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ABSTRACT
In today s fast-paced world, while the number of channels of

television programming available is increasing rapidly, the

time available to watch them remains the same or i s

decreasing. Users desire the capability to watch the programs

time-shifted (on-demand) and/or to watch just the highlights

to save time.  In this paper we explore how to provide for the

latter capability, that is the ability to extract highlights

automatically, so that viewing time can be reduced.

We focus on the sport of baseball as our initial target---it is a

very popular sport, the whole game is quite long, and the

exciting portions are few.  We focus on detecting highlights

using audio-track features alone without relying on

expensive-to-compute video-track features.  We use a

combination of generic sports features and baseball-specific

features to obtain our results, but believe that many other

sports offer the same opportunity and that the techniques

presented here will apply to those sports.  We present details

on relative performance of various learning algorithms, and a

probabilistic framework for combining multiple sources of

information.  We present results comparing output of our

algorithms against human-selected highlights for a diverse

collection of baseball games with very encouraging results.
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1. INTRODUCTION
Internet video streaming and set-top devices like WebTV [1],

ReplayTV [2], and TiVo [3] are defining a new platform for

interactive video playback.  With videos being in digital

form, either stored on local hard disks or streamed from the

Internet, many sophisticated TV-viewing experiences can be

supported.  It has become possible to pause  a live broadcast

program while you answer the doorbell and continue from

where you left off.  The fact that video is stored on the hard

disk (instead of tape) also allows for instant random access to

the program content.  This allows for rich browsing behavior

by users based on additional meta-data associated with the

video.  For example, indices into TV news programs can

permit users to focus only on subset of stories that are of

interest to them, thus saving time.  Similarly, meta-data

indicating action-segments in a sports program can permit

viewers to skip the less interesting portions of the game.

The value of such meta-data was explored in a recent study by

Li et. al., where viewers were provided with metadata

(manually generated) and instant random access for a wide

variety of video content [4].  The ability to browse video was

found to be highly valuable by users, especially for news,

sports, and informational videos (e.g., technical presentations,

travel documentaries). In addition to saving time watching

content, the users appreciated the feeling of being in control

of what they watched.

We also note a key difference between two models on how

highlights may be made available to viewers.  In the

traditional TV broadcast model, e.g., CNN sports highlights,

when they show a 1-minute highlight of a game, the user has

no choice to watch anything more or less.  In the new model,

with set-top boxes and hard disks, we can make the

assumption that the whole 2-hour game is recorded on the

local hard disk, and the highlights act only as a guide.  If the

user does not like a particular selected highlight they can

simply skip it with a push of a button on their remote control,

and similarly at the push of a button they can watch more

details.  This new model allows for greater chance of adoption

of automatic techniques for highlight extraction, as errors of

automation can be compensated by the end-user.

In this paper we explore techniques to automatically generate

highlights for sports programs.  In particular, we focus on the

game of baseball as our initial target---it is a very popular

sport, the whole game is quite long, often there are several

games being played on the same day so viewer can t watch all

of them, and the exciting portions per game are few.  We focus

on detecting highlights using audio-track features alone

without relying on expensive-to-compute video-track

features.  This way highlight detection can even be done on

the local set-top box (our target delivery vehicle) using the

limited compute power available.

Our focus on audio-only forces us to address the challenge of

dealing with an extremely complex audio track.  The track

consists of announcer speech, mixed with crowd noise, mixed

with remote traffic and music noises, and automatic gain

control changing audio levels.  To combat this, we develop

robust speech endpoint detection techniques in noisy

environment and we successfully apply support vector

machines to excited speech classification. We use a

combination of generic sports features and baseball-specific

features to obtain our results, but believe that many other

sports offer the same opportunity.  For example, we use bat-

and-ball impact detection to adjust likelihood of a highlight

segment, and the same technology can also be used for other

sports like golf. We present details on relative performance of

various learning algorithms, and a probabilistic framework for

combining multiple sources of information. The probabilistic

framework allows us to avoid ad hoc heuristics and loss of

information at intermediate stages of the algorithm due to

premature thresholding.



We present results comparing output of our algorithms

against human-selected highlights for a diverse collection of

baseball games.  The training for our system was done on a

half-hour segment of one game, but we test against several

totally distinct games covering over 7 hours of play.  The

results are very encouraging: when our algorithm is asked to

generate the same number of highlight segments as marked by

human subject, on average, 75% of these are the same as that

marked by the human.

The rest of the paper is organized as follows.  Section 2

discusses related work from both technology perspectives and

video domains.  In Section 3, we first examine the advantages

and disadvantages of the information sources that we can

utilize to perform baseball highlights extraction and then

discuss the audio features that will be used in this paper. In

Section 4, we present both the algorithm flowchart and the

algorithm details that include noisy environment speech

endpoint detection, excited speech classification, baseball hit

detection and probabilistic fusion.  Section 5 presents

detailed descriptions of the test set, evaluation framework,

experimental results, and observations.  Conclusions and

future work are presented in Section 6.

2. RELATED WORK
Video-content segmentation and highlight extraction has

been an active research area in the past few years [5].  More

recently, leading international standard organizations (e.g.,

MPEG of ISO/IEC [6] and ATVEF [7]) have also started

working actively on frameworks for organizing and storing

such metadata.  Below we focus primarily on technologies

used and the types of content addressed by such systems and

organizations.

There are primarily three sources of information used by most

video segmentation and highlight detection systems. These

are analysis of video track, analysis of audio track, and use of

close-caption information accompanying some of the

programs.  Within each of these, the features used to segment

the video may be of a general nature (e.g., shot boundaries) or

quite domain specific (e.g., knowledge of fact that a news

channel segments stories by a triple hash mark ###  in the

close caption channel).

When analyzing the video track, a first step is to segment raw

video into shots .  Many shot boundary detection

techniques have been developed during the past decade.

