
Automatically Generating and Improving Voice Command
Interface from Operation Sequences on Smartphones

Lihang Pan Chun Yu∗ JiaHui Li
plh18@mails.tsinghua.edu.cn chunyu@mail.tsinghua.edu.cn ljh1304607285@hotmail.com

Department of Computer science and Department of Computer science and Department of Computer science and
Technology, Tsinghua University Technology, Tsinghua University Technology, Tsinghua University

Beijing, China Beijing, China Beijing, China

Tian Huang Xiaojun Bi Yuanchun Shi
any3231@126.com xiaojun@cs.stonybrook.edu shiyc@tsinghua.edu.cn

Department of Computer science and Department of Computer Science, Department of Computer science and
Technology, Tsinghua University Stony Brook University Technology, Tsinghua University

Beijing, China United States Beijing, China

ABSTRACT
Using voice commands to automate smartphone tasks (e.g., making
a video call) can effectively augment the interactivity of numerous
mobile apps. However, creating voice command interfaces requires
a tremendous amount of effort in labeling and compiling the graph-
ical user interface (GUI) and the utterance data. In this paper, we
propose AutoVCI, a novel approach to automatically generate voice
command interface (VCI) from smartphone operation sequences.
The generated voice command interface has two distinct features.
First, it automatically maps a voice command to GUI operations and
fills in parameters accordingly, leveraging the GUI data instead of
corpus or hand-written rules. Second, it launches a complementary
Q&A dialogue to confirm the intention in case of ambiguity. In
addition, the generated voice command interface can learn and
evolve from user interactions. It accumulates the history command
understanding results to annotate the user’s input and improve its
semantic understanding ability. We implemented this approach on
Android devices and conducted a two-phase user study with 16 and
67 participants in each phase. Experimental results of the study
demonstrated the practical feasibility of AutoVCI.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; Ubiquitous and mobile computing systems and tools.

KEYWORDS
operation sequence, generation system, voice command interface,
interaction-centered nature language understanding

∗indicates the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’22, April 30 – May 6 2022, New Orleans, LA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9157-3/22/04. . . $15.00
https://doi.org/10.1145/3491102.3517459

ACM Reference Format:
Lihang Pan, Chun Yu, JiaHui Li, Tian Huang, Xiaojun Bi, and Yuanchun
Shi. 2022. Automatically Generating and Improving Voice Command In-
terface from Operation Sequences on Smartphones. In CHI ’22: The ACM
CHI Conference on Human Factors in Computing Systems, April 30 – May
6 2022, New Orleans, LA. ACM, New York, NY, USA, 21 pages. https:
//doi.org/10.1145/3491102.3517459

1 INTRODUCTION
Voice interaction has many advantages, such as rich expressions,
low learning cost, and support for hands-free and eyes-free interac-
tions [62, 68]. Using voice commands to automate smartphone tasks
can effectively improve the interactivity of mobile apps. However,
it is difficult to create task-oriented voice user interfaces (VUIs) for
various applications. One of the most significant challenges is to un-
derstand flexible natural language commands accurately. The devel-
opers need to collect numerous corpus [10], create hand-write rules
[9], or train machine learning models [63]. Moreover, the develop-
ment efforts will grow significantly as the number of tasks increases.
As a result, only a small number of tasks are equipped with voice in-
terfaces. However, many users, especially non-programmers, have
a strong desire to create voice interfaces for various tasks [34, 36].

In this paper, we proposed AutoVCI, an original approach to
automatically generate and improve a voice command interface
(VCI) from smartphone operation sequences, aiming at reducing
the overhead of constructing VCIs. As shown in Figure 1, the VCI
designers only need to provide a sequence of touch-based opera-
tions for accomplishing a task (i.e., how a task will be executed
through touch operations). AutoVCI automatically generates a VCI
based on the operation sequences through the following steps. (In-
tention Recognition) The generated VCI maps a voice command to
a task (e.g., the user wants to make a video call) leveraging semantic
similarities between the command and the operation sequences.
(Parameter Identification) It then identifies parameters (e.g., the
recipient is Alice) from the command utilizing similarities between
the command and run-time GUI. The semantic understanding does
not require any corpus, models or hand-written rules. (Complemen-
tary Dialogue) If unexpected ambiguity occurs, the VCI launches an
complementary Q&A dialogue to maintain the accuracy of the com-
mand understanding. We carefully designed the questions so that

https://doi.org/10.1145/3491102.3517459
https://doi.org/10.1145/3491102.3517459
https://doi.org/10.1145/3491102.3517459
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3491102.3517459&domain=pdf&date_stamp=2022-04-29

CHI ’22, April 30 – May 6 2022, New Orleans, LA Lihang Pan, Chun Yu, JiaHui Li, Tian Huang, Xiaojun Bi, and Yuanchun Shi

they are easy to answer, and minimized the number of questions
via an information entropy based method. (Semantic Accumula-
tion) The generated VCI also accumulates semantics and evolves
from interactions: it leverages the history command understanding
results to annotate new user commands, and improves its semantic
understanding ability. The accumulation reduces (in some cases
even avoids) asking the users additional questions for subsequent
commands.

To evaluate the performance of AutoVCI, we implemented it on
an Android device and provided a tool that automatically collected
operation sequences from the smartphone. We generated a VCI
supporting 45 tasks from 11 applications. A user study (N = 16)
showed that users were able to automate GUI tasks via the VCI
with an overall success rate of 98.4%. In addition, semantic accu-
mulation reduced the interaction burden caused by extra dialogues
and enhanced the usability of AutoVCI. During the experiment, the
average number of extra dialogue rounds decreased from 2.1 to
0.7, and more than 40% of the commands from history could be
reused and executed directly. Users gave positive feedback and com-
mented that they could answer the complementary questions easily.
To investigate AutoVCI’s ability of continuous semantic learning
at a larger scale, we further expanded the user study to a second
phase (N = 67, conducted online). At the end of Phase II, more
than 70% of the commands could be directly triggered, and the
extra dialogues were only 0.4 rounds on average. Subsequently, we
conducted an offline evaluation on the data collected in the user
study, which measured different components and explained the
good performance of AutoVCI.

In the remainder of this paper, we first summarize relate works
on constructing voice user interfaces. We then introduce a use case
scenario to clarify how the VCI is generated and cumulatively self-
enhanced. After that, we describe the details of AutoVCI design,
including VCI generation, intention recognition, parameter identifi-
cation during execution, and semantic accumulation. Subsequently,
we demonstrate the feasibility and the self-improvement ability of
AutoVCI through a user study and an offline evaluation. Finally, we
discusse the implications and possible directions for future work.

2 RELATED WORK
The construction of task-oriented voice user interfaces (VUI) con-
sists of two parts [38]: 1) the configuration of task properties, in-
cluding the required parameters (for example, sending a video call
requires a parameter for the receiver) and execution scripts (how to
send a video call automatically), and 2) mapping verbal commands
to the GUI tasks. The generated VUIs may evolve while interacting
with the users, which can be regarded as an extension of the gener-
ation process. This section presented related works in task property
configurations and user command understanding, and discussed
how AutoVCI contributes.

2.1 Task Property Configurations
Task properties are usually configured manually by VUI developers
through programming [33, 52]. Existing commercial voice inter-
faces (for example, Siri) provide adequate application programming
interfaces (APIs) to support developers in adding new tasks. Some
existing systems apply end-user programming [27] to infer task

properties from interaction histories [7, 33] or verbal commands
[1, 10, 27, 36, 37, 47]. In addition to programming by computer lan-
guages, previous works [11, 18] calculated properties from specific
GUI annotations. The task execution of AutoVCI is built on top
of existing programming by demonstration (PBD) systems. Pro-
gramming by demonstration (PBD) [20, 56] is a widely used end-
user programming approach, in which the system automatically
generates runnable scripts after users demonstrate the task exe-
cution process in the original GUI [44]. However, existing PBD
systems rely on extra inputs to extract parametric operations. Sug-
ilite [34] and VASTA [54] require natural language descriptions for
the demonstration and determine task parameters via text com-
parison. Kite [38] provides a visualization platform that requires
additional configuration to generate dialogue templates. In contrast,
AutoVCI leverages interaction sequences to infer task properties
accurately and does not require additional inputs, which enhances
the scalability of AutoVCI.

2.2 User Command Understanding
One of the major contributions of AutoVCI is on user command un-
derstanding. Existing strategies rely only on static natural language
processing (NLP) algorithms. AutoVCI utilizes the rich semantic
information contained in the GUI instead of any corpus, rules, or
programming. When encountering ambiguous instructions, Au-
toVCI launches additional dialogues to guarantee understanding
accuracy. Accurate command understanding with little develop-
ment effort is a fundamental feature of AutoVCI, and a significant
difference and improvement comparing with other existing PBD
systems.

2.2.1 Existing Natural Language Command Understanding Ap-
proach. Existing voice interfaces rely heavily on static NLP algo-
rithms to understand user commands. The most traditional ap-
proach is to match user commands with regular expressions [9, 68]
or hand-written rules [22, 60]. Some systems employ more sophisti-
cated algorithms, such as decision trees [8], word dependencies [54],
and existing semantic understanding frameworks [57]. All these ap-
proaches require significant development efforts [38]. Nevertheless,
they can not adapt well to the dynamics of natural language com-
mands [10, 40, 63] because their capabilities have already been de-
termined once interface generation finished. Taking the commonly
used Combinatory Categorial Grammar (CCG) [10, 34, 36, 37, 58]
algorithm as an example, the error rate for intention recognition is
15.4% and that for parameter identification is 5.4% in a system that
supports only 13 tasks [10].

Some existing algorithms select the most similar task to the
instruction as the semantic understanding result. The similarities
can be calculated in many ways, such as n-gram [22, 31] and word
embedding [54]. These approaches require only a tiny amount of
corpus and can flexibly handle patterns that did not occur before.
However, lacking the mechanism of user input and confirmation,
their results are not always adequately accurate [54].

With the development of artificial intelligence, many systems
use deep neural networks that could achieve good performance
in general [50, 53]. But developers need to collect vast amounts
[16, 21] of training corpus and carefully refine the network structure

Automatically Generating and Improving VCI from Operation Sequences on Smartphones CHI ’22, April 30 – May 6 2022, New Orleans, LA

Figure 1: How is the VCI generated and cumulatively self-enhanced? 1) the VCI designer inputs an operation sequence for
each task; 2) AutoVCI generates VCI automatically; 3) the generated VCI interprets user’s commands with potential additional
dialogues and automates the task; 4) the VCI accumulates semantics and simplifies dialogues in subsequent user interactions.

and parameters [67] in order to achieve better recognition results,
which increases the development cost significantly.

