
Automatically Generating OLAP Schemata from
Conceptual Graphical Models

Karl Hahn
FORWISS

Orleansstr. 34
D-81667 Munich, Germany

+49-89-48095225

hahnk@forwiss.de

Carsten Sapia
FORWISS

Orleansstr. 34
D-81667 Munich, Germany

+49-89-48095219

sapia@forwiss.de

Markus Blaschka
FORWISS

Orleansstr. 34
D-81667 Munich, Germany

+49-89-48095230

blaschka@forwiss.de

ABSTRACT
Generating tool specific schemata and configuration information
for OLAP database tools from conceptual graphical models is an
important prerequisite for a comprehensive tool support for
computer aided data warehouse engineering (CAWE). This paper
describes the design and implementation of such a generation
component in the context of our BabelFish data warehouse design
tool environment. It identifies the principal issues that are
involved in the design and implementation of such a component
and discusses possible solutions. The paper lists typical
mismatches between the data model of commercial OLAP tools
and conceptual graphical modeling notations, and proposes
methods to overcome these expressive differences during the
generation process. Further topics are the use of graph grammars
for specifying and parsing graphical MD schema descriptions and
the integration of the generation process into a metadata centered
modeling tool environment.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design – data models,
schema and subschema

Keywords
OLAP, Data Warehouse, Conceptual Design, Graphical Multi-
dimensional Modeling Notation, Multidimensional Schema
Generation

1. INTRODUCTION
Designing and implementing a data warehouse environment is a
highly complex engineering task that calls for methodological
support. An indication of this is a large interest in data warehouse
specific design methodologies in practice and by researchers (e.g.
[5], [7], [11]). In order to be successful, such a methodology must
be supported by a tool environment helping the designer in
specifying and implementing the warehouse system. Being a

special form of CASE tools, we call these environments Computer
Aided Warehouse Engineering (CAWE) tools. Supported by such
a design tool environment, the warehouse modeler specifies the
system using a set of graphical notations. Our approach to
building a CAWE system is the BabelFish tool environment
(which is described in more detail in section 3). It is designed
with the following objectives in mind:

• the designer uses a set of graphical notations to specify the
warehouse system

• the system design is performed on a conceptual level not
taking into account any implementation details.

• the specifications cover all relevant aspects of the warehouse
design (data model design, data transformation design,
analysis application design, security design etc.).

• the BabelFish environment provides support for the whole
lifecycle of a data warehouse project (initial design,
implementation, maintenance and redesign/evolution)

• the BabelFish system automatically ensures the consistency
between the different parts of the specification (e.g. the static
and the dynamic system view) and between the specification
and the implementation (‘round trip engineering’).

One of the immediate consequences of this set of objectives is that
the implementation of the data warehouse must be automatically
generated from the graphical conceptual models. This generation
process has long been recognized as a key feature of CASE tools
that can generate e.g. database schemata, class definitions or
running prototypes from the graphical specification.

Data warehouse systems are implemented using a set of
commercial components (e.g. extraction tools, database systems,
metadata management systems, OLAP tools, report generators)
that are configured according to the needs of the project. The
syntax and the extent to which they can be configured are largely
tool-dependent. According to our basic design principles, these
peculiarities of the systems should be hidden from the designer by
the generation process. This implies that the generation process
must perform a mapping between the semantics of the tool-
independent graphical notation and the semantics of the tool
specific configuration (e.g. the multidimensional data model and
the tuning parameters). If the tool does not provide native
constructs to represent each element of the graphical notation,
adequate transformations of the original model (with a minimal
loss of semantics) have to be performed during the generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM/DOLAP ’00, November 10, 2000, Washington DC, USA.
Copyright 2000 ACM

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.