These include pixel-based, histogram-based, feature-based

and compressed-domain techniques [8]. However, video shots

have low semantic content. To address real-world need,

researchers have developed techniques to parse videos at a

higher semantic level.  In [5], Zhang et. al. present techniques

to categorize news video into anchorperson shots and news

shots and further construct a higher-level video structure

based on news items.  In [9], Wactlar et. al. use face detection

to select the frame to present to the user as representative of

each shot.  In [10], McGee and Dimitrova developed a

technique to automatically pick out TV commercials from the

rest of the programs based on shot change rate, occurrence of

black frames and occurrence of text regions. This allows users

to quickly skip through commercials. In [11], Yeung et. al.
developed scene-transition graphs to illustrate the scene flow

of movies.  As stated in the introduction, in this paper we do

not focus on video-track features for computational reasons.

The audio-track contains immense amounts of useful

information and it normally has closer link to semantic event

than the video information.  Some interesting early work was

done by Arons [12] in trying to aggressively speed-up

informational talks.  He noticed that relative-pitch increases

for people when they are emphasizing points.  In his Speech

Skimmer system, he used that for prioritizing regions within a

talk.  He et al [13] further built upon Aron s work and

constructed presentation summaries based on pitch analysis,

knowledge of slide transitions in the presentation, and

information about previous users  access patterns.  The study

showed that the automatically generated summaries were of

considerable value to the talk viewers.  As we will discuss

later, we use pitch as one component for emphasis detection in

this paper too.

Use of close-caption information (e.g., Informedia project [9])

is a special case of speech track analysis; ideally if speech-to-

text conversion were perfect, one would not have to rely on

close-caption information.  However, we are far from ideal

today, and close caption text is a powerful source to classify

video segments for indexing and searching.  For this paper, as

is the case in practice, we assume close caption information i s

not available for baseball games.

As one moves away from relatively clean speech environments

(e.g., news, talks), analysis of audio-track can become trickier.

For example, in sports videos, there are several sources of

audio the announcer, the crowd, noises such as horns  are

all mixed together.  These sound sources need to be separated,

if their features are to be used in analysis and segmentation of

video.  The CueVideo system from IBM [15] presents

techniques to separate speech and music in mixed-audio

environments. They use a combination of energy, zero-

crossing rate, and analysis of harmonics.  In [16], Zhang and

Kuo developed a heuristic-based approach to classifying

audio signals into silence, speech, music, song, and mixtures

of the above. While both systems achieve good accuracy, the

selection of many hard-coded thresholds prevents them from

being used in a more complicated audio environment such as

baseball games. As we discuss in later sections, the audio

channel in TV baseball programs is very noisy, the sound

sources more diverse, and we want to detect special features

like baseball bat-and-ball impact that have not been addressed

earlier.

Looking at related work in the sports domain, we see that

relatively little work has been done on sports video as

compared to news video.  This is partly due to the fact that the

analysis is more difficult for sports, for example, due to lack

of regular structure in sports video (in contrast, news often

has structured format: anchor person à clip from the field à
back to anchor person) and more complex audio.  In some

early work, Gong et. al. [17] targeted at parsing TV soccer

programs.  By detecting and tracking soccer court, ball,

players, and motion vectors, they were able to distinguish

nine different positions of the play (e.g. midfield, top-right

corner of the court, etc.).  While Gong et al focused on video

track analysis, Chang et. al.[18] primarily used audio analysis

as an alternative tool for sports parsing.  Their goal was to

detect football touchdowns.  A standard template matching of

filter bank energies was used to spot the key words

touchdown  or fumble .  Silence ratio was then used to

detect cheers , with the assumption that little silence is in

cheering while much more are in reporter chat. Vision-based

line-mark and goal-posts detection were used to verify the

results obtained from audio analysis.  Our work reported here

is similar in spirit though different in detail.



3. INFORMATION SOURCES
As discussed in previous section, the two primary sources of

information are video-track and audio-track.  Video/visual

information captures the play from various camera distances

and angles.  One can possibly analyze the video track to

extract generic features such as: high-motion scene or low-

motion scene; camera pan, zoom, tilt actions; shot boundaries.

Alternatively, as done by Gong et. al. and Chang et. al for

soccer and football, we can detect sport-specific features.  For

baseball, one can imagine detecting situations such as: player

at bat, the pitcher curling-up to pitch the ball, player sliding

into a base, player racing to catch a ball.  Given our goal of

determining exciting segments, we believe sport-specific

features are more likely to be helpful than the generic features.

For example, interesting action usually happens right after the

ball is pitched, so detecting the curled-up pitching motion

sequences can be very helpful, especially when coupled with

the audio-track analysis.

The technology to do such video-analysis while challenging

seems within reach.  However, we do not use video analysis in

this paper.  We had two reasons.  First, visual information

processing is compute intensive, and we wanted to target set-

top box class of machines.  For example, to compute the dense

optical flow field of a 320x240 frame, it needs a few seconds

on a high-end PC even using the hierarchical Gaussian

pyramid [19].  Second, we wanted to see how well we can do

with audio information only.  As we discuss below, we

thought we could substitute for some of the visual cues with

cheaper-to-compute audio cues.  For example, instead of

detecting beginning of a play with a curled-up pitcher visual

sequence, we decided to explore if we could locate it by

detecting bat-and-ball impact points from the audio track.

There are four major sources mixed in: 1) announcers  speech,

2) audience ambient speech noise, 3) game-specific sounds

(e.g. baseball hits), and 4) other background noise (e.g.

vehicle horning, audience clapping, environmental sounds,

etc.).  A good announcer s speech has tremendous amount of

information, both in terms of actual words spoken (if speech-

to-text were done) and in terms of prosodic features (e.g.,

excitement transformed into energy, pitch, and word-rate

changes).  The audience ambient noise can also be very useful,

as audience viscerally react to exciting situations.  However,

in practice this turns out to be an unreliable source, because

automatic gain control (AGC) affects the amount of audience

noise picked up by the microphones. It varies quite a bit

depending on whether the announcer is speaking or not.

Game specific sounds, such as bat-and-ball impact sound, can

be a very useful indicator of the game development.  However,

AGC and the far distance from the microphones make

detecting them challenging. Finally, vehicle horning and

other environmental sounds happen arbitrarily in the game.