2.2.2 Strategies for Ambiguous Commands. In often cases, user
commands may be understood inaccurately, which leads to con-
versation breakdowns [12] due to the limitations of existing NLP
algorithms [25]. Users have to memorize the voice command pat-
terns supported by the voice interfaces [29, 48], which decreases
users’ satisfaction and willingness of using the system [28, 40, 65].

Few dialogue systems provide effective solutions to unmanage-
able commands as they may introduce extra semantic understand-
ing errors [35, 37]. Existing strategies suffer from various problems
and are not widely used. Although developers can fix the break-
downs programmatically [15, 30], that would further increase the
workload in implementing the voice interface. Thomason [58] de-
termines user intentions or parameters with natural language ques-
tions based on inaccurate semantic understanding results, which
is not suitable for cold-starting systems as the beforehand data do
not always exist. SOVITE [35] explores how breakdowns can be
fixed effectively. However, it relies on visual feedback and requires
the user to operate on the GUI. This approach requires additional
modality switches, which may be inconvenient or even impossible.

2.2.3 Learning for Understanding. Learning user preferences is a
popular topic, which has been well-studied for recommendation
systems [41, 59]. In the field of human-computer interaction, some
interaction systems can improve themselves while interacting with
users. Rana [51] assists users to navigate indoors by determining
their short-term preferences through dialogues, while Gervasio [23]
and Krzywicki [32] assist users to make schedules.

However, learning how to understand user commands has rarely
been proposed in interaction systems. In Thomason ’s article [58],
users can teach the system synonyms of existing concepts by ineffi-
cient trials and errors. Learning from users is an essential capability,
allowing for persistent knowledge storage and iterative updates.
In AutoVCI, we successfully improved the semantic understanding
ability of the generated voice interface according to this principle.

2.3 Generating voice interfaces from GUIs
Previous work has generated voice interfaces by mapping voice
commands to commands in an existing GUI interface, enabling
speech-based access to contents in Wikipedia [55], email [64],
and in-vehicle information applications [46]. These papers demon-
strated many advantages of voice interfaces, such as high efficiency
[55] and support for various situations [46, 55]. Some prior work
has shown that this approach can lead to poor usability, because
it is challenging for voice interfaces to present complex informa-
tion (such as long lists) which can occur in GUIs [55, 64]. AutoVCI
avoids this problem since it is focused on executing user commands,
and not on verbally presenting GUI contents. Verbal command
understanding is the key challenge that all voice interfaces must
address. For example, SpeechActs [64] searched keywords in the
commands to recognize the intentions. However, the performance
of this method was minimal. AutoVCI aims at understanding user
commands accurately at a low cost.

3 A USE CASE SCENARIO
In this section, we use an example to illustrate how to generate a
VCI via AutoVCI and how the generated VCI is used. This exam-
ple demonstrates how the interfaces generated by AutoVCI could
improve accessibility, and is one of the many possible use cases.

Alice, as a lay person without any programming background,
generated a VCI through AutoVCI to improve accessibility for the
elderly. The generated VCI only requires voice input and output,
and it can be used in many applicable scenarios of voice interaction.
Alice’s parents are in their 70s and have difficulties using their
smartphones. Voice assistants would be helpful, but the existing
ones only support a small percentage of smartphone tasks. For
example, making a video call with Alice using Facebook Messenger,
which Google Assistant or Siri is not supported. Alice decided to
create a VCI to support frequent tasks for her parents. She recorded
the operation sequences for those tasks, including making a video
call in Messenger, as shown in Figure 2. The operation sequences

CHI ’22, April 30 – May 6 2022, New Orleans, LA Lihang Pan, Chun Yu, JiaHui Li, Tian Huang, Xiaojun Bi, and Yuanchun Shi

were uploaded to our server, and AutoVCI automatically generated operation element further contains information about its location,
a VCI. size, text, description, and child elements.

Alice shared the generated VCI with her husband. He activated We provide a tool to facilitate designers to collect the sequences,
the VCI and gave a verbal command, Video Call Mum. The newly with which they only need to carry out the tasks in the GUI man-
generated VCI could not understand the command and started an ually. The data collection tool records the operation sequences
additional dialogue asking whether the operation sequence con- and uploads them to the server. Data recording starts after the
tainedWhatsapp and Video Call, as shown in Figure 3(A). It then VCI designer clicks the floating button and ends when clicking it
understood the command according to the answers (Figure 3(A-3) & again. The tool creates a transparent floating window covering the
Figure 3(A-5)). After the confirmation from the user (Figure 3(A-6)), original application window to intercept MotionEvents[5]. When
the VCI simulated touch events on the GUI and automated the task. encountering a MotionEvent, AutoVCI infers the operation element

Alice’s parents installed the VCI and gave the command Send and type from the event attributes, uses Android’s Accessibility
a video call to Alice. The VCI could understand the command di- Service[2] to record the GUI layouts and uses MediaProjection[4] to
rectly as it had already accumulated semantics from the dialogue obtain the screenshots. The recorded layout and screenshot present
with their son-in-law. As shown in Figure 3(B), the VCI only asked the state before the recorded operation as well as the resulting state
for confirmation before carrying out the task. Moreover, the VCI after the last operation. After logging all data, the tool simulates
learned semantics from the simplified dialogue. Similar commands the intercepted event back to the GUI. The tool saves the sequences
like Send a video call to Coral can be executed directly without any in JSON format and uploads them to AutoVCI. Designers can check
extra interactions in the future (Figure 3(C)). and edit the sequences on a website if necessary. For example, they

can manually delete or replace private data, as discussed in section
4 THE DESIGN OF AUTOVCI 7.3.

With AutoVCI, anyone can generate voice interfaces withoutWe proposed three design goals: 1) a designer can build a VCI programming or gathering a data set to train a recognizer for thesupporting any GUI tasks with little effort; 2) user commands can commands. The small amount of data required is very intuitive andbe understood and executed accurately; 3) the interaction burden easy to obtain [38]. AutoVCI significantly reduces the difficultiesfor end-users is low. and workload of voice interface construction and encourages VCIAutoVCI contains four phases: VCI generation, intention recog- designers to cover more smartphone tasks.nition, execution & parameter identification, and semantic accu-
mulation, as shown in Figure 4. During VCI generation, the VCI 4.1.2 Semantic Calculations. AutoVCI calculates the minimum se-
designer only provides operation sequences for the supported GUI mantics required for command understanding and execution during
tasks. AutoVCI calculates the minimum semantic metadata with the VCI generation: parametric operations and semantic vectors.
which the constructed VCI can recognize user intentions and fill in The VCI generation finishes after the calculations, and end-users
parameters. When the end-user gives a verbal command, the VCI can give verbal commands to trigger tasks via the VCI.
first recognizes the intention. It then automates task execution by Parametric Operation Identification. AutoVCI identifies
simulating touch events and determines parameter values simulta- which operations contain parameters and the types of the param-
neously. The end-user may need to answer additional questions to eters. Parameters are the variable parts of the tasks. For example,
guarantee semantic understanding accuracy. We carefully designed in sending a message, the receiver and content (operation 1 & 2 in
the questions to be easy to answer and minimized their quantity Figure 5) vary for different people at different times. Smartphone
with an information entropy based theory. After finishing the exe- users determine the parameter values on their actual needs [34, 39],
cution, the VCI starts semantic accumulation, leveraging history rather than repeating those in the previous operation sequences.
semantic understanding results to update semantic metadata. In The last operation in Figure 5 (clicking send) does not change in
this way, it improves the semantic understanding ability and sim- any case, meaning that it does not contain parameters.
plifies or even avoids extra interactions for subsequent commands. We classified the parameters into two types. The first is the list
Table 1 shows an overview of task semantics used in AutoVCI. parameter. For example, the user selects one friend from the contact

list (operation 1 in Figure 5). The second is the text parameter, to
4.1 VCI Generation which the user can assign any value via text entry, such as operation

2 in Figure 5. The inherent difference between the two types is that4.1.1 Inputs: Operation Sequences. To generate a VCI, the designers
the GUI provides candidate values for while not forneed to (1) choose the tasks that they want to create a VCI for and list parameters

.(2) import corresponding operation sequences to AutoVCI. We do text parameters
We used a heuristic algorithm to identify and classify the pa-not discuss the former because it varies between circumstances and

rameters. If the operation enters text into an , it will beneeds. However, reducing VCI construction workload encourages EditText
recognized as containing a . Otherwise, it will bedesigners to cover more tasks. text parameter
recognized as containing a if satisfying all of theThe operation sequences indicate how the smartphone users list parameter
following conditions:carry out tasks via the touch screen, as shown in Figure 5. The

operations encode the execution logic and the task semantics, which (1) The operation element is inside a list.
AutoVCI extracts to construct a VCI automatically. An operation (2) The application developer does not specify a translation for
contains information about the operation element and the operation the element’s text to support multi-language. We look up the
type. The text-input operation also contains the input text value. An text in the strings.xml[6] extracted from the Android APK;

Automatically Generating and Improving VCI from Operation Sequences on Smartphones CHI ’22, April 30 – May 6 2022, New Orleans, LA

Figure 2: The operation sequence of the task making a video call.

Figure 3: The dialogues for the task in Figure 2. Filtration questions (please refer to section 4.2.3 for more details) are in purple
and confirmation questions (details in section 4.2.4) are in orange. Part A is the dialogue between the VCI and Alice’s husband.
Part B and C are the dialogues between the VCI and Alice’s parents, which are simplified compared with part A.

Figure 4: The architecture of AutoVCI. The solid arrows indicate how the commands are processed. The dashed arrows indicate
data flows among different modules.

(3) The text of the operation element is long, or there are few model. As shown in Figure 6, a task semantic vector is composed
results of searching the text with Google, or the text is a of a word vector, a sentence vector, and a Bag-of-Words (BOW)
named entity (name of people or institutes, number, time, [66] vector. The word vector summarizes the semantics of the texts,
etc.) while the sentence vector describes the relationships among the

texts. The BOW vector explicitly indicates the words existing in theThe designer can correct the results manually if the algorithm
operation sequence, bridging the gap between the sequence and themakes any mistake.
user commands with the common terms. The semantic vectors areSemantic Vector Calculation. AutoVCI calculates a semantic

1 used to calculate the similarities between tasks and user commands,vector for each task. It extracts all texts from non-parametric
as discussed in 4.2.2.operations and calculates the vectors using a pre-trained BERT[21]

1for elements without texts, such as icons, we use content descriptions [3] instead.

CHI ’22, April 30 – May 6 2022, New Orleans, LA Lihang Pan, Chun Yu, JiaHui Li, Tian Huang, Xiaojun Bi, and Yuanchun Shi

Table 1: Semantics for the task starting a video call with someone.

