances

We implemented an efficient algorithm described in [11]
(an extension of the apriori algorithm [12]) for finding
frequent patterns of non-consecutive tokens. The minSup
value in apriori corresponds to the minimum number of
times a non-consecutive n-gram should occur across all the
sentences. So, the most frequent non-consecutive n-grams
which exceed the threshold value of minSup are output
by the system. As an example, the following three non-
consecutive patterns can be extracted from the utterances
given in Figure 4:(1)rented#car#before (2)rented#car and
(3)rented#before. The system considers only the longest
sequence which is rented#car#before and leaves the rest.

Figure 5 describes the algorithm that discovers all the fre-
quent sequences of length 1 for a user defined threshold N .
The function Sup(sn) returns the support for the sequence
sn in the data. This is the fraction of documents in which the
sequence sn occurs, where a maximum token gap of (δ) is
allowed between each subsequent token of the sequence sn.
The algorithm iteratively builds token-sequences of length
n+1 from token sequences of length n. We refer the readers
to [11] for the proof of optimality and further details.

Find S1, the set of all 1-item-sequences; n = 1
S∗ = {}
while n ≤ N do
Sn+1 = {}
for Each sn, s′n ∈ Sn do

if sn and s′n have a subsequence of length n − 1 in common
then

Merge sn and s′n to obtain sn+1

if sup(sn+1) ≥ minSup then
Sn+1 = Sn+1 ∪ {sn+1}

end if
end if

end for
for Each sn ∈ Sn do

if ¬(∃sn+1 ∈ Sn+1|sn+1 ⊃ sn) then
S∗ = S∗ ∪ {sn}

end if
end for
n = n + 1

end while

Figure 5. The algorithm for generating the set S∗ of token-sequences with
high support

IV. MINING OF SUB-TASKS FROM CALL TRANSCRIPTS

Using the utterance normalization process as described
in Section III, calls are normalized i.e. each utterance in a

892

Utterance Pre-Conditions
CUST: #book#car.
CUST: #reserve#car#
CUST: #rent#car#
Flow Pre-Conditions
None
sub-task Template
AGENT: Which location would you like to pickup
the car?
AGENT: What date and time will you pick the car
up?
AGENT: What location would you drop the car off?
AGENT: What date and time would you return the
car?

Figure 6. Gather Pickup Information Sub-task

call is replaced by it’s corresponding cluster label. In the
following sections, we first describe how the sub-tasks are
discovered from the normalized calls and then describe the
method for finding out pre-conditions for each sub-task.

A. Finding Sub-tasks

As pointed out in the Introduction section, a sequence of
sub-task needs to be executed to achieve the objective of
a call. Since customers and agents often engage in similar
kinds of interactions to accomplish an objective we mine
frequent, possibly non-consecutive, utterance sequences. In
our experiments, we observe that mining frequent non-
consecutive agent and customer utterances does not give us
very meaningful sub-tasks. This is because there is a lot of
variability in customer utterances. On the contrary, agents
follow a more or less standard sequence of utterances to
accomplish a task. This could be attributed to the agents’
training. Therefore, in order to discover sub-tasks, we look
for only frequent non-consecutive agent utterances. We
represent each call by the sequence of agent utterance cluster
labels that occur in it and then use the algorithm given
in Figure 5 for finding out frequent non-consecutive agent
cluster sequences. These sequences are treated as sub-tasks.
Note, that mining of sub-tasks can be thought of as mining
’vertical patterns’ in transcripts. Figure 6 shows a sub-task
extracted from the car-rental call transcripts.

B. Finding Pre-conditions for Sub-tasks

A sub-task defines a set of agent utterances that needs to
be executed in order to perform a part of a task. We still
need to find conditions, when a particular sub-task should
be initiated. These conditions form the set of pre-conditions
for a sub-task.