They therefore provide almost no useful, if not negative,

information to our task.

Based on the above analysis, in this paper, we will use

announcers  speech and game specific sound (e.g., baseball

hits) as the major information sources and fuse them

intelligently to solve our problem at hand.  We make the

following assumptions in extracting highlights from TV

broadcasting baseball programs:

1. Exciting segments are highly correlated with announcers

excited speech;

2. Most of the exciting segments in baseball games occur

right after a baseball pitch and hit.

Under the above two assumptions, the challenges we face are:

develop effective and robust techniques to detect excited

announcers  speech and baseball hits from the mixed and very

noisy audio signal, and intelligently fuse them to produce

final exciting segments of baseball programs. Before we going

into full details of the proposed approach in Section 4, we

first examine various audio features that will be used in this

paper.

3.1. Audio Features Used
3.1.1 Energy Related Features
The simplest feature in this category is the short-time energy,

i.e., the average waveform amplitude defined over a specific

time window.

When we want to model signal s energy characteristics more

accurately, we can use sub-band short-time energies.

Considering the perceptual property of human ears, we can

divide the entire frequency spectrum into four sub-bands,

each of which consists of the same number of critical bands

that represent cochlear filters in the human auditory model

[14].  These four sub-bands are 0-630hz, 630-1720hz, 1720-

4400hz, and 4400hz and above. Let s refer them as E1, E2, E3,

and E4.  Because human speech s energy resides mostly in the

middle two sub-bands, let s further define E23 = E2 + E3.

3.1.2 Phoneme-level Features
The division of the sub-bands based on human auditory

system is not unique.  Another widely used sub-band division

is the Mel-scale sub-bands [20].  For each tone with an actual

frequency,  f,  measured in Hz, a subjective pitch is measure on

a so called Mel-scale .  As a reference point, the pitch of a 1

kHz tone, 40 dB above the perceptual hearing threshold, i s

defined as 1000 Mels.  In plain words, Mel-scale is a gradually

warped linear spectrum, with coarser resolution at high

frequencies. The Mel-frequency sub-band energy is defined

accordingly. For automatic speech recognition, many

phoneme-level features have been developed. Mel-frequency

Cepstral coefficients (MFCC) is one of them [20]. It is the

cosine transform of the Mel-scale filter bank energy defined

above.  MFCC and its first derivative capture fine details of

speech phonemes and have been a very successful feature in

speech recognition and speaker identification.

3.1.3 Information Complexity Features
There are quite a few features that are designed for

characterizing the information complexity of audio signals,

including bandwidth and entropy. Because of entropy s wide

use and success in information theory applications, in this

paper we will concentrate on entropy (Etr). For an N-point FFT

of the audio signal s(t),  let S(n) be the nth frequency s

component. Entropy is defined as:
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3.1.4 Prosodic Features
The waveform of voiced human speech is a quasi-periodic

signal.  The period in the signal is called the pitch (Pch) of the

speech. It has been widely used in human speech emotion

analysis and synthesis [21].  Independent of the waveform



shape, this period can be shortened or enlarged as a result of

the speaker s emotion and excitement level. There are many

approaches to pitch estimation, including auto-regressive

model and average magnitude difference function [16], etc.

The pitch tracker we use in this paper is based on the

maximum a posteriori (MAP) approach [22].  It creates a time-

pitch energy distribution based on predictable energy that

improves on the normalized cross-correlation and is one of

best pitch estimation algorithms available.

3.1.5 Summary
We have discussed various audio features in this section.

They are designed for solving different problems.

Specifically, we will use E23, Etr, and MFCC for human speech

endpoint detection.  E23 to E4 are used to build a temporal

template to detect baseball hits.  Statistics based on E23 and

Pch are used to model excited human speech.

4. PROPOSED APPROACH
In this section we will first give an algorithm overview and

then discuss each sub-systems in full detail.

4.1 Algorithm Overview
As stated in Section 3, we base our algorithm for highlight

detection on a model of baseball where we assume: (i) exciting

segments are highly correlated with announcers  excited

speech; and (ii) most exciting segments in baseball occur

right after a baseball pitch and hit.  As a result, we need to

develop techniques to reliably detect excited human speech

and baseball hits, and then fuse them intelligently to generate

the final highlights segments. The following is the flowchart

of the algorithm.

Figure 1. Algorithm Flowchart

The top-left block is the sub-system for excited speech

classification, including the pre-processing stage of noisy

environment speech endpoint detection.  The top-right block

is the sub-system for baseball hits detection.  The bottom

block is the sub-system for probabilistic fusion.

1. Noisy Environment Speech Endpoint Detection: In

conventional speech endpoint detection, the background

noise level is relatively low. An energy-based approach

can achieve reasonably good results.  Unfortunately, in

TV baseball programs, the noise presence can be as strong

as the speech signal itself, and we need to explore more

sophisticated audio features to distinguish speech from

other audio signals.

2. Classifying Excited Speech Using Learning Machines:
Once speech segments are detected, the energy and pitch

statistics are computed for each speech segment. These

statistics are then used to train various learning

machines, including pure parametric machines (e.g.,

Gaussian fitting), pure non-parametric machines (e.g., K
nearest neighbors), and semi-parametric machines (e.g.,

support vector machines).  After the machines are trained

they are capable of classifying excited human speech for

other baseball games.

3. Detecting Baseball Hits Using Directional Templates:
Excited announcers  speech does not correlated 100%
with the baseball game highlights.  We should resort to

additional cues to support the evidence that we obtained

from excited speech detection. Sports-specific events,

e.g., baseball hits, provide such additional support.

Based on the characteristics of baseball hits  sub-band

energy features, we develop a directional template

matching approach for detecting baseball hits.

4. Probabilistic Fusion: The outputs from Steps 2 and 3 are

the probabilities if an audio sequence contains excited

human speech and contains a baseball hit, respectively.

Each one of two probabilities alone does not provide

enough confidence in extracting true exciting highlights.

However, when integrated appropriately, they will

produce stronger correlations to the true exciting

highlights. We will develop and compare various

approaches to fuse the outputs from Steps 2 and 3.