Name Explanation & Example Calculated in Used in
How to carry out the task in the GUI
1. Launch Messenger 2. Click People

3. Click Contact 4. Click Chai

VCI Generation (4.1.2)
Result Confirmation (4.2.4)

Operation Sequence 5. Click Video Call VCI Inputs (4.1.1) Task Execution (4.3.1)
Variable parts in the sequence

4. Click Chai
Parametric Operations =⇒ List Parameter Operation Sequence (4.1.2) Parameter Identification (4.3.2)

A vector calculated from the texts in the sequence
Messenger - People - Contact - Video Call Operation Sequence (4.1.2)

Semantic Vector =⇒ Semantic Accumulation (4.4.2) Similarity Calculation (4.2.2)
A vector calculated from the words in the command

Video call to Lee Similarity Calculation (4.2.2)
Command Vector =⇒ User Commands Result Confirmation (4.2.4)

A vector indicating words in the sequence
(Messenger, People, Contact, Video Call): 1

BOW Embedding others: 0 Operation Sequence (4.2.3) Intention Filtration (4.2.3)
Extra questions and answers Filtration Questions (4.2.3)

Q: Do you need to click Voice Call? Confirmation Questions (4.2.4)
Extra Q&A A: Yes. End-users Parameter Questions (4.3.2)

Contents in user devices when executing the task

Run-time GUI End-users’ Devices Parameter Identification (4.3.2)
Regular expressions for the commands of the task Template Matching (4.2.1)

Templates Video call to <> Semantic Accumulation (4.4.1) Result Confirmation (4.2.4)
A vector calculated from the words in the template

Video call to <> Result Confirmation (4.2.4)
Template Embedding =⇒ Semantic Accumulation (4.4.2) Semantic Accumulation (4.4.2)

Figure 5: The operation sequence of the task sending message in Facebook Messenger. The operations in green (1: selecting
receiver; 2 editing message contents) contain parameters, meaning that they can be different during actual execution. The
operation elements are shaded in grey.

4.1.3 The Generated VCI. The generated VCI is composed of two dialogue contents and shortcuts for frequent utterances, as shown
components: the remote server and the VCI application on the in Figure 7. We implemented the GUI with a floating window cov-
smartphone. The server manages all application instances and ering the original applications (e.g., Facebook Messenger); hence,
distributes task semantics through HTTP, including operation se- the users cannot get any visual feedback from the original apps.
quences, parametric operations, semantic vectors, templates, and However, the generated VCI can still invoke operation system APIs
template embeddings. Other semantics in Table 1 are calculated by to access the contents of original applications [2, 34], which are
the VCI applications during run-time. utilized during parameter identification (4.3.2). The dialogue GUI

The VCI application utilizes third-party Automatic Speech Recog- is not necessary as the VCI provides voice feedback, and all the
nition (ASR) and Text-To-Speech (TTS) services as the input and buttons have alternative verbal commands. Users can interact with
output channels. It uses the Android accessibility service API to the VCI hands-freely and eyes-freely.
obtain run-time interface layouts and simulate interaction events
during task execution. We designed a dialogue GUI containing the

Automatically Generating and Improving VCI from Operation Sequences on Smartphones CHI ’22, April 30 – May 6 2022, New Orleans, LA

Figure 6: Semantic vector calculation for the task making a video call with someone. The detailed operation sequence of the
task is shown in Figure 2. The VCI calculates the semantic embeddings of user commands (4.2.2) and templates (4.4.2) in the
same way.

Figure 7: The dialogue GUI, which appears on the devices
when users interact with the VCI.

4.2 Intention Recognition
In this section, we will introduce how the generated VCI determines
user intention, i.e., the target task that the user wants to carry out
after the verbal command.

4.2.1 Template Matching. The VCI tries to match the command
with all templates. If any template matches the command success-
fully, the VCI determines user intention and parameter values and
starts task execution. Instead of being provided by the VCI designer,
the templates are accumulated from interaction history and are
inadequate when the number of VCI users is limited. If none of the
templates matches, the VCI calculates and starts a minimized Q&A
dialogue.

4.2.2 Similarity Calculation. The VCI calculates the semantic sim-
ilarities between the command and all supported tasks and con-
structs a candidate task set. The VCI converts the command into a
vector, using the same algorithm and pre-trained model as calculat-
ing the task vectors (4.1.2)2. The words in the operation sequences
are the task descriptions from the application developers, while
those in the command are the description from the user. As a re-
sult, the command vector is comparable with the task vectors. It
then calculates the cosine similarities [61] and takes the zero-mean
normalization results as the final similarity scores. The similarity
score of the i-th task is calculated as Similarity Scorei = (xi − x̄)/σ
. xi denotes the cosine of the angle between the i-th task and the
command. x̄ and σ denote the average and standard deviation of
all cosines, respectively. As a result, the average and standard devi-
ation of all similarity scores are 0 and 1. Tasks with positive scores
are added to the candidate set, as shown in Table 2.

Specially, tasks with scores greater than 2, i.e., exceeding the
average by two standard deviations, will skip the intention filtration
(4.2.3) and jump to the result confirmation (4.2.4) directly to simplify
the dialogues.

4.2.3 Intention Filtration. The VCI asks multiple yes-no questions
based on bag-of-words (BOW) features and distinguishes the target
task from the candidate set according to the answers. This approach
is similar to the spoken parlor game 20 Questions [17]. As shown
in Table 3, all non-parametric texts in the operation sequences
are extracted, each text corresponding to a BOW feature. A task
takes the value of one in that feature only if the text appears in its
operation sequence.

2The command may contain parameter values, which will also be calculated into the
command vector. This is the only difference compared with calculating task vectors.

CHI ’22, April 30 – May 6 2022, New Orleans, LA Lihang Pan, Chun Yu, JiaHui Li, Tian Huang, Xiaojun Bi, and Yuanchun Shi

Table 2: An example of candidate set for the command Start a voice meeting with Lee. The texts in bold are parameters

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

Text in Op1 whatsapp messenger whatsapp messenger amazon whatsapp
Text in Op2 chat people chat people voice input chat
Text in Op3 Alice contact Carol contact - Eve
Text in Op4 Hello Bob voice call Chai - contact info
Text in Op5 send Hi - voice call - clear chat
Text in Op6 - send - - - -

Similarity Score 1.510 1.085 1.879 1.794 0.885 0.296

Table 3: BOW Features of tasks in Table 2

BOW Feature Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

whatsapp 1 0 1 0 0 1
messenger 0 1 0 1 0 0
amazon 0 0 0 0 1 0
chat 1 0 1 0 0 1
send 1 1 0 0 0 0
people 0 1 0 1 0 0
contact 0 1 0 1 0 0
voice call 0 0 1 1 0 0
voice input 0 0 0 0 1 0
contact info 0 0 0 0 0 1
clear chat 0 0 0 0 0 1

In each question, the VCI utilizes a BOW feature to ask whether Tasks with higher similarity scores are closer to the root, meaning
the target task contains a specific operation, such as the purple a smaller number of filtration questions.
questions (2 and 4) in Figure 8, and eliminates tasks that are conflict Intention filtration guarantees accurate semantic understand-
with the answer. We call this kind of questions filtration questions. ing no matter how difficult and complex the commands are. The
Since values of all BOW features are zero or one, the user only mechanism is essential though it is not frequently used since the
needs to answer yes or no, which ensures that no additional se- BERT-based semantic embedding is accurate and the similarity
mantic understanding failures will be introduced [35, 37]. Users scores of the targets are greater than two in most cases.
can also reply I don’t know, in which case the VCI will remove the
corresponding BOW feature and restart the Q&A. The user can an- 4.2.4 Result Confirmation. The VCI asks explicitly whether the
swer filtration questions based on task semantics and smartphone user wants to trigger the identified task during the result confirma-
experiences with a low cognitive burden. tion. The confirmation question contains a detailed task description.

The VCI constructs a weighted decision tree in the BOW space We proposed two mechanisms to describe the task.
to determine the best order of features with which the number of If any templates of the same task has already been recorded
questions is minimized. It treats the candidate tasks as the samples during semantic accumulation (4.4.1), the VCI describes the task
and the similarity scores as the weights. The decision tree construc- with that template, such as the orange question in Figure 8(6).
tion algorithm, ID3 [42], segments the samples recursively using We choose the most similar template if multiple templates have
features with the greatest information entropy gain and generates been accumulated. The similarity is defined as the cosine distance
a small tree based on a greedy algorithm. Hence the expected depth between the command vector and the template embedding. To
of the tree, i.e., the number of filtration questions, is minimized. protect the users’ privacy, we fill in the parameters with those used
Figure 8 shows an example of the decision tree, where each internal by the designer instead of the previous users. For example, the
node (in green) corresponds to a feature and each leaf node (in blue) template is Video call <> (Figure 3-A1) and the parameter value
to a candidate task. used by the designer is Chai (Figure 2, operation 3). Hence, the task

The Q&A is a process of interaction-controlled tree traversal description is Video call Chai (Figure 3-B2).
with a cursor starting from the root and ending when reaching a The VCI describes the operations sequentially (3-A6) if users
leaf. When the cursor comes to an internal node, the VCI asks a answer I don’t know to the confirmation question from the tem-
filtration question and moves to a child node based on the answer. plates, or the VCI has not accumulated any template for the task.
When it reaches a leaf node, the VCI determines the target task. For non-parametric operations, the VCI describes the operation

types and elements. For operations containing parameters, the VCI

Automatically Generating and Improving VCI from Operation Sequences on Smartphones CHI ’22, April 30 – May 6 2022, New Orleans, LA

Figure 8: The decision tree constructed from Table 3 and an extra dialogue corresponding to the red arrows. The filtration
questions are marked in purple and the confirmation question is marked in orange.

only describes the operation types as the concrete parameter values
have not been determined yet.

Intention recognition finishes if the user answers yes to the
confirmation question, and the next is run-time parameter identi-
fication. The described task may not be the target, usually due to
inaccurate similarity scores or incorrect answers during the Q&A.
The VCI eliminates the rejected task and restarts the intention
recognition in this case.

4.3 Task Execution & Parameter Identification
In this section, we mainly discuss howwe identify parameter values
from the user command. The parameter identification is simultane-
ous with task execution so that the VCI can fully utilize semantics
from run-time GUI.

4.3.1 Task Execution. The VCI simulates touch events step-by-step
according to the operation sequence to automate the target task.
The critical problem is how to locate the operation elements in the
run-time GUI. For non-parametric operations, the VCI calculates
the similarities between the element in the operation sequence and
all elements in the run-time GUI and chooses the most similar one
as the next operation element. The similarity of a run-time GUI
element is calculated as follows:

(1) The initial similarity is 0.
(2) If the element shares the same text or content description

with that in the operation sequence, its similarity increase
by 0.6. Note that most manipulable elements have a text or
a description according to accessibility regulations.

(3) We split the smartphone screen into 4*4 blocks. If the element
locates in the same block as that in the operation sequence,
we add 0.3 to its similarity.