There are two types of pre-conditions for a sub-task.
The first pre-condition, referred as utterance pre-condition,
specifies utterances which when expressed by a customer
indicates initiation of a particular sub-task. As an example,
an utterance such as “please make this booking” from a
customer is an indicator for the initiation of the “make pay-
ment” sub-task. Note, that customer utterances are important

indicators for initiation of a sub-task as it is a customer who
expresses particular intention that leads an agent to perform
a particular action. The second pre-condition associated with
a sub-task, referred as flow pre-conditions ensures that only
logical flow of sub-tasks are allowed. As an example, the
sub-task of “make payment” cannot be executed till the sub-
task of “gather travel details” has been performed.

In order to discover utterance pre-conditions for a sub-
task we collect all customer utterance clusters that appear
just before a given sub-task from the normalized calls. We
then take the frequent non-consecutive word sequence fea-
tures, as generated in Section III, for each of these clusters.
These word sequences form the utterance pre-conditions
for the sub-task. Note, that there could be more than one
utterance pre-conditions for a given sub-task. The flow pre-
conditions are discovered by representing normalized calls
as a sequence of sub-tasks. For a given sub-task, we collect
all the sub-tasks that precede the sub-task. At least one
of the sub-tasks from the collected set should have been
executed in order to ensure the flow pre-condition. The flow
pre-conditions can also be set manually if the number of sub-
tasks is small. Figure 6 presents an example sub-task along
with its utterance pre-conditions and flow pre-conditions that
we obtain automatically for the car rental domain in our
experiments.

V. AIML GENERATION

We now focus on encoding the extracted task structure in
AIML 5. AIML, or Artificial Intelligence Markup Language,
is an XML dialect for creating natural language software
agents.

A. Encoding Task Structure in AIML

For each agent utterance cluster in a given sub-task,
a corresponding AIML topic tag is created. Every topic
element in AIML has an associated category tag which in
turn contains a pattern and a template tag. The pattern tag
is used to ascertain utterance pre-conditions. The template
tag is used to generate the corresponding agent utterances.
In order to maintain the flow pre-conditions AIML’s think
tag is used. A think tag can be thought of as a state that
provides a mechanism in AIML to manage conversational
flow. Some sub-tasks may need to be integrated with back-
end databases in order to complete the task. This is done
using AIML’s system tag. As an example, car availability
needs to be checked in the back-end database once the sub-
task “gather travel details” has been executed. Integration
with the back-end database is performed using a program
which embeds the required logic. We refer to this logic as
sub-task logic. Note, that the sub-task logic integration is
the only activity that needs to be done manually. Figure 7
provides an AIML representation for the “Gather Pickup
Information” sub-task.

5http://www.alicebot.org/aiml.html

893

<topic>
<category>
<pattern>_ book_ car</pattern>
<template><srai>PICKUPLOC</srai></template>
</category>
<category>
<pattern>_ reserve_ car</pattern>
<template><srai>PICKUPLOC</srai></template>
</category>
<category>
<pattern>_ rent _ car *</pattern>
<template><srai>PICKUPLOC</srai></template>
</category>
<category>
<pattern>PICKUPLOC</pattern>
<template>
<think>
<set name="topic">TRAVELDETAIL1</set>
</think>
Which location would you like to pickup the car?
</template>
</category>
</topic>

</topic>

Figure 7. AIML code snippet for ’Gather Pickup Information’ sub-task

VI. EVALUATION METHOD AND EXPERIMENTAL
RESULTS

This section describes the data-set and the experiments
used to evaluate our method both at the component and
system level. The first set of experiments measures the
effectiveness of the task structure extraction process by
providing results for the utterance normalization and the sub-
task extraction steps. The second set of experiments involves
a user-evaluation study that measures the usability of the
AIML chat-bot built from the extracted task structure.

A. Data Set

In our experiments we used 975 manually transcribed calls
from the car-rental domain. The average number of turns
per call is 46, where a turn indicates a single dialog spoken
either by an agent or a customer during the course of the call.
The high number of turns in our data set is due to the fact
that the conversation between agents and customers is often
punctuated with protracted negotiations between customer
and agents regarding car types, availability dates, offers etc.
This make the job of extracting sub-tasks and their valid
orderings challenging.