Based on the nature of each processing steps, different audio

signal resolutions are used.  All of the original audio features

are extracted at the resolution of 10 msec (referred as frames).

The frame-resolution E23 and E4 are used in directional
template matching to detect baseball hit candidates. In speech

endpoint detection, human speech seldom is less than half a

second. We therefore use 0.5 sec resolution (referred as

windows).  The statistics of Pch and E23 are extracted from each

window to conduct excited speech recognition.

One thing worth emphasizing is that the whole proposed

approach is established on a probabilistic framework. Unlike

some of the existing work that uses heuristics to set hard

thresholds, we try to avoid thresholding during the

intermediate stages. In the thresholding approaches, early

misclassifications cannot be remedied at later stages. The

probabilistic framework approach will, on the other hand,

produce probability values at each intermediate stage not a

0/1 decision.  This probabilistic formulation of the problem

allows us to avoid ad hoc procedures and solve the problem

in a principled way.

5. Noisy Environment Speech Detection
Most of the traditional speech endpoint detection techniques

make the assumption that the speech is recorded in a quiet

room environment.  In that case, E23 alone can produce

reasonably good results.  At a baseball stadium, however,

human speech is almost always mixed with other background

noise, including machinery noise, car horns, background

conversations, etc [20]. In this case, E23 s distinguishing

power drops significantly, because microphone s AGC



amplifies the background noise level when the announcers are

not talking.  The energy level of non-speech signal can

therefore be as strong as that of speech.

In a recent work by Huang and Yang [23], they proposed to

use a hybrid feature (product of energy E23 and entropy Etr) to

perform noisy car environment speech endpoint detection.

Based on our experiments, even though this approach i s

effective in car environment, its performance drops

significantly in baseball stadium environment that has much

more varieties of background interferences.

Inspired by the success of MFCC in automatic speech

recognition, and the observation that speech exhibits high

variations in MFCC values, we propose to use first derivatives

of MFCC (delta MFCC) and E23 as the audio features.  They are

complimentary in filtering out non-speech signals: energy E23

helps to filter out low energy but high variance background

interference (e.g., low volume car horns) and delta MFCC helps

to filter out low variance but high energy noise (e.g., audience

ambient noise when AGC produces large values). In Section 5,

we compare the performance of the above three approaches:

energy only, energy and entropy, and energy and delta MFCC.

5.1   Classifying Excited Human Speech
A good announcer s speech has tremendous amount of

information, both in terms of actual words spoken (if speech-

to-text were done) and in terms of prosodic features (e.g.,

excitement transformed into energy and pitch). As speech-to-

text is not reliable in noisy environment, in this paper we

concentrate on the prosodic features. Excited announcers

speech has good correlations with the exciting baseball game

segments.  Previous study has shown that excited speech has

both raised pitch and increased amount of energy [21]. The

features we use in this paper are therefore statistics of pitch

Pch and energy E23 extracted from each 0.5 sec speech

windows.  Specifically, we use six features: maximum pitch,

average pitch, pitch dynamic range, maximum energy, average

energy, and energy dynamic range of a given speech window.

The problem of classification can be formulated as follows.

Let C1 and C2 be the two classes to be classified (e.g., excited

speech vs. non-excited speech).  Let X be the observations of

the features (e.g., the six audio features described above).  Let

P(Ci | X), i = 1, 2, be the posterior probability of a data being

in class Ci given the observation X.  Bayes decision theory

tells us that classifying data to the class whose posterior
probability is the highest minimizes the probability of error
[24]:
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How to reliably estimate P(Ci|X) is the job for learning

machines.  We next explore three different approaches.

5.1.1 Parametric Machines
Bayes rule tells us that P(Ci | X) can be computed as a product

of the prior probability and the conditional class density, and

then normalized by the data density:
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As p(X) is a constant for all the classes and does not

contribute to the decision rule, we only need to estimate P(Ci)

and p(X|Ci). Priors P(Ci) can easily be estimated from labeled

training data (e.g., excited speech and non-excited speech).

There are many ways to estimate the conditional class density

p(X|Ci). The simplest approach is the parametric approach.

This approach represents the underlying probability density

as a specific functional form with a number of adjustable

parameters [24].  The parameters can be optimally adjusted to

best fit the training data. The most widely used functional

form is Gaussian (Normal) distribution N(µ,σ), because of its

simple form and many nice analytical properties. The two

parameters (mean µ and standard deviation σ) can be

optimally adjusted by using the maximum likelihood
estimation (MLE):
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where n is the number of training samples.

5.1.2 Non-Parametric Machines
Even though easy to implement, parametric machines are too

restrictive in data modeling and sometimes result in poor

classification results.  For example, the pre-assumed function

seldom matches the true underlying distribution function and

it can only model unimodal distributions [24].  Non-

parametric machines were proposed to overcome this

difficulty. They do not pre-assume any functional forms, but

instead depend on the data itself.  There are non-parametric

machines that can estimate the posterior probability P(Ci | X)
directly.  K nearest neighbor is such a technique.

Let V be the volume around observation X and V covers K
labeled samples. Let Ki be the number of samples in class Ci.

Then the posterior probability can be estimated as [24]:
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This estimation matches our intuition very well: the

probability that a data sample belongs to class Ci is the

fraction of samples in the volume labeled as class Ci.

5.1.3 Semi-Parametric Machines
Pure parametric machines are easy to train and fast to adapt to

new training samples, but too restrictive. Non-parametric

machines, on the other hand, are much more general but take

more time to compute.  To combine the advantages and avoid

the disadvantages of the above two approaches, semi-
parametric machines have been proposed [25]. These new set

of machines include the Gaussian mixture models, neural
networks and support vector machines (SVM).  Because of its

recognized success in pattern classification [26], we will focus

on SVM in this paper.