(4) If the aspect ratio difference between the element and that in
operation sequence is within 10%, we add 0.2 to its similarity.

For operations with parameters, the VCI identifies parameters
from the command to select the correct items from the lists (for list
parameters) or to determine the texts to input (for text parameters).

4.3.2 Parameter Identification. The VCI identifies list parameters
by GUI parameter searching and text parameters by VCI parameter
questioning. Unlike approaches based entirely on NLP algorithms,
the VCI does not determine the parameter values until they are
used during the execution. As a result, we can utilize insights from
run-time GUI to realize parameter identification.

GUI Parameter Searching. For list parameters, the values are
determined by text-matching between the commands and run-time
GUI elements, since the GUI contains optional values for the list
parameters, as shown in Figure 9. Because the sizes of mobile inter-
faces are always limited, the VCI tries to scroll the list to get more
items. The text-matching-based parameter identification makes
full use of run-time GUI without any additional user interactions.
The GUI parameter searching may fail to match or match multiple
candidates, in which case the VCI will ask parameter questions as
discussed below.

Figure 9: An example of parameter searching. The text Lee in
Start a video meeting with Lee is identified as the parameter.

VCI Parameter Questioning. For text parameters and list pa-
rameters with GUI searching failures, the VCI proposes parameter

CHI ’22, April 30 – May 6 2022, New Orleans, LA Lihang Pan, Chun Yu, JiaHui Li, Tian Huang, Xiaojun Bi, and Yuanchun Shi

questions, the answers to which are the parameter values. Param-
eter values may not be present in the commands, and users can
supplement the original commands [45] by answering parameter
questions.

The parameter question is composed of information from the
last and the next operation, as shown in Figure 10. Given that there
are strong semantic relationships between operations and their
results, the VCI describes the last operation to assist the user in
identifying the current page (the result of the last operation) where
the parameter is used. Another essential information is in which
list to select or in which edit box to input text. The VCI describes
the next element with its label, i.e., the text around or inside it [14].
For instance, in Figure 10, the text box to be edited in run-time
GUI has a label Flying to. Some GUI elements do not have labels,
usually because the absence does not cause confusion and the GUI
developers eliminated the labels. In this case, the VCI only describes
the type of the next element.

Figure 10: An example parameter question. The answer, JFK
is identified as the parameter.

4.4 Semantic Accumulation
To reduce extra dialogues for subsequent commands, the VCI gen-
erates templates and updates task semantic vectors after executing
a command successfully. The semantics are shared among all VCI
users to accelerate the accumulation. This recurrent strategy grad-
ually improves the semantic understanding ability and simplifies
or even avoids extra dialogues.

4.4.1 Template Generation. The VCI transforms the command into
a template by eliminating parameters. For example in Figure 11(A),
LAX are removed from the command; hence the template is Search
a hotel near <>. The templates are used to match subsequent com-
mands (Figure 11(C-a)) and simplify confirmation questions, which
have been discussed in 4.2.1 and 4.2.4, respectively.

4.4.2 Template Embedding. The VCI also calculates the template
embedding and updates the semantic vector of the task. The VCI
transforms the generated template into a vector with the same strat-
egy in Figure 6. It then adds the semantic vector and the template
embedding together, the result of which is regarded as the new
semantic vector. The target task can get higher similarity scores
based on the updated embedding, which helps simplify or avoid
intention filtration, as shown in Figure 11(C-b). Besides, the VCI
also proposes better confirmation question leveraging the template
embedding, as discussed in 4.2.4.

5 USER STUDY
The user study contained two phases. The first phase evaluated
whether the end-users could answer extra questions to automate
tasks with the generated VCI. In addition, it assessed AutoVCI’s
ability to map verbal commands to GUI tasks and the feasibility of
semantic accumulation. The evaluations are generally focused on
the semantic understanding aspect of AutoVCI, rather than evalu-
ating the VCIs produced by the approach from a user experience
perspective. In the meantime, we received few feedback on the
user interface, which will be further enhanced in future work as
needed. The second phase evaluated the semantic accumulation
with a larger scale of data.

5.1 VCI Generation
We used AutoVCI to generate a VCI for the user study. Table 4
shows the applications and tasks supported by the generated VCI.
Most of the tasks were not supported by common commercial voice
interfaces such as Siri and Google Assistant. Tasks on WeChat were
used in the tutorial, while the others were for the formal experiment.
It took only 31 minutes to generate the VCI, including 10 minutes
to collect operation sequences (around 13.41 seconds per task) and
21 minutes to inspect and correct errors. All 45 tasks contained
206 operations, and 3 of them were incorrectly identified (accuracy
of parametric operation identification: 98.5%). All 3 misidentified
operations were entering function names in a search box, and were
manually corrected.

5.2 Phase 1: Evaluating the Semantic
Understanding

5.2.1 Procedures. We first introduced the VCI to the participant,
and showed an example interaction using a task on WeChat. The
participant then tried the other four tasks onWeChat with the assis-
tance of the study moderator. To fully demonstrate the interaction
details, we disabled the semantic accumulation module during the
tutorials.

In the formal experiment, each participant finished 40 different
tasks in random order via the VCI. The tasks were displayed as
screenshots of the operation sequences. We did not provide natural
language descriptions to avoid users simply parroting the given
words, and to increase the variety of user commands. The screen-
shots disappeared after users activated the VCI. We also provided
several parameter candidates to avoid failures due to illegal values.
Those values varied for every participant to prevent any side-effects
to semantic understanding. Users could interrupt the voice feed-
back and give answers in advance.When encountering any problem
preventing the task from continuing, the participant moved on to
the next task. The VCI accumulated semantics automatically after
every successful task. The experiment ended with a questionnaire
to collect subjective feedback. The participants sequentially com-
pleted the study, and the VCI accumulated semantics from each
experiment.

We strictly restricted the retries of tasks. Users might give wrong
commands or responses, which would be attributed to carelessness
if the users discovered the errors on their own before semantic
understanding failures happened. In this case, users could retry the
task. Otherwise, the answers to the confirmation questions would

Automatically Generating and Improving VCI from Operation Sequences on Smartphones CHI ’22, April 30 – May 6 2022, New Orleans, LA

Figure 11: An example of semantic accumulation. A: the dialogue during cold-start; B: accumulated semantics, including a
new command template and an update to the task semantic vector; C: the accumulation simplifies subsequent interactions. It
also simplifies confirmation questions, which has been discussed in 4.2.4.

Table 4: An overview of the applications and tasks supported in the user study

Steps # list parameters # text parameters # Tasks Supported by
Application Category # Tasks per Task per Task per Task Siri/Google Assistant
WeChat Message 5 4.80 (sd=1.17) 0.80 (sd=0.4) 0.40 (sd=0.49) 1/0
DingTalk Message 5 5.60 (sd=1.74) 1.60 (sd=1.36) 0.40 (sd=0.49) 0/0
Taobao Shopping 5 5.00 (sd=0.89) 0.60 (sd=0.49) 0.40 (sd=0.49) 0/0
Alipay Pay 3 6.00 (sd=0.82) 1.00 (sd=0.82) 0.33 (sd=0.47) 0/0
MeiTuan Delivery 3 5.33 (sd=0.47) 0.00 (sd=0.00) 1.00 (sd=0.00) 0/0

NetEase Music Music 3 4.33 (sd=0.94) 0.67 (sd=0.47) 0.33 (sd=0.47) 0/0
Amap Map 3 4.00 (sd=2.16) 0.00 (sd=0.00) 0.67 (sd=0.47) 1/0
Wemeet Meeting 4 4.00 (sd=1.22) 0.50 (sd=0.50) 0.25 (sd=0.43) 0/0
Keep Fitness 5 4.00 (sd=1.26) 0.20 (sd=0.40) 0.60 (sd=0.49) 1/0

System Tools Tools 5 2.4 (sd=1.02) 0.00 (sd=0.00) 1.00 (sd=0.89) 3/2
Settings System 4 5.50 (sd=0.87) 1.00 (sd=0.71) 0.00 (sd=0.00) 0/0

All 11 45 4.58 (sd=1.58) 0.60 (sd=0.80) 0.49 (sd=0.58) 6/2

be No, which was regarded as the result of VCI defects, and users increase in user proficiency (learning effects), as all participants
should abandon the task. were new to the VCI.

Reasons for Errors. Four failures were caused by users giving
5.2.2 Participants. We recruited 16 users (12 males and 4 females, incorrect answers, probably due to oversights or failures to answer
aged 20-32). They were all familiar with the applications used in the the questions. This failure decreased with semantic accumulation,
study, and had experiences of using smartphone voice interfaces. as users needed to answer fewer questions. Intention filtration fail-
5.2.3 Results. We will demonstrate our results on the following ures led to 5 (0.78%) failed commands, where participants answered
six aspects. all questions correctly, but the VCI could not filter out the correct

630 (98.4%) out of the total 640 commands were tasks. The VCI did not add the appropriate tasks to the candidateSuccess Rate.
successfully understood and executed. As shown in Figure 12, the set due to the weak semantic understanding ability during the cold-
success rate was 95% for the first user, and reached 100% for the start. The remaining failure was due to misunderstanding. The
eleventh user and all remaining users. A Mann-Kendall Test [26] third participant misunderstood the task starting a fitness course

showed an upward trend (p < 0.005), which should be attributed as searching a fitness course, and the given command happened to
to the increased semantic understanding ability rather than the

CHI ’22, April 30 – May 6 2022, New Orleans, LA Lihang Pan, Chun Yu, JiaHui Li, Tian Huang, Xiaojun Bi, and Yuanchun Shi

Figure 12: Success rate for each participant. As the user in-
dex increased, the VCI accumulated more semantics and im-
proved its command understanding ability.

match a template of searching for takeaways from another applica-
tion.

Overall Statistics of Extra Dialogues. Extra dialogues are
composed of three types of questions: filtration questions (4.2.3),
confirmation questions (4.2.4) and parameter questions (4.3.2). The
vast majority were confirmation questions (63.6%), while filtration
questions were only a small proportion (6.6%). In terms of questions
to understand a single command, 17.8% of the commands did not re-
quire any questions. 81.8% of the commands required confirmation
questions, nearly half of which also required parameter questions.
Only 2.2% of commands required filtration questions.

TheDecrease in Extra Dialogues. Semantic accumulation can
reduce dialogue rounds, i.e., the number of extra questions. Figure
13(a) demonstrates the number of extra questions for each partic-
ipant. There was a decrease in all three kinds of questions. The
average number of questions per command dropped from 2.1 for
the first user to a minimum of 0.7 (the fifteenth user). Figure 13(b)
shows the distribution of extra dialogue rounds. For the last par-
ticipant, more than 40% of commands were executed directly, and
80% of commands required at most one-round extra dialogues.