DOLAP '00 11/00 McLean, VA, USA
© 2000 ACM ISBN 1-58113-323-5/00/0011...$5.00

9

process (see section 5). On the other hand, if the target systems
supports more than one representation for an element of the
graphical notation, the generation process should (semi-
)automatically choose the optimal representation (with respect to
an optimality measure specified by the designer, e.g. best access
performance). This requires that the generation process contains a
product-specific component that uses heuristics, cost-models and
maybe information provided by the user to drive these decisions.

As part of the BabelFish environment, we implemented a
generator producing configurations for the core components of a
warehouse, namely the warehouse database schema and the OLAP
tool configuration. In order to study the principal issues involved
in automatic data warehouse generation we chose two typical real
world OLAP products as target systems. This paper presents our
experiences with implementing the generator and its integration
into our design tool environment.

2. RELATED WORK
Different proposals have been made regarding how to graphically
represent a conceptual multidimensional schema for interactive
modeling purposes (see e.g. [2], [3], [4], and [5]). Additionally,
automatic generation of complete OLAP tools has recently been
addressed by the GOLD model proposed by C. Trujillo et al.
([13]). The approach which comes closest to our ideas and
objectives is the ODAWA project [7]. However, none of these
approaches addresses the issue of how to translate the graphical
schema representations to configurations for real-world OLAP
tools and how to cope with the different expressiveness of the data
model used by the target system and the data model assumed by
the modeling notation.

An additional distinctive features of the BabelFish approach
compared to all these approaches is the view concept (see section
3) that allows to model interconnections of the static
multidimensional schema with other aspects of the warehouse
model (dynamic model, transformation model, data source model,
security model etc.) and to exploit these interconnections for the
design process.

Due to space constraints, we refer the reader to [6] for an in-depth
discussion and comparison of related work.

3. THE BABELFISH FRAMEWORK
This section presents an overview of the basic architecture and
design principles of our modeling framework BabelFish into
which the generation algorithm is being embedded. Due to space
constraints, we can only give a brief overview of the concepts. For
details of the approach we refer to corresponding further
publications mentioned in the text.

3.1 Basic Concepts
The core of the BabelFish approach is a comprehensive object-
oriented model of a data warehouse containing all the details that
are necessary to specify a data warehouse (e.g. the data cube
names, a description of their dimensions, the classification
hierarchies, a description of the data sources, the tool-specific
database schema). We refer to the object oriented schema of the
warehouse model as warehouse metamodel (e.g. containing a class
dimension). Such a metamodel is far too complex to use it for
modeling purposes or graphical representations (e.g. [8] presents
such a comprehensive metamodel). Therefore, we follow the view

based approach (cf. Figure 1) which has already been successfully
deployed for Object Oriented Software Engineering tools. This
means we defined certain subsets (views) of the warehouse model
as part of the BabelFish method design. The designer (CAWE
user) indirectly manipulates the warehouse model through
graphical visualizations of these views. Each view represents a
certain aspect of the warehouse design, e.g.

• static data model view (cf. [11]) describing the conceptual
schema of the warehouse (i.e. a multidimensional model of
the data that originate from the business processes). For this
purpose we use ME/R, a multidimensional modeling
language (see chapter 4).

• dynamic view (cf. [10]) specifying typical analysis tasks the
end user performs using the warehouse data (comparable to
use-case scenarios)

• functional view specifying the functional interrelationship
between data (e.g. transformations from source to target or
how to compute complex derived measures)

• data source view describing the static structure of the
operational data sources and their interrelationship to the
static warehouse model, i.e. a specification of the data trans-
formation and loading process.

A graphical view definition consists of two components: a query
defined with respect to the metamodel selecting a part of the
warehouse model (e.g. selecting all the conceptual measures,
dimensions, cubes, and their relationships) and the specification
of how to actually display the selected parts (e.g. stating that a
dimension level should be represented as a node in the view graph
and depicted as a rectangle which is labeled with the name of the
level, cf. [12]).