Let R be the actual risk (test error) and Re be the empirical risk

(training error).  For η, where 0< η<1, with probability 1 — η,
the following bound holds [26]:
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where n is the number of training samples and η is a non-

negative integer called the Vapnik-Chervonenkis (VC)

dimension of a learning machine [26]. R (test error) represents

a learning machine s ability to generalize to unseen data, after

it is trained.  In any classification task, we want R to be

minimized. It is not always true that R will be minimized when



Re is minimized.  The second term on the right-hand side

determines the mismatch  between training and testing

situations, and it increases as the VC dimension increases. VC

dimension characterizes the capacity  of a learning machine.

If the capacity is too low, the machine cannot learn and results

in a high Re (thus high R).  On the other hand, if the capacity i s

too high, even though Re can be arbitrarily small, the machine

can be over fit  and results in a high value of the second term

(thus high R).  The remarkable characteristic of SVM is that i t

can automatically find the required capacity  to learn the

training samples without being over trained. In another word,

SVM learns in a principled way.  SVM has found successes in

many applications including face detection, hand writing

recognition, and text categorization [26].

Standard SVM does not generate the posterior probability

directly. In [27], Platt developed a new approach to first train a

SVM and then to train an additional sigmoid function to map

the SVM outputs into posterior probabilities.  Because of its

effectiveness, we adopted this method in our system:
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where A and B are the parameters of the sigmoid function.

In Section 5, we give detailed comparisons between the above

three learning machines  performance.

5.1.4 Post Processing
In real world, excited speeches never appear in just one

window (0.5 sec).  Instead, they appear in a much longer unit.

Experimentally, we find a segment (5 sec) is the minimum

length required by a coherent excited speech.  Since each

window contributes equally to a segment, we use the average

posterior probability of the windows in the segment as the

posterior probability for the segment P(ES):
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where C1 represents the excited speech class, and M is the

number of  windows in a segment.

5.2 Baseball Hit Detection
Even though excited announcers  speech has good

correlations with exciting baseball game segments, it is not

sufficient or reliable to base the judgment solely on the

excited speech. For example, the pitch tracker may perform

poorly in noisy speech environment. More importantly,

announcers  speech can become excited due to other reasons

that are totally irrelevant with the development of the game

(e.g., a joke from their partners or a balloon passing the

stadium). If we were to use excited speech only, there would

have been many false alarms.

In most of the sports, there exist sports-specific events.  For

example, player gatherings indicate the start of new attacks in

football, and baseball hits manifest possible exciting

segments a few seconds later in the game.  These sports-

specific events can help reduce the amount of false alarms.  In

this section, we will describe a directional template matching
approach to detecting baseball hits.

In the audio signal spectrograms, when we examine a baseball

hit in isolation, it is extremely difficult to distinguish it from

a strong speech fricative or a stop.  However, when we look at

it in the context of its surrounding signals, while the task i s

still difficult we have some hope: fricatives or stops normally

are followed by vowels that exhibit high energy in E23 but low

energy in E4. To capture this temporal context, we build a

baseball-hit template consisting of 25 frames, with the hit

peak at the 8th
 frame. In this template, using only the absolute

values of E23 and E4 is not sufficient.  To capture the shape of

the energy curves over time, we further use the ratio of E23 and

E4 normalized by E23(8):
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where i = 1, , 25.

The four 25-element templates are constructed based on

labeled training data.  Figure 3 shows the four templates (E23

,ER23 ,E4 and ER4 in that order) built on 55 training samples.

Figure 2. Baseball hit s template

We next discuss how we compute the probability that a data

sequence (25 frames) contains a baseball hit. Let D be the

Mahalanobis distance of a data sequence 
X

 from the template
T

:
)()( TXTXD −Σ−=

where both 
X

 and  are vectors of 4 x 25 = 100 elements,

and Σ is the covariance matrix of .  To simplify

computation, we restrict Σ to be a diagonal matrix. The

distance D can be converted to a probability value as follows

[28]:
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where C is a suitable constant.

The above conventional (un-directional) template matching

technique does not incorporate domain knowledge into the

computation of D effectively.  For example, domain

knowledge (Figure 2) tells us that E23(8) should exhibit high

value while other E23(i) s exhibit low values. But in the un-

directional template matching, an over-mismatch data point of

E23(8) is treated the same as an under-mismatch data point of

E23(8). In reality, however, an over-mismatch should not only

not to be punished, but also be encouraged. The direction
from which the data point is approaching the template i s
important.  We thus propose a directional template matching

approach:
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where I is a diagonal indicator matrix.  Its elements can be of

various values to reflect the domain knowledge. For example,

I(8,8) takes a negative value when E23(8) is an over-mismatch

to reduce the distance D but a positive value for an under-

mismatch to increase the distance D. This new formulation

makes template matching much more flexible to incorporate

domain knowledge into the distance computation.

Specifically, in this paper, when E23(i) s are over-matching, I =
diag[1, , 1, -1, 1, , 1], where the —1 is at location 8. When

E23(i) s are under-matching the templates, I = diag[-1, , -1, 1,
-1, , -1], where the 1 is at location 8.

5.3 Probabilistic Fusion
In the previous two sections we have developed techniques to

compute the probability that a segment is an excited speech

segment (P(ES)) and the probability that a frame contains a

baseball hit (P(HT)).  The two assumptions we made in Section

3 tell us that if a segment has high P(ES) and it occurs right

after a high P(HT) frame, it is very likely to be a true exciting

segment. From the training data, we find that a hit can occur

upto 5 sec ahead of the excited speech segment. In all the

following discussions, we search a hit frame within the 5 sec

interval of the excited speech segment. We next explore two

techniques to fuse P(ES) and P(HT) into the final probability

if a segment is an exciting segment (P(E)).

5.3.1 Weighted Fusion
In this approach, both P(ES) and P(HT) directly contribute to

P(E), with appropriate weights:

)()()( HTPWESPWEP HTES +=

where WES and WHT are the weights that sum up to 1.0.  They

can both be estimated from the training data, and we use

values of 0.83 and 0.17.