Time Efficiency. As the extra dialogue rounds were reduced, a
decrease also occurred in the average interaction time, as shown in
Figure 14.We spent an average of 13.14 seconds collecting operation
sequences for each task, indicating that the generated VCI was
always more efficient than touch-based interaction.

Subjective Feedback. The results of the 7-point Likert scale
are displayed in Table 5. In addition to positive feedback, partici-
pants also commented that the VCI was promising since it could
help accomplish many useful tasks that the existing VCIs do not
support. Even though some users mentioned the VCI was more
complicated than the existing ones, they felt the complexity was
acceptable. Table 7 (in the Appendix) shows the detailed scores
from each participant, and there were no clear trends among dif-
ferent users. Subjective ratings were strongly influenced by users’
personal preferences and could not be compared among individuals.
For example, User 11 and User 13 did not like voice interaction and
therefore were reluctant to use the generated VCI. Future work can

(a)

(b)

Figure 13: (a) Numbers of three types of questions answered
by different users. (b) Distribution of different extra dia-
logue rounds for different people.
compare the subjective ratings from a group to better reveal the
trend.

Table 5: Subjective feedback.

Statements Results
You can understand the questions easily 6.06 (sd=1.14)
You can answer the questions easily 6.13 (sd=1.05)
You can trigger the functions quickly 6.13 (sd=1.11)

The generated VCI has high intelligence 5.25 (sd=0.75)
The experience is good 5.56 (sd=0.70)

The complicatedness of the VCI is acceptable 5.56 (sd=1.17)
You are willing to use our VCI 6.00 (sd=1.62)

We further discussed with participants why they could answer
questions easily (6.13 in 7, as shown in Table 5). The confirmation
questions that made up the vast majority were easy to answer be-
cause there were obvious semantic similarities in the instructions
for the same task (Start a voice meeting with Lee vs. Voice call to

Automatically Generating and Improving VCI from Operation Sequences on Smartphones CHI ’22, April 30 – May 6 2022, New Orleans, LA

• Ratio of template match: the percentage of commands which
was matched by templates;

• Rounds of extra dialogues per command: the average number
of questions to understand a command.

The results proved that the command understanding ability was
continuously improving with a larger scale of semantic accumu-
lation. We calculated the average metrics in a window of 64. The
window slid through the collected chronological command list
to better reveal the trend, as shown in Figure 15(a). Figure 15(b)
showed the results in each window. About 75% of commands could
be matched by templates in the last window, and each command
only introduced a 0.4-round extra dialogue on average. The former
metric improved by 5.7 times while the latter decreased by 71.7%
compared with those in the first window.

Figure 14: Average interaction time pre task. Error bar indi-
cates one standard error. 6 OFFLINE EVALUATIONS

We simulated the process of the VCI understanding user commands
and evaluated critical metrics to reveal the performances of the

Chai in Figure 8). If the VCI described operations sequentially (Fig- different parts of the VCI. We conducted the offline evaluation using
ure 3-A), users could judge based on keywords in the descriptions the 640 commands with target task annotations collected from the
rather than memorizing the entire operation sequence in advance. first phase of the user study.
Parameter questions were also easy to answer. Users could figure
out the parameters of a given task according to its inherent seman- 6.1 Command Understanding Ability without
tics without any hints from GUI or VCI. They only judged which any Semantic Accumulation
parameter was being asked. An important clue was the type of
parameters since our VCI almost only asked questions for 6.1.1 Simulation Procedure. The VCI ran as normal during thetext pa-

simulation, but we deactivated the semantic accumulation module.rameters. Filtration questions were the least frequent. Some users
We assumed that users could answer all extra questions correctly.(P3, P5) did have an accurate memory of the application contents.
Parameter identification depended entirely on text matching orHowever, most of the participants gave responses depending on the
additional parameter questions and could not reflect the semantictask semantics. Taking the task starting a video call as an example,
understanding ability. Therefore, it was not involved in the simula-when asked whether to click Video Call, users might be confused
tion.between Video Call and Video Chat. However, they still answered

We input all 640 instructions into the VCI and calculated theyes based on the semantics.
following metrics to measure its understanding ability: 1) top-n
accuracy, which refers to the percentage of commands whose target5.3 Phase 2: A Larger-Scale Online Test
task is within the top-n most similar tasks; 2) similarity scores of

The goal of phase 2 was to evaluate the semantic accumulation target tasks; 3) depth of target tasks in the weighted decision trees.
ability with more users and data. The VCI only learned from 16
participants in the first phase. To increase the number of times a 6.1.2 Simulation Results. We will introduce our results in the fol-
single task being triggered and accelerate semantic accumulation, lowing two aspects.
we randomly selected eight tasks for this phase, as shown in Table Similarities between commands and tasks. The precision
6. and recall of top-1 similarity were 0.801 and 0.772. Figure 16(a)

shows the confusion matrix. The command intention classification5.3.1 Procedure. We constructed a VCI supporting all tasks in
worked well in most cases, indicating that the algorithm in Figure 6Table 4. The participants watched a tutorial video first and finished
can effectively model the semantics of both the commands and thethe eight tasks online in random order. All the interaction details
operation sequences . However, the accuracy of very few VCI taskswere the same as those in phase 1 except the task execution, which
(Task 7, 33, 39) was quite low, indicating that extra dialogues werewas not relevant to semantic accumulation and was simulated in
necessary for accurate semantic understanding during cold-start.the browser. The experiment for each participant lasted about 10
Figure 16(b) show how accuracy increased asminutes. n increased.

The target tasks of most commands (90.63%) had similarity scores
5.3.2 Results. We recruited 67 users, who generated a total of 536 greater than or equal to 2, as shown in Figure 16(c). The VCI could
commands and corresponding dialogues. There was significant determine intentions by confirmation questions for those com-
degradation in the quality of the data collected online. We deleted mands. Multi-round confirmations were necessary if the target
24 (4.48%) failed tasks, mainly because the commands were irrele- tasks were not the most similar ones. The percentage of commands
vant to the given tasks. Two primary metrics measuring semantic whose target tasks’ similarity scores were less than 0was only 1.88%.
understanding ability were proposed: The VCI could not understand these commands without semantic

CHI ’22, April 30 – May 6 2022, New Orleans, LA Lihang Pan, Chun Yu, JiaHui Li, Tian Huang, Xiaojun Bi, and Yuanchun Shi

Table 6: Information about tasks in Phase 2.

Index Description # Operations # List Parameters # Text Parameters Successfully
1 Visit Online Store 5 1 0 58
2 Rename Chatting Group 5 1 1 64
3 Join Online Meeting 3 0 1 67
4 Start Countdown 2 1 0 66
5 Take a Picture 2 0 0 67
6 Add Cellphone Credit 6 2 0 65
7 Clear Shopping Cart 6 0 0 67
8 Join Fans Club 5 0 1 58

SUM 34 5 3 512

Triggered

(a)

(b) (c)

Figure 15: (a) We calculated metrics in the sliding window to reveal the trend; (b) The ratio of template match increased as
window index increased; (c) The rounds of extra dialogues decreased as window index increased. The error bar indicates one
standard error.
accumulation. Other commands (orange in Figure 16(c)) would go 6.2 Improvement of Command Understanding
through filtration based on weighted decision trees. Ability with Semantic Accumulation

Intention filtration based on weighted decision tree. We 6.2.1 Simulation Procedure. The simulated semantic accumulation
introduced two baselines: 1) the depth in the unweighted tree and was the same as that in the actual running times. A simulation
2) the similarity rank, simulating VCI proposing confirmation ques- session contained 16 epochs corresponding to the 16 participants in
tions sequentially. The VCI finished intention filtration with the the user study. Each epoch was composed of 40 commands of differ-
least extra dialogues via weighted decision tree, as shown in Figure ent target tasks. The VCI processed those commands sequentially
17. The decision trees could significantly reduce dialogue rounds and accumulated semantics after every command. It accumulated
compared with ranks. Weighted decision trees outperformed un- more data with the increase of the epoch index.
weighted ones, indicating that the similarity scores were accurate We calculated how the following metrics changed among differ-
even if the absolute values were insignificant (≤ 2). ent epochs to prove the improvement of semantic understanding

ability: 1) ratio of template match; 2) top-1 similarity accuracy;
3) the number of commands that went through filtration; 4) the

Automatically Generating and Improving VCI from Operation Sequences on Smartphones CHI ’22, April 30 – May 6 2022, New Orleans, LA

(a)

(b)

(c)

Figure 16: (a) Confusionmatrix of top-1 similarity; (b) Top-n
similarity accuracy; (c) Similarity scores of target tasks.

number of different kinds of questions. We did not count parameter
questions as these questions were reduced due to template match,
which was measured by the first metric.

Figure 17: Number of extra dialogue rounds for three differ-
ent intention filtration approaches. The error bar indicates
one standard error.

We shuffled the commands 100 times and calculated the average
results for the same epoch to avoid random noise, as the command
order affects semantic accumulation. As shown in Figure 18, we
sorted the commands by user index and task index. We first shuffled
the commands with the same task index and then with the same
epoch index. The commands were fed into the VCI according to the
permutation.

6.2.2 Simulation Results.
Success Rate. The success rates for the first and second epoch

were 98.50% and 99.95%, respectively. The success rate was always
100% after the second epoch. These results also proved that the
generated VCI could understand any reasonable commands with a
little accumulation.

Different parts of the generated VCI. Figure 20 indicates how
different metrics changed with semantic accumulation. The ratio
of template match (1) was improving steadily, which reached more
than 40% in the last epoch. Top-1 similarity accuracy (2) converged
to 1 quickly, which proved the effectiveness of the function vec-
tor update strategy. Semantic accumulation also simplified extra
interactions. The numbers of filtration questions (4), confirmation
questions (5) and total questions (6) decreased by 98.4%, 53.4% and
64.7% from the first epoch to the last one, respectively. The average
number of confirmation questions and total questions per extra
conversation 3 also decreased. The average number of questions
during the filtration process was fluctuating, mainly due to the
small number of commands that went through filtration (3).

Different accumulation strategies. We also compared differ-
ent semantic accumulation strategies while other VCI modules
remained the same. Compared with only updating semantic repre-
sentation or only accumulating templates, our VCI achieved a better
performance combining these two methods, as shown in Figure
19. The combination brought a further 43.6% reduction comparing
with the two separated methods in the last epoch. This remark-
able out-performance was because semantic vectors and command
templates were complementary in nature. Templates could reduce
extra dialogues to 0, but not those of unmatched instructions. In
contrast, updates of vector representations could reduce the extra
dialogue of all commands but only reduce to at least one round.

3not per command, since many commands did not require extra conversations.

CHI ’22, April 30 – May 6 2022, New Orleans, LA Lihang Pan, Chun Yu, JiaHui Li, Tian Huang, Xiaojun Bi, and Yuanchun Shi

Figure 18: We shuffled the commands to avoid the effect of random noise. Each block represents a command. This process
repeated 100 times during the simulation.