1) Utterance Normalization Evaluation: The Utterance
Normalization step is evaluated by comparing the results
of the Utterance Clustering against a manually tagged data
set. A human expert was asked to manually categorize 266
utterances from the transcribed call data set into 5 utterance
categories. These 5 categories are : “Pickup Location”,
“Pickup Date and Time”,“Membership or Discounts De-
tails”, “Price or Rate Negotiation”,“Vehicle Specification”.
In the experiments these clusters are referred to as A,B,C,D
and E respectively. These 266 utterances are then normalized
using the steps described in Section III. The normalized
utterances were then clustered using CLUTO 6. Table 1
reports the external cluster quality measures for these 5

6http://glaros.dtc.umn.edu/gkhome/views/cluto/

Cluster Utterances Entropy Purity
A 98 0.085 0.969
B 35 0.000 1.000
C 34 0.376 0.705
D 56 0.130 0.946
E 43 0.336 0.767

Total Utterances Avg. Entropy Avg. Purity
5 266 0.161 0.877

Table I
UTTERANCE NORMALIZATION RESULTS

clusters. As shown in Table 1, we achieve very high purity
values for most of the clusters.

2) Sub-task Extraction Evaluation: The sub-task extrac-
tion step is evaluated by comparing the results of sub-task
extraction with ground truth viz., manually marked sub-tasks
in transcribed calls. Out of the 5 sub-tasks extracted by
our sub-task extraction method a domain expert randomly
selected two sub-tasks. He then manually assigned each
utterance in 15 transcribed calls as belonging to one of
the two sub-tasks. The two sub-tasks were “Gather pickup
details” and “Gather membership details”. As the sub-task
extraction step resembles the call-segmentation task we
borrow evaluation metrics from that domain. The quality
of the sub-tasks extracted are measured using Segment Type
Matching BJK [13]. BJK measures the fraction of sentences
from the call that are mapped to the same segment type (in
our case to the same sub-task) in both the automatic and
manual segmentations. Our sub-task extraction experiment
yielded a BJK value of 0.80 (on a scale of 1), where values
close to 1 are indicative of high sub-task extraction accuracy.
Our BJK value of 0.80 is close to what was achieved by
[13] on a similar data-set.

3) From Dialog Model to chat-bot: The 5 sub-tasks
extracted from the transcribed calls were converted into
AIML knowledge base using the steps described in Section
5. The sub-task logic for each of the sub-tasks was manually
integrated.

User input to the chat-bot is annotated using the named
entity annotator before being passed to the AIML interpreter.
The AIML interpreter tries to find the best match between
the annotated user input and the pattern expressions of the
various categories available in its AIML knowledge base.
Once a pattern definition matches the user input the AIML
interpreter executes the associated template definition. The
template definition could be a simple response, a question or
could involve the execution of some task logic (e.g. check
the back-end database for car availability). Execution of the
template definition by the AIML interpreter performs two
major tasks. First, it extracts the values of task variables
from the annotated user input. For instance, the LOCATION
and DATE values are extracted if the input contains them
and the corresponding task variables PICKUP LOCATION
and PICKUP DATE are initialized.

These task variables may be required by other AIML

894

categories or may serve as inputs to task logic functions. For
example task variables PICKUP DATE, PICKUP TIME,
PICKUP LOCATION, DROP DATE serve as inputs to the
find-car-availability sub-task logic. Second, a template may
invoke the sub-task logic code using AIML’s system tag.
Based on the sub-task logic’s return value the AIML inter-
preter may execute different dialog fragments (i.e. condi-
tional branching). For our experiments we use Program D
7, a widely used AIML interpreter.

4) User Evaluation: An AIML compliant chat-bot was
loaded with this knowledge base and 5 human evaluators
were asked to evaluate the chat-bot system. None of the
authors of this paper were amongst these evaluators. All
evaluators were asked to converse with the chat-bot to
accomplish the following 5 objectives: (1) Task A - Inquire
price for booking a car from location X to Y, (2) Task B
- Make a reservation from X to Y, (3) Task C - Make a
reservation from location X to Y and claim AAA/Sam’s
club discount, (4) Task D - Modify the pickup location for
an existing reservation, and (5) Task E - Modify the pickup
date and time for an existing reservation.