5.3.2 Conditional Fusion
In this approach, we try to capture the intuition that the key

value of a detected hit P(HT) is not in directly adding to the

probability that a segment is exciting P(E). Instead i t

contributes indirectly to P(E) by adjusting the by adjusting

the confidence level of the P(ES) estimation (e.g., that the

excited speech probability is not high due to mislabeling a

car horn as speech):

)()()( ESPCFPEP =

where P(CF) is the probability that how much confidence we

have in P(ES) estimation, and  is the

probability that there is no hit. P(CF|HT) represents the

probability that we are confident that P(ES) is accurate given
there is a baseball hit. Similarly, 

)|( THCFP
represents the

probability that we are confident that P(ES) is accurate given
there is no baseball hit. Both conditional probabilities

P(CF|HT) and 
)|( THCFP

can be estimated from the training

data and we obtain values 1.0 and 0.3.

5.4 Final Presentation
Starting at the beginning of the algorithm, various

probability values are computed and flow to the end of the

algorithm. This probabilistic framework allows us to avoid

information loss due to intermediate-step hard thresholding

and can solve the problem in a principled way. At the end of

the algorithm flow chart, there is only a single probability

value (P(E)) associated with each segment.

When presenting an exciting segment to the end user,

overlapping and close-by segments are merged into a single

segment. In addition, because we already know the most likely

baseball hit locations, each segment starts a few seconds

before the hit.  Figure 3 is a typical sequence of an exciting

segment.

Depending on users  interest level and/or time available to

view the game, the users can specify an interest threshold.

This is the only threshold that a user needs to specify. Based

on this threshold, the algorithm generates a summary of

suitable duration.  

Of course, the algorithm may generate false positives and

negatives.  Lowering the threshold will minimize false

negatives (reduce missing exciting segments) though it may

increase false positives (include non-exciting segments). Our

belief is that if these are few, then the benefits of automation

will far exceed the costs.  In WebTV/TiVo/ReplayTV

environments it is particularly easy for the end-user to skip

incorrectly identified false positives due to the instant seek

capability.

6. EXPERIMENTAL RESULTS
In this section, we will give detailed reports on our

experiments to evaluate various proposed approaches.  We

will describe the data set used, evaluation framework,

experimental results and observations.

6.1 Data Set
In most of the existing systems, only limited amount of tests

have been conducted (e.g. less than 1 hr video in [15], 45 min

in [18], and 30 min in [17]). To validate the effectiveness and

robustness of the proposed approach, we have collected

      (a) (b)           (c) (d)

Figure 3. A typical presentation of an exciting segment: It starts with the pitcher throwing the ball (a).  Then the hitter tries to hit the ball (b).

If it is a good hit, then the hitter is running (c). The final part (d) is the audience cheering for the good play.



baseball game videos from various sources (see Table 1). In

total we have seven hours of baseball games consisting of

eight giga bytes of data. They come from different sources,

digitized at different studios, sampled at different frequencies

and amplitude, and reported by different announcers. The first

half (35 min) of Clip A is used as the training data.  The

second half of Clip A is used as a clip-dependent test case.

Clip B has many similar conditions as Clip A and is used as a

similar-clip test case. Clips C and D differ significantly from

Clip A, and are used as clip-independent test cases.  To further

stress test, we included Clips E and F.  Clip E is sampled at a

lower frequency and may lose some higher frequency

information, as needed in the algorithm.  Clip F s audio level

was over amplified (clipped), i.e., 20% over the limit of

maximum allowable level.  These two tapes represent the

stress test cases. A summary of the six clips is given in Table

1.

6.2 Evaluation Framework
We wanted to compare our automatically generated highlight

segments to the ones marked by humans. A human subject

(not working on the project) was asked to watch the baseball

games A-F and mark the exciting segments. Given the certain

amount of subjectivity in what is exciting, we would have

ideally liked multiple people to do such markings. The results

are quite interesting nonetheless.

There are two methods we use to evaluate our results.  The first

called segment-overlap method  is as follows.  We vary the

threshold until the number of segments selected by our

algorithm is the same as that selected by the human.  We then

ask the question how many of these are the same as those

selected by the human.  The larger the overlap, clearly the

algorithm is performing better.  We can also do sensitivity

analysis by letting our algorithm select fewer or more

segments than that selected by the human.

The second method, called excess-time method , is used to

deal with a possible pitfall of the first method.  For example, if

the segments determined by an algorithm are very long (e.g.,

each is 2 minutes long) then obviously the probability of

covering human-selected segments (each is typically about 10

seconds) would be higher, and first metric would indicate

good results.  However, that would not be as good as an

algorithm that more tightly identifying the exciting

segments.  So in this method we plot the number of correctly

generated segments as a function of T/T0 (e.g., Figure 4). The

numerator T corresponds to the duration of the

Table 1. Data set. The clips cover about 7 hours of video, with 4

different announcers.  The Energy Level is given as compared to

maximum allowable level (in percentage).

Clip Length Announcer Samp. Fr. Energy Lev

A 1:10:05 A 16 KHz 50

B 1:05:34 A 16 KHz 55

C 1:01:54 B 16 KHz 80

D 0:41:14 C 16 KHz 80

E 1:58:26 A 11 KHz 30

F 1:06:19 D 16 KHz 120
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Figure 4.  Overall  performance curves for clips A through F, in raster scan order.  Y-axis shows number of exciting segments identified correctly

by the algorithm.  X-axis indicates excess-time factor, i.e., duration of algorithmically selected segments divided by duration of human selected segments. For each

graph, the left light-gray curves shows ideal performance, corresponding to choices made by human.  Right dark curve shows our algorithm s performance

assuming E+MFCC for speech selection, SVM for classifying exciting speech segments, and using conditional fusion for including baseball hit data.   The vertical

dash line indicates the time duration of algorithmically selected segments when threshold was set so that the number of segments selected was same as that

generated by human.  The overall graph was plotted with a slightly lower threshold, with number of generated segments being 1.5 times human segments.  This

allows us to see if we capture some more of the human selected segments if we lower the threshold.



algorithmically selected segments (ordered based on

decreasing P(E) values), and the denominator T0 corresponds

to the total duration of the human-selected segments. For

example, a point on this graph could indicate that to get

coverage of 5 of the 7 human-selected segments, we have to

spend 1.4 times as long watching the video as duration of

human-selected segments. These excess-time curves illustrate

how the algorithm performs when more and more segments are

added to the final presentation.