Another contribution is the mechanism to generate task-oriented
VCIs for GUI tasks automatically. AutoVCI makes full use of the task
semantics encoded in the GUI and extra dialogues to enable VCI
generation without any corpus and programming. Although imple-
mented in the Android platform, AutoVCI can be directly migrated
to other GUI platforms because all GUIs share a similar design
paradigm, and AutoVCI can extract task semantics in the same way.
AutoVCI can be used on non-GUI platforms (e.g., smart speakers).
The VCI designers only need to address the two problems caused by
lacking texts in non-GUI platforms: 1) how to compute the initial
task semantic vector, and 2) how to formulate easy-to-understand
filtration and confirmation questions. This automatic generation
mechanism can be useful for various stakeholders. The application
developer can integrate a VCI quickly into their software, while
the voice assistant designer can deploy a VCI supporting many
third-party applications. End-users can also create voice shortcuts
for frequent tasks. The generated VCIs are suitable in all existing
VCIs’ scenarios as they only require voice input and feedback.

Figure 19: Performances of different semantic accumulation
strategies. Error bar indicates one standard error. 7.2 Why not a Designer Study

We did not conduct a study to evaluate whether the designers
could construct VCIs easily and quickly with AutoVCI because the
optimization is obvious compared with traditional approaches. The

7 DISCUSSION designers no longer collect corpus, label semantics, or train models.
7.1 Contribution to the Field of Voice Previous work [38] has already proved that the operation sequences

Interaction can be collected quickly with little effort.

Voice interaction is a hot topic in the human-computer interac- 7.3 Privacy Protectiontion community, and previous research has identified many chal-
lenges, such as speech recognition [55, 64], interaction naturalness Some participants expressed their concerns about privacy. The
[64], non-verbal features [64], interaction cognitive burden [46, 55], details of the conversations are not uploaded or shared among
discoverability [43], etc. AutoVCI mainly addresses the challenge users. Only semantic vectors and templates are stored in the cloud,
of command semantic understanding [55, 64]. We propose a self- where the users do not have direct access to. Even if someone
learning strategy that guarantees accurate comprehension of user accessed those data, they have no way to infer the original texts
commands without gathering training corpus for the command according to the vectors. The instruction templates do not contain
recognizer or programming. The voice interface combines task any parameters, and the remaining parts are prepositions or verbs,
semantics and a small number of extra dialogues to ensure cor- which do not contain any sensitive data.When describing tasks with
rect semantic understanding, and learns from dialogue contents previous instructions, we fill in the templates with the parameters
to improve the understanding ability of subsequent commands. used by the designer instead of using the original commands from
This strategy also significantly improves the learnability [19, 24] of earlier users. On the designer side, they can replace private content
the voice interface, and users are free to use the commands they during VCI generation to ensure their information security.
are used to instead of memorizing command patterns or parameter
lists. Our strategy can be applied to generate arbitrary task-oriented 8 LIMITATIONS & FUTUREWORK
VUIs, or can be integrated into existing VUIs such as database ac- Convergence rate. We did not explore the underlying factors
cessing [49], programming [37], and data visualization [22], as a that influence the speed of the semantic accumulation in this paper.
backup solution for unmanageable commands. Researchers can focus on the relationship among user habits, the

Automatically Generating and Improving VCI from Operation Sequences on Smartphones CHI ’22, April 30 – May 6 2022, New Orleans, LA

Figure 20: Different metrics (average results of 100 sessions) changed with semantic accumulation. The error bars indicate one
standard error. The dashed arrows indicate the figures’ positions in the flow. 1) Ratio of template match; 2) Top-1 accuracy;
3) Number of commands going through filtration. The red line indicates the ratio in all commands not matched by template;
4) Number of filtration questions. The red line indicates the average number of questions in a filtration process; 5) Number
of confirmation questions. The red line indicates the average number of confirmation questions in an extra conversation; 6)
Number of questions. The red line indicates the average number of questions in an extra conversation.

CHI ’22, April 30 – May 6 2022, New Orleans, LA Lihang Pan, Chun Yu, JiaHui Li, Tian Huang, Xiaojun Bi, and Yuanchun Shi

complexity of the operation sequences, different languages, and 9 CONCLUSION
semantic learning curves in the future. In this paper, we proposed AutoVCI, an automatic voice command

Reducing extra interactions.We can further reduce the num- interface (VCI) generation and improvement approach that facil-
ber of extra questions while maintaining a high success rate. Confir- itates designers to construct VCIs with smartphone operation se-
mation questions and parameter questions took up the vast majority. quences. The generated VCI commands leverages the run-time GUI
Some confirmations were unnecessary after the VCI accumulating and the hybrid semantics from the operation sequences to under-
enough semantics. The decrease of parameter questions was due stand and execute verbal commands. In the situation of ambiguity,
to templates, and no accumulated semantics were utilized if none it launches an extra Q&A dialogue to facilitate accurate command
of the templates matched. Future works can integrate more NLP understanding, and learns from the dialogue data to improve its
algorithms to reduce those questions. semantic understanding ability. The user study (N = 16) showed

Evaluating user experience. We did not focus on the user that the generated VCI worked well and was easy to use with a suc-
experience in this study, especially for non-lab scenarios. Outside cess rate of 98.3%. In addition, a larger scale online phase (N = 67)
the laboratory, user tolerance for extra dialogues may decrease, but further validated that the interaction burden of the user decreased
they tend to use similar instructions [13], which can enhance the as the VCI accumulated semantics - after the accumulation and
feasibility of semantic accumulation. Future work can focus more learning, more than 70% of commands could be understood directly,
on user experience in different scenarios. and the complementary dialogues were only 0.4 rounds on average.

In addition, AutoVCI may fail to map user commands to GUI Moreover, the offline evaluation demonstrated the feasibility of the
tasks in some cases. We propose possible solutions which the future semantic understanding strategy that combined NLP algorithms
work can apply to solve the problems. and interaction semantics encoded both in GUI and extra dialogues.

Execution failures caused by application updates. The ap- This strategy can be adapted to existing and future natural language
plication version updates may change the operation sequences, interaction systems. We hope this work can effectively bootstrap
resulting in execution failures. Both VCI designers and end-users new VCIs on smartphones and improve the semantic understanding
can provide new operation sequences after the updates. The remote ability of a variety of voice user interfaces.
server can maintain the mapping from the application versions to
the sequences. As a result, the new operation sequences need to be
provided only once and the application updates can be seamless ACKNOWLEDGMENTS
to all users. The task semantics and possible commands are not This work is supported by National Key R&D Program of China
affected by application updates, so the accumulated vectors and under Grant No. 2020AAA0105200, Beijing Academy of Artificial
templates are still usable for semantic understanding. The semantics Intelligence (BAAI), and the Natural Science Foundation of China
encoded in the new operation sequences can also be accumulated under Grant No. 62132010. Our work is also supported by Beijing
to the task semantic vectors. Key Lab of Networked Multimedia, the Institute for Guo Qiang,

Incorrect answers from users. Currently, incorrect answers Tsinghua University, Institute for Artificial Intelligence, Tsinghua
inevitably lead to inaccurate semantic understanding results. The University (THUAI). We would like to thank Zhilin Zhang for his
possible solutions can be divided into two aspects. On the one hand, great help in addressing presentation issues during the revise and
AutoVCI can integrate existing neural network techniques [38] to resubmit phase.
generate questions that are more natural and easier to understand.
On the other hand, AutoVCI can apply a probability model to pro-
cess user answers. In this case, a wrong answer will only reduce REFERENCES
the probability of a correct result rather than directly reject it. [1] James Allen, Nathanael Chambers, George Ferguson, Lucian Galescu, Hyuckchul

Jung, Mary Swift, and William Taysom. 2007. Plow: A collaborative task learningFiltration failures due to little semantic accumulation. As agent. In AAAI, Vol. 7. 1514–1519.
shown in Figure 16(c), 1.88% of instructions could not be correctly [2] Android. 2021. AccessibilityService | Android Developers. Retrieved August 27,
understood without semantic accumulation because their similarity 2021 from https://developer.android.com/reference/android/accessibilityservice/

AccessibilityService
scores were less than 0, and AutoVCI did not add them to the [3] Android. 2021. Make apps more accessible | Android Developers. Retrieved
candidate set. One possible solution is to extend the candidate set August 27, 2021 from https://developer.android.com/guide/topics/ui/accessibility/

to all tasks. However, this solution will cause users to answer many apps#describe-ui-element
[4] Android. 2021. MediaProjection | Android Developers. Retrieved August 27,

filtration questions. Usersmay prefer to terminate the conversations 2021 from https://developer.android.com/reference/android/media/projection/
early and modify their instructions. MediaProjection

Different tasks with the [5] Android. 2021. MotionEvent | Android Developers. Retrieved August 27, 2021Same templates for different tasks. from https://developer.android.com/reference/android/view/MotionEvent
same semantics may have the same templates. For example, both [6] Android. 2021. Support different languages and cultures | Android Developers.
Facebook Messenger and Whatsapp can support Retrieved August 27, 2021 from https://developer.android.com/training/basics/Send a video call to

supporting-devices/languages#CreateDirs
Alice. AutoVCI may search the application name in the commands [7] V. Antila, J. Polet, A. Lämsä, and J. Liikka. 2012. RoutineMaker: Towards end-
or propose extra questions for the target applications because it is user automation of daily routines using smartphones. In 2012 IEEE International

unlikely two tasks with the same semantics will appear in the same Conference on Pervasive Computing and Communications Workshops. 399–402.
https://doi.org/10.1109/PerComW.2012.6197519

application. In addition, AutoVCI can maintain the relationship [8] Vikas Ashok, Yevgen Borodin, Yury Puzis, and I. V. Ramakrishnan. 2015. Capti-
between parameter values and applications. For example, if AutoVCI Speak: A Speech-Enabled Web Screen Reader. In Proceedings of the 12th In-

has recorded that only appears in the contact of Facebook ternational Web for All Conference (Florence, Italy) (W4A ’15). AssociationAlice for Computing Machinery, New York, NY, USA, Article 22, 10 pages. https:
Messenger, Send a video call to Alice will no longer be ambiguous. //doi.org/10.1145/2745555.2746660

https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/guide/topics/ui/accessibility/apps#describe-ui-element
https://developer.android.com/guide/topics/ui/accessibility/apps#describe-ui-element
https://developer.android.com/reference/android/media/projection/MediaProjection
https://developer.android.com/reference/android/media/projection/MediaProjection
https://developer.android.com/reference/android/view/MotionEvent
https://developer.android.com/training/basics/supporting-devices/languages#CreateDirs
https://developer.android.com/training/basics/supporting-devices/languages#CreateDirs
https://doi.org/10.1109/PerComW.2012.6197519
https://doi.org/10.1145/2745555.2746660
https://doi.org/10.1145/2745555.2746660