The participants were required to fill out a questionnaire
mentioning whether he/she was successful in completing the
above five tasks. This input was collected after completion of
individual tasks. User satisfaction was assessed by way of a
questionnaire containing four statements. These covered ease
of doing the task, how well the system understands the user
inputs, how well the system works, and the users enjoyment
of the system. Participants rated each on a five-point Likert
scale. Summed results showed an average score of 17.75
over all users (higher score means greater satisfaction).

The results of the user study are shown in Figure 8. Tasks
B and C have the lowest task completion rates i.e. 61%
and 66% respectively. This is because these tasks involve a
considerable amount of planning as compared to other tasks.

Figure 8. Results of User Evaluation Study

We investigated individual cases where the users were
unable to complete the task and found that users frequently
misspelt words or provided extra information than was asked
by the chat-bot. These problems can be easily fixed by
tweaking the automatically generated AIML.

7http://aitools.org/Program D

VII. CONCLUSION

In this paper we presented a method to build a task-
oriented conversational system from call transcript data in an
unsupervised manner. We defined sub-tasks as the key unit of
a task in a conversation and proposed a method to automati-
cally discover them using an apriori like algorithm. We also
introduced the notion of a set of pre-conditions for a sub-task
that captures all the necessary conditions for initiating the
sub-task. We mapped our dialog model to AIML constructs
and used an off-the-shelf AIML interpreter to build a chat-
bot. Our experimental evaluation demonstrated the efficacy
of the proposed method.

REFERENCES

[1] J. Allen, L. K. Schubert, G. Ferguson, P. Heeman, C. H.
Hwang, T. Kato, M. Light, N. G. Martin, B. W. Miller,
M. Poesio, and D. R. Traum., “The trains project: A case
study in building a conversational planning agent,” Journal
of Experimental and Theoretical AI, 1995.

[2] J. Allen, N. Chambers, G. Ferguson, L. Galescu, H. Jung,
M. Swift, and W. Taysom, “Plow: A collaborative task
learning agent,” in AAAI, 2007.

[3] S. Bangalore, G. D. Fabbrizio, and A. Stent, “Learning
the structure of task-driven human-human dialogs,” in COL-
ING/ACL, 2006.

[4] N. Yankelovich., Using Natural Dialogs as the Basis for
Speech Interface Design. Cambridge,MA: MIT Press, 1997.

[5] J. Alexandersson and N. Reithinger., “Learning dialogue
structures from a corpus,” in EuroSpeech, 1997.

[6] A. Chotimongkol and A. I. Rudnicky., “Acquiring domain-
specific dialog information from task-oriented human-human
interaction through an unsupervised learning,” in EMNLP,
2008.

[7] J. Feng, S. Bangalore, and M. Rahim., “Webtalk:mining
websites for automatically building dialog systems,” in ASRU,
2003.

[8] B. Thomson, J. Schatzmann, and S. Young, “Bayesian update
of dialogue state for robust dialogue systems,” in ICASSP,
2008.

[9] W. Ward and B. Pellom., “The cu communicator system,” in
ASRU, 1999.

[10] H. Hardy, T. Strzalkowski, M. Wu, C. Ursu, N. Webb,
A. Biermann, R. B. Inouye, and A. McKenzie., “Data-driven
strategies for an automated dialogue system,” in CIKM, 2005.

[11] A. Chalamalla, S. Negi, L. V. Subramaniam, and G. Ramakr-
ishnan., “Identification of class specific discourse patterns.”
in CIKM, 2008.

[12] R. Agrawal and R. Srikant., “Fast algorithms for mining
association rules.” in VLDB, 1994.

[13] K. Kummamuru, Deepak P, S. Roy, and L. V. Subramaniam.,
“Unsupervised segmentation of conversational transcripts,” in
SDM, 2008.

895