6.3 Overall Performance
We begin by comparing the performance of the best of our

algorithms with the ground truth as marked by the human.

The best overall algorithm combines energy plus delta MFCC
for speech-endpoint detection, SVM for learning excited

speech segments, and conditional fusion for including

baseball hit information. Table 2 summarizes the performance

when the threshold of our algorithm was set to pick the same

number of segments as selected by human.

Table 2. Overall performance. Second row indicates # of segments

selected by human.  Third row indicates # of correct segments identified

by algorithm, when asked to pick same number of segments as human.

Clip A B C D E F Total

# human 7 7 15 13 13 11 66

# algorithm 5 5 8 10 12 9 49

Comparing the performance in Table 2, we see that algorithm

identifies 49 out of 66 segments correctly (~75%).  This i s

quite remarkable, if we consider that some of the exciting

segments identified by the human start falling into the gray

area, where there may have been others segments just as

exciting to another human.  The performance for clip C i s

poorest of all the clips (8 out of 15 correct), and this is due to

pitch tracking reasons.  We discuss this aspect in greater

detail in Section 5.8 after discussing rest of results.

Figure 4 shows the overall performance using excess-time

plots for all the clips (shown in raster-scan order). We also

show the ideal  curves corresponding to the ground truth,

i.e., human selected segments. These represent the least

amount of time to achieve the highest correctness . The

vertical dashed lines in each graph indicates the time duration

of algorithmically selected segments when threshold was set

so that the number of segments selected was same as that

generated by human (the correctness at this threshold is 49

out of 66 as shown in Table 2). The location of these dashed

lines indicate how much more time a viewer need to spend to

view the same number of segments as the human marked ones.

For example, if the vertical dashed line s location is 1.3, i t

says a viewer will spend 30% more time.  The closer the line i s

to 1.0, the better the algorithm s performance. As can be seen

in the figure, except for Clip F, all the clips  vertical lines are

within 2.0, with average of ~1.5.

This is a strong result indicating that the algorithm is not

achieving its correctness by marking up excessively long

duration segments.  In fact, even this factor of 1.5 is partly due

to the fact that the human in our case was particularly

conservative in identifying the exciting segments.  For

example, he did not include the pitcher pitching the baseball

and player hitting the baseball in his highlighted segments;

he only included the action after that.  Our instructions to the

human were not so precise, and we did not want to change his

markings after the fact.

The overall graphs in Figure 4 were plotted with a slightly

lower threshold, with number of generated segments being 1.5

times human segments.  Thus if human identifies 10

segments, we adjusted the algorithm to generate 15 segments.

These portions of the curves cover the region on the right of

the vertical line, and also provide useful information.  If the

curves continue upwards, it means it is still beneficial to

include more segments into the presentation at the cost of

increased viewing time.  On the other hand, if the curves

become flat after the vertical lines, it is almost of no

advantage to include more segments.  The curves in Figure 4

show that it is still beneficial to include more segments (other

than for Clips D and F).  By increasing our excess-time factor

slightly, we can achieve correctness of 57 out of 66 segments

(~86%).

After establishing the overall performance of the proposed

approach, we next examine various algorithms in greater

detail along three orthogonal dimensions: speech endpoint

detection, excited speech classification, and probabilistic

fusion.

6.4 Speech-Endpoint Detection
We had presented three speech-segment endpoint detection

algorithms in Section 4.2: energy only (E), energy and

entropy (E+Etr), and energy and delta MFCC (E+MFCC).  We

now explore the impact of the speech-endpoint detection

algorithm on the overall end results.  For this comparison, we

fix the other control conditions: the learning algorithm i s

fixed to SVM (it was the best as we will show later), and the

hit-detection and fusion algorithm to conditional fusion .

The relative performance is summarized in Table 3.  It is clear

that overall E+MFCC does substantially better (49 out of 66

correct) than the other two approaches, while E+Etr does

better than E alone (40 vs. 30 out of 66).  E+MFCC does best

for each of the six individual clips (A-F) too, while there are

some performance reversals between E and E+Etr (clips C and

F).

Table 3. Performance of various speech-endpoint detection
algorithms. Second row indicates # of segments selected by human.

Subsequent rows indicate correct segments identified by algorithm,

when asked to pick the same number of segments as human.

Clip A B C D E F Total

# human 7 7 15 13 13 11 66

E+MFCC 5 5 8 10 12 9 49

E+Etr 5 5 7 9 9 5 40

E 4 4 8 5 2 7 30

6.5 Excited Speech Classification
In Section 4.3, we discussed three approaches to excited

speech classification: Gaussian fitting (GAU), K nearest

neighbors (KNN), and support vector machines (SVM). Table 3

summarizes the impact of the different learning machines on

the overall end results. For this comparison, we fix the other

control conditions: we use E+MFCC as the speech endpoint

detection algorithm and use conditional fusion as the fusion

algorithm.

While SVM performs the best in the three learning machines as

we expected, the gain is not significant. After analyzing the

data, we found one major reason accounting for this was the

following.  The input to all the learning machines was the

pitch and energy statistics of each speech window(Section



4.3). Our proposed E+MFCC did a very good job in separating

other audio signals from human speech.  Once this is done,

excited speech classification becomes less difficult and less

sophisticated learning paradigms (e.g., GAU and KNN) can

achieve reasonable good results.  One thing worth pointing

out is that, even though KNN achieves almost the same

accuracy as SVM, it is the slowest of the three learning

machines.

Table 4. Performance of the three learning machines. Second

row indicates # of segments selected by human.  Subsequent rows

indicate correct segments identified by algorithm, when asked to pick

the same number of segments as human.

Clip A B C D E F Total

# human 7 7 15 13 13 11 66

SVM 5 5 8 10 12 9 49

GAU 5 5 8 9 12 7 46

KNN 5 5 8 9 12 9 48

6.6 Baseball Hits Detection
The output of the directional template matching (Section 4.4)

is the probability if a frame contains a baseball hit.  Even

though there is no need to set any threshold at this

intermediate stage, we can set a threshold (TH) for evaluation
purpose.  We vary TH from 0.05 to 0.5 and Table 5 summarizes

the baseball hits detection performance for Clip D.  (We did

not do other Clips due to resource involved in marking the

ground truth.) There are 58 true baseball hits in this clip.