Automatically Generating and Improving VCI from Operation Sequences on Smartphones CHI ’22, April 30 – May 6 2022, New Orleans, LA

[9] Vikas Ashok, Yury Puzis, Yevgen Borodin, and I.V. Ramakrishnan. 2017. Web [29] Jiepu Jiang, Wei Jeng, and Daqing He. 2013. How Do Users Respond to Voice
Screen Reading Automation Assistance Using Semantic Abstraction. In Proceed- Input Errors? Lexical and Phonetic Query Reformulation in Voice Search. In
ings of the 22nd International Conference on Intelligent User Interfaces (Limassol, Proceedings of the 36th International ACM SIGIR Conference on Research and
Cyprus) (IUI ’17). Association for Computing Machinery, New York, NY, USA, Development in Information Retrieval (Dublin, Ireland) (SIGIR ’13). Association for
407–418. https://doi.org/10.1145/3025171.3025229 Computing Machinery, New York, NY, USA, 143–152. https://doi.org/10.1145/

[10] Amos Azaria, Jayant Krishnamurthy, and Tom M. Mitchell. 2016. Instructable 2484028.2484092
Intelligent Personal Agent. In Proceedings of the Thirtieth AAAI Conference on [30] Jihyun Kim, Meuel Jeong, and Seul Chan Lee. 2019. "Why Did This Voice Agent
Artificial Intelligence (Phoenix, Arizona) (AAAI’16). AAAI Press, 2681–2689. Not UnderstandMe?": Error Recovery Strategy for in-Vehicle Voice User Interface.

[11] Marcos Baez, Florian Daniel, and Fabio Casati. 2019. Conversational web interac- In Proceedings of the 11th International Conference on Automotive User Interfaces
tion: proposal of a dialog-based natural language interaction paradigm for the and Interactive Vehicular Applications: Adjunct Proceedings (Utrecht, Netherlands)
web. In International Workshop on Chatbot Research and Design. Springer, 94–110. (AutomotiveUI ’19). Association for Computing Machinery, New York, NY, USA,

[12] Erin Beneteau, Olivia K. Richards, Mingrui Zhang, Julie A. Kientz, Jason Yip, and 146–150. https://doi.org/10.1145/3349263.3351513
Alexis Hiniker. 2019. Communication Breakdowns Between Families and Alexa. [31] Yea-Seul Kim, Mira Dontcheva, Eytan Adar, and Jessica Hullman. 2019. Vo-
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems cal Shortcuts for Creative Experts. In Proceedings of the 2019 CHI Conference
(Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19).
York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300473 Association for Computing Machinery, New York, NY, USA, 1–14. https:

[13] Frank Bentley, Chris Luvogt, Max Silverman, Rushani Wirasinghe, Brooke White, //doi.org/10.1145/3290605.3300562
and Danielle Lottridge. 2018. Understanding the Long-Term Use of Smart Speaker [32] Alfred Krzywicki, Wayne Wobcke, and Anna Wong. 2010. An adaptive calendar
Assistants. 2, 3, Article 91 (Sept. 2018), 24 pages. https://doi.org/10.1145/3264901 assistant using pattern mining for user preference modelling. In Proceedings of

[14] Syed Masum Billah, Vikas Ashok, Donald E. Porter, and I.V. Ramakrishnan. 2018. the 15th international conference on Intelligent user interfaces. 71–80.
SteeringWheel: A Locality-Preserving Magnification Interface for Low Vision [33] Tessa Lau, Julian Cerruti, GuillermoManzato, Mateo Bengualid, Jeffrey P. Bigham,
Web Browsing. In Proceedings of the 2018 CHI Conference on Human Factors in and Jeffrey Nichols. 2010. A Conversational Interface to Web Automation. In
Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Proceedings of the 23nd Annual ACM Symposium on User Interface Software and
Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3173594 Technology (New York, New York, USA) (UIST ’10). Association for ComputingMa-

[15] Dan Bohus and Alexander I. Rudnicky. 2005. Error Handling in the RavenClaw chinery, New York, NY, USA, 229–238. https://doi.org/10.1145/1866029.1866067
Dialog Management Framework. In Proceedings of the Conference on Human [34] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating
Language Technology and Empirical Methods in Natural Language Processing Multimodal Smartphone Automation by Demonstration (CHI ’17). Association
(Vancouver, British Columbia, Canada) (HLT ’05). Association for Computational for Computing Machinery, New York, NY, USA, 6038–6049. https://doi.org/10.
Linguistics, USA, 225–232. https://doi.org/10.3115/1220575.1220604 1145/3025453.3025483

[16] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, [35] Toby Jia-Jun Li, Jingya Chen, Haijun Xia, Tom M Mitchell, and Brad A Myers.
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda 2020. Multi-Modal Repairs of Conversational Breakdowns in Task-Oriented
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint Dialogs. In Proceedings of the 33rd Annual ACM Symposium on User Interface
arXiv:2005.14165 (2020). Software and Technology. 1094–1107.

[17] Yihong Chen, Bei Chen, Xuguang Duan, Jian-Guang Lou, YueWang, Wenwu Zhu, [36] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi Zhang, Wenze Shi, Wan-
and Yong Cao. 2018. Learning-to-ask: Knowledge acquisition via 20 questions. ling Ding, Tom M Mitchell, and Brad A Myers. 2018. APPINITE: A Multi-Modal
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Interface for Specifying Data Descriptions in Programming by Demonstration Us-
Discovery & Data Mining. 1216–1225. ing Natural Language Instructions. In 2018 IEEE Symposium on Visual Languages

[18] Pietro Chittò, Marcos Baez, Florian Daniel, and Boualem Benatallah. 2020. Auto- and Human-Centric Computing (VL/HCC). IEEE, 105–114.
matic generation of chatbots for conversational web browsing. In International [37] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, TomM. Mitchell,
Conference on Conceptual Modeling. Springer, 239–249. and Brad A. Myers. 2019. PUMICE: A Multi-Modal Agent That Learns Concepts

[19] Eric Corbett and Astrid Weber. 2016. What can I say? addressing user experience and Conditionals from Natural Language and Demonstrations. In Proceedings
challenges of a mobile voice user interface for accessibility. In Proceedings of the of the 32nd Annual ACM Symposium on User Interface Software and Technology
18th international conference on human-computer interaction with mobile devices (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New
and services. 72–82. York, NY, USA, 577–589. https://doi.org/10.1145/3332165.3347899

[20] Allen Cypher and Daniel Conrad Halbert. 1993. Watch what I do: programming [38] Toby Jia-Jun Li and Oriana Riva. 2018. Kite: Building Conversational Bots from
by demonstration. MIT press. Mobile Apps (MobiSys ’18). Association for Computing Machinery, New York,

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: NY, USA, 96–109. https://doi.org/10.1145/3210240.3210339
Pre-training of deep bidirectional transformers for language understanding. arXiv [39] H. Lieberman. 2001. Your Wish is My Command: Programming by Exam-
preprint arXiv:1810.04805 (2018). ple. Morgan Kaufmann Publishers. https://books.google.com.sv/books?id=

[22] Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu, and Karrie G Karahalios. wM2JYafw11gC
2015. Datatone: Managing ambiguity in natural language interfaces for data [40] Ewa Luger and Abigail Sellen. 2016. "Like Having a Really Bad PA": The Gulf be-
visualization. In Proceedings of the 28th Annual ACM Symposium on User Interface tween User Expectation and Experience of Conversational Agents. In Proceedings
Software & Technology. 489–500. of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose,

[23] Melinda T. Gervasio, Michael D. Moffitt, Martha E. Pollack, Joseph M. Taylor, California, USA) (CHI ’16). Association for Computing Machinery, New York, NY,
and Tomas E. Uribe. 2005. Active Preference Learning for Personalized Calendar USA, 5286–5297. https://doi.org/10.1145/2858036.2858288
Scheduling Assistance. In Proceedings of the 10th International Conference on [41] David Massimo, Mehdi Elahi, and Francesco Ricci. 2017. Learning User Pref-
Intelligent User Interfaces (San Diego, California, USA) (IUI ’05). Association for erences by Observing User-Items Interactions in an IoT Augmented Space. In
Computing Machinery, New York, NY, USA, 90–97. https://doi.org/10.1145/ Adjunct Publication of the 25th Conference on User Modeling, Adaptation and
1040830.1040857 Personalization (Bratislava, Slovakia) (UMAP ’17). Association for Computing

[24] Tovi Grossman, George Fitzmaurice, and Ramtin Attar. 2009. A survey of software Machinery, New York, NY, USA, 35–40. https://doi.org/10.1145/3099023.3099070
learnability: metrics, methodologies and guidelines. In Proceedings of the sigchi [42] Tom M Mitchell et al. 1997. Machine learning. (1997).
conference on human factors in computing systems. 649–658. [43] Christine Murad, Cosmin Munteanu, Benjamin R Cowan, and Leigh Clark. 2019.

[25] Jonathan Grudin and Richard Jacques. 2019. Chatbots, Humbots, and the Quest for Revolution or evolution? Speech interaction and HCI design guidelines. IEEE
Artificial General Intelligence. In Proceedings of the 2019 CHI Conference on Human Pervasive Computing 18, 2 (2019), 33–45.
Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for [44] B. A. Myers. 1986. Visual Programming, Programming by Example, and Program
Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/ Visualization: A Taxonomy. In Proceedings of the SIGCHI Conference on Human
3290605.3300439 Factors in Computing Systems (Boston, Massachusetts, USA) (CHI ’86). Association

[26] Robert M Hirsch, James R Slack, and Richard A Smith. 1982. Techniques of trend for Computing Machinery, New York, NY, USA, 59–66. https://doi.org/10.1145/
analysis for monthly water quality data. Water resources research 18, 1 (1982), 22627.22349
107–121. [45] Chelsea M Myers, Anushay Furqan, and Jichen Zhu. 2019. The impact of user

[27] Ting-Hao Kenneth Huang, Amos Azaria, and Jeffrey P Bigham. 2016. Instructable- characteristics and preferences on performance with an unfamiliar voice user in-
crowd: Creating if-then rules via conversations with the crowd. In Proceedings terface. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. 1–9.
Systems. 1555–1562. [46] Jun Okamoto, Tomoyuki Kato, and Makoto Shozakai. 2009. Usability Study of

[28] Mohit Jain, Pratyush Kumar, Ramachandra Kota, and Shwetak N Patel. 2018. VUI consistent with GUI Focusing on Age-Groups. In Tenth Annual Conference
Evaluating and informing the design of chatbots. In Proceedings of the 2018 of the International Speech Communication Association.
Designing Interactive Systems Conference. 895–906. [47] Aasish Pappu and Alexander Rudnicky. 2014. Knowledge acquisition strategies

for goal-oriented dialog systems. In Proceedings of the 15th annual meeting of the

https://doi.org/10.1145/3025171.3025229
https://doi.org/10.1145/3290605.3300473
https://doi.org/10.1145/3264901
https://doi.org/10.1145/3173574.3173594
https://doi.org/10.3115/1220575.1220604
https://doi.org/10.1145/1040830.1040857
https://doi.org/10.1145/1040830.1040857
https://doi.org/10.1145/3290605.3300439
https://doi.org/10.1145/3290605.3300439
https://doi.org/10.1145/2484028.2484092
https://doi.org/10.1145/2484028.2484092
https://doi.org/10.1145/3349263.3351513
https://doi.org/10.1145/3290605.3300562
https://doi.org/10.1145/3290605.3300562
https://doi.org/10.1145/1866029.1866067
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1145/3210240.3210339
https://books.google.com.sv/books?id=wM2JYafw11gC
https://books.google.com.sv/books?id=wM2JYafw11gC
https://doi.org/10.1145/2858036.2858288
https://doi.org/10.1145/3099023.3099070
https://doi.org/10.1145/22627.22349
https://doi.org/10.1145/22627.22349

CHI ’22, April 30 – May 6 2022, New Orleans, LA Lihang Pan, Chun Yu, JiaHui Li, Tian Huang, Xiaojun Bi, and Yuanchun Shi

Special Interest Group on Discourse and Dialogue (SIGDIAL). 194–198. [66] Yin Zhang, Rong Jin, and Zhi-Hua Zhou. 2010. Understanding bag-of-words
[48] Hannah R.M. Pelikan and Mathias Broth. 2016. Why That Nao? How Humans model: a statistical framework. International Journal of Machine Learning and

Adapt to a Conventional Humanoid Robot in Taking Turns-at-Talk. In Proceedings Cybernetics 1, 1-4 (2010), 43–52.
of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, [67] Ye Zhang and Byron Wallace. 2015. A sensitivity analysis of (and practitioners’
California, USA) (CHI ’16). Association for Computing Machinery, New York, NY, guide to) convolutional neural networks for sentence classification. arXiv preprint
USA, 4921–4932. https://doi.org/10.1145/2858036.2858478 arXiv:1510.03820 (2015).

[49] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. Towards a theory of [68] Yu Zhong, T. V. Raman, Casey Burkhardt, Fadi Biadsy, and Jeffrey P. Bigham. 2014.
natural language interfaces to databases. In Proceedings of the 8th international JustSpeak: Enabling Universal Voice Control on Android. In Proceedings of the
conference on Intelligent user interfaces. 149–157. 11th Web for All Conference (Seoul, Korea) (W4A ’14). Association for Computing

[50] Chen Qu, Liu Yang, Minghui Qiu, W Bruce Croft, Yongfeng Zhang, and Mohit Machinery, New York, NY, USA, Article 36, 4 pages. https://doi.org/10.1145/
Iyyer. 2019. BERT with history answer embedding for conversational question 2596695.2596720
answering. In Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval. 1133–1136.

[51] Arpit Rana and Derek Bridge. 2020. Navigation-by-Preference: A New Con- A SUBJECTIVE FEEDBACK DETAILS
versational Recommender with Preference-Based Feedback. In Proceedings of
the 25th International Conference on Intelligent User Interfaces (Cagliari, Italy)
(IUI ’20). Association for Computing Machinery, New York, NY, USA, 155–165.
https://doi.org/10.1145/3377325.3377496

[52] Lenin Ravindranath, Arvind Thiagarajan, Hari Balakrishnan, and Samuel Madden.
2012. <i>Code in the Air</i>: Simplifying Sensing and Coordination Tasks on
Smartphones. In Proceedings of the TwelfthWorkshop onMobile Computing Systems
Applications (San Diego, California) (HotMobile ’12). Association for Computing
Machinery, New York, NY, USA, Article 4, 6 pages. https://doi.org/10.1145/
2162081.2162087

[53] Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur P Parikh, Ali Farhadi, and
Hannaneh Hajishirzi. 2019. Real-time open-domain question answering with
dense-sparse phrase index. arXiv preprint arXiv:1906.05807 (2019).

[54] Alborz Rezazadeh Sereshkeh, Gary Leung, Krish Perumal, Caleb Phillips, Min-
fan Zhang, Afsaneh Fazly, and Iqbal Mohomed. 2020. VASTA: A Vision and
Language-Assisted Smartphone Task Automation System. In Proceedings of
the 25th International Conference on Intelligent User Interfaces (Cagliari, Italy)
(IUI ’20). Association for Computing Machinery, New York, NY, USA, 22–32.
https://doi.org/10.1145/3377325.3377515

[55] Jahanzeb Sherwani, Dong Yu, Tim Paek, Mary Czerwinski, Yun-Cheng Ju, and
Alex Acero. 2007. Voicepedia: Towards speech-based access to unstructured infor-
mation. In Eighth Annual Conference of the International Speech Communication
Association.

[56] Atsushi Sugiura and Yoshiyuki Koseki. 1996. Simplifying Macro Definition in
Programming by Demonstration. In Proceedings of the 9th Annual ACM Sym-
posium on User Interface Software and Technology (Seattle, Washington, USA)
(UIST ’96). Association for Computing Machinery, New York, NY, USA, 173–182.
https://doi.org/10.1145/237091.237118

[57] Ahmad Bisher Tarakji, Jian Xu, Juan A. Colmenares, and Iqbal Mohomed. 2018.
Voice Enabling Mobile Applications with UIVoice. In Proceedings of the 1st Inter-
national Workshop on Edge Systems, Analytics and Networking (Munich, Germany)
(EdgeSys’18). Association for Computing Machinery, New York, NY, USA, 49–54.
https://doi.org/10.1145/3213344.3213353

[58] Jesse Thomason, Shiqi Zhang, Raymond Mooney, and Peter Stone. 2015. Learning
to Interpret Natural Language Commands through Human-Robot Dialog. In
Proceedings of the 24th International Conference on Artificial Intelligence (Buenos
Aires, Argentina) (IJCAI’15). AAAI Press, 1923–1929.

[59] Zhen Tu, Yali Fan, Yong Li, Xiang Chen, Li Su, and Depeng Jin. 2019. From
Fingerprint to Footprint: Cold-Start Location Recommendation by Learning User
Interest from App Data. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3,
1, Article 26 (March 2019), 22 pages. https://doi.org/10.1145/3314413

[60] Wayne Ward and Sunil Issar. 1994. Recent improvements in the CMU spoken
language understanding system. Technical Report. CARNEGIE-MELLON UNIV
PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE.

[61] Wikipedia. 2021. Cosine similarity - Wikipedia. Retrieved August 27, 2021 from
https://en.wikipedia.org/wiki/Cosine_similarity

[62] Linda Wulf, Markus Garschall, Julia Himmelsbach, and Manfred Tscheligi. 2014.
Hands Free - Care Free: Elderly People Taking Advantage of Speech-Only Interac-
tion. In Proceedings of the 8th Nordic Conference on Human-Computer Interaction:
Fun, Fast, Foundational (Helsinki, Finland) (NordiCHI ’14). Association for Com-
putingMachinery, New York, NY, USA, 203–206. https://doi.org/10.1145/2639189.
2639251

[63] Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao, Yudong Li, Yechen Xu,
Kai Sun, Dian Yu, Cong Yu, et al. 2020. Clue: A chinese language understanding
evaluation benchmark. arXiv preprint arXiv:2004.05986 (2020).

[64] Nicole Yankelovich, Gina-Anne Levow, and Matt Marx. 1995. Designing
SpeechActs: Issues in speech user interfaces. In Proceedings of the SIGCHI confer-
ence on Human factors in computing systems. 369–376.

[65] Jennifer Zamora. 2017. I’m Sorry, Dave, I’m Afraid I Can’t Do That: Chatbot
Perception and Expectations. In Proceedings of the 5th International Conference on
Human Agent Interaction (Bielefeld, Germany) (HAI ’17). Association for Comput-
ing Machinery, New York, NY, USA, 253–260. https://doi.org/10.1145/3125739.
3125766

https://doi.org/10.1145/2858036.2858478
https://doi.org/10.1145/3377325.3377496
https://doi.org/10.1145/2162081.2162087
https://doi.org/10.1145/2162081.2162087
https://doi.org/10.1145/3377325.3377515
https://doi.org/10.1145/237091.237118
https://doi.org/10.1145/3213344.3213353
https://doi.org/10.1145/3314413
https://en.wikipedia.org/wiki/Cosine_similarity
https://doi.org/10.1145/2639189.2639251
https://doi.org/10.1145/2639189.2639251
https://doi.org/10.1145/3125739.3125766
https://doi.org/10.1145/3125739.3125766
https://doi.org/10.1145/2596695.2596720
https://doi.org/10.1145/2596695.2596720

Automatically Generating and Improving VCI from Operation Sequences on Smartphones CHI ’22, April 30 – May 6 2022, New Orleans, LA

Table 7: Subjective feedback details.

User Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
You can understand the questions easily 3 6 4 7 7 6 6 7 6 7 7 7 5 6 6 7
You can answer the questions easily 7 5 6 5 7 4 7 4 7 7 7 6 6 6 7 7
You can trigger the functions quickly 7 6 6 7 4 6 7 4 7 7 6 7 4 7 6 7

The generated VCI has high intelligence 5 6 5 5 5 5 6 4 6 5 4 6 4 6 6 6
The experience is good 5 5 5 5 6 5 6 7 6 6 5 6 4 6 6 6

The complicatedness of the VCI is acceptable 5 6 5 5 4 5 6 6 6 6 3 7 4 7 7 7
You are willing to use our VCI 6 5 7 6 6 7 7 7 6 7 2 7 2 7 7 7

	Abstract
	1 Introduction
	2 Related Work
	2.1 Task Property Configurations
	2.2 User Command Understanding
	2.3 Generating voice interfaces from GUIs

	3 A Use Case Scenario
	4 The Design of AutoVCI
	4.1 VCI Generation
	4.2 Intention Recognition
	4.3 Task Execution & Parameter Identification
	4.4 Semantic Accumulation

	5 User Study
	5.1 VCI Generation
	5.2 Phase 1: Evaluating the Semantic Understanding
	5.3 Phase 2: A Larger-Scale Online Test

	6 Offline Evaluations
	6.1 Command Understanding Ability without any Semantic Accumulation
	6.2 Improvement of Command Understanding Ability with Semantic Accumulation

	7 Discussion
	7.1 Contribution to the Field of Voice Interaction
	7.2 Why not a Designer Study
	7.3 Privacy Protection

	8 Limitations & Future Work
	9 Conclusion
	Acknowledgments
	References
	A Subjective Feedback Details