Considering many baseball hits are corrupted by background

noise and even completely overlapping with announcers

speech, the proposed approach s performance is very

encouraging.  For example, at TH = 0.20, it detects 47 (81%) of

all the true hits and only introduced 8 (less than 14%) of false

positives.  Among the undetected hits, for some the audio was

too weak to be detected even by human, and in ground truth

we simply assumed there was a hit based on video analysis.

Table 5. Baseball hits detection

TH .05 .10 .15 .20 .30 .40 .50

Correct 53 50 47 47 41 32 23

False Alarms 23 13 9 8 2 2 1

6.7 Probabilistic Fusion
In Section 4.5, we proposed two methods to fuse P(ES) and

P(HT): weighted fusion and conditional fusion. Table 6

summarizes the performance between conditional fusion,

weighted fusion, and no fusion — just use P(ES) and discard

P(HT). For this comparison, we fix the other control

conditions: we use E+MFCC as the speech endpoint detection

algorithm and use SVM as the learning machine for

classifying excited speech.

We find no significant difference between the two fusion

algorithms.  When we looked at the details, we found that

conditional fusion was giving more weight to hits than

weighted fusion.  As a result, when conditional fusion was

used, if hits were correctly identified the algorithm did a

better job. If, however, an actual hit was not detected, the

algorithm often resulted in a mis-classification.  On the

balance, the results looked the same as weighted fusion, that

gave an overall low level of importance to presence of hits.

Table 6 shows, however, that both conditional fusion and

weighted fusion outperform no-fusion by about 8% (column

Total in Table 6). This demonstrates that sports-specific
features (e.g., baseball hits) provide useful cues to calibrate

the accuracy of generic features (e.g. pitch estimation) and

thus improve the overall system performance.  We believe

such features can also be valuable for sports like Golf, which

have an impact involved and share the property with baseball

of considerable slack time between exciting plays.

Table 6. Performance of the three learning machines. Second

row indicates # of segments selected by human.  Subsequent rows

indicate correct segments identified by algorithm, when asked to pick

the same number of segments as human.

Clip A B C D E F Total

# human 7 7 15 13 13 11 66

Cond fusion 5 5 8 10 12 9 49

Wei.  fusion 5 6 8 9 12 9 49

No fusion 5 5 8 7 12 8 45

6.8 Discussion
When we examine the highlights marked by the human

subject, there are different exciting levels associated with the

highlights.  Some of highlights are clearly very exciting and

most people will agree that they are exciting segments.

Others, however, are subtle: they are exciting to some degree

and from a certain perspective. After our experiments, we

discussed with the human subject for some of the segments he

marked but the algorithm missed, and some segments the

algorithm detected but he did not select. He agreed that those

segments belong to the gray area , where even humans may

have different answers.  On the other hand, our algorithm

almost never misses the really exciting segments.

Considering the gray area  effects, 49 out of 66 (75%)

accuracy is a very encouraging result.  In fact, if we ignore clip

C for which the accuracy is the worst (we discuss clip C

below), the overall accuracy increases to 41 out of 51 (~80%).

We also have the possibility of increasing coverage by asking

the algorithm to generate a larger # of segments than that

generated by the human.  While this would increase number of

false positives, this might work well in practice, because

given the instant-seek functionality provided by

WebTV/TiVo/Replay boxes, it is very easy for end-user to

skip incorrectly identified exciting segments.

The algorithm missed quite a few highlights in Clip C.  When

we carefully traced the reason, we found the pitch tracker was

giving wrong estimations.  The pitch tracker [22] we used in

this paper is already one of the best in speech research

community.  However, like other pitch trackers, it is designed

and tuned to clean speech pitch estimation.  Even though i t

performs well in those situations, it failed when the

background noise s level is almost comparable to that of

human speech.

Baseball hits detection is still far from satisfactory.  This

sports-specific event is very useful in providing additional

cues for highlights detection.  If we had more accurate hit

detection, the performance of conditional fusion and weighted

fusion would have more significantly outperformed that of

no-fusion.  Even with current hit detection accuracy,

conditional fusion and weighted fusion already exhibit clear

performance advantage (around 8%) over no-fusion.

7. CONCLUDING REMARKS



In this paper, we have explored solutions to the challenging

task of extracting baseball game highlights on set-top

devices. Our task is highly constrained by the computing

power and noisy audio data.  We presented effective

techniques to speech detection in noisy environment.  We

show that energy level plus delta MFCC performs best, and i t

improves the final performance considerably over

alternatives. We discussed the relative strength of three types

of learning machines and successfully applied SVM in excited

speech classification.  To incorporate domain knowledge more

flexibly, we developed a directional template matching

approach to baseball hits detection and achieved encouraging

results. Finally, we developed probabilistic framework that

intelligently integrates P(ES) and P(HT).  The proposed

probabilistic framework does not lose useful information at

intermediate stages and allows us to solve the problem in a

principled way.

We tested various methods over a diverse collection of six

baseball games covering 7 hours of game time. The results are

very encouraging.  When our algorithm is asked to generate

the same number of highlight segments as marked by human

subject, on average, 75% of these are the same as that marked

by the human.  When asked to generate 1.5 times the number

of segments, the overlap increases to 86%.  At the same time,

the total duration of the algorithmically generated segments

is not significantly more than that of human segments.

Future work plans include real use of the proposed system, for

example, to create highlights for the hundreds of games that

are broadcast during a baseball season.  An implementation on

a PC acting as a TiVo/WebTV/Replay box will let us explore

how end-users react to the availability of such highlight

metadata.  We also plan to explore use of visual features to

improve the system performance. Given the computing power

constraints, visual features will be used only after audio

features have filtered clear-cut cases.  Use of visual features i s

also possible when highlights are detected on a server and

then communicated to the set-top box over the Internet.
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