For BabelFish, we restricted the structure of the views to typed
graphs because the syntax of these structures can be elegantly
defined via layered graph grammars. Furthermore, classes,
relationships, and attributes of the warehouse metamodel can be
easily mapped to node and edge types. Additionally,
manipulations of the graph structure can be easily transformed to
manipulations of the warehouse model (e.g. inserting a new node
inserts a new object of the respective class). This ensures that the
views are updateable.

The metamodel contains complex integrity constraints and
relationships between objects taking part in different views.
Furthermore, a single object of the warehouse model can
participate in different views. Consequently, interrelationships
between the different aspects of warehouse design can be
formulated in an elegant way. E.g. objects of the class dimension
level are part of the static data model view and the dynamic data
model view (cf. Figure 1). Whenever a modeler creates a new
dimension level (e.g. by adding a node to the ME/R representation
of the static data model view), this dimension level is
automatically available in the dynamic system view for the
description of user query behavior. This can also be used to
enforce inter- and intra-view consistency. E.g. if a new dimension
level is being added in the dynamic system view as a part of a
report, it is also automatically available in the static system view.
An integrity constraint defined for the static view states that every
dimension level must be connected to at least one fact. Thus,
when checking the consistency of the static view, the system can

10

automatically remind the user to update the static view (e.g. by
connecting the new dimension level to a fact node).

Babelfish Metamodel

static view
(data model)

dynamic view
(query scenarios)

specification
of graphical

representation

vehicle

vehicle
group

location

type of
repair unit

year

repair

country

geogr. region

day

month

vehicle
class

part#
description
weight
price

time.all

assembly

location.allvehicle.all

duration
of persons

part.group

is
conta ined

in

belongs to

part.alltype of repair

part

type.all
scheduled?

vehicle
group

specification
of graphical

representation

(updateble)
view of

metamodel

year

#of repairs

geogr. region
quarter

#of repairs(1)

(3)

part

#of repairs

(4)

assembly

week

#of repairs

geogr. region

(2)

assembly

verify
unexpected

value

pick another
year or assembly
(40%)

assembly
geogr. region

pick geographic
region (30%)

revise decision

quarter
geogr. region«���

other graphical
views

Dimension
Level

Attribute

Fact

Query
Prototype

Scenario

(updateable)
view of

metamodel

… …
…

…

Since the objects of the metamodel are assigned to different layers
of abstraction, we additionally see the BabelFish metamodel
divided into three layers:

• on the conceptual layer, objects like the multidimensional
schema are modeled independently of implementation
decisions (e.g., system architecture, tools). These objects
represent a model of the universe of discourse to the
designer.

• the logical layer contains technical objects (e.g., to model
the used architecture). The schema of this layer is determined
by the external interfaces (data models) exhibited by the
tools that are used for the implementation (e.g., when using a
relational database system and a star schema to store the data,
the logical layer describes the relational mapping of the
conceptual schema).

• the scope of the physical layer are tool-specific issues like
clustering or indexing strategies (in the case of database
systems).

This layer model reflects our objectives that the OLAP modeler
performs the conceptual design tasks using a graphical modeling
tool and that the BabelFish tool environment ensures consistency
between the conceptual specification and the implementation
(corresponding to the logical and physical layers).

Following the philosophy that the specification of the system
should be done at the conceptual level, all the modeler’s views are
defined using the objects of the conceptual layer. Specialized
generation programs automatically propagate changes made to the
warehouse model to the lower layers (e.g. generation of an OLAP
database schema, an extraction program). The generator
component described in this paper is an example of such a
program.

The objects of the different layers are linked via relationships in
the metamodel, e.g. making it is possible to trace which object on
the logical layer belongs to which object on the conceptual layer.
This information is important, for example, when transforming
schema evolution operations from the conceptual to the logical
layer [1].

It is also possible to define additional views on the logical and
physical level in order to provide system administrators with the
possibility to inspect and revise optimization decision taken by
the generator. An analyzer component should propagate these
changes back to the higher level layers.

3.2 The Prototype Implementation
The complete metamodel (containing all three layers of
abstraction) is stored in a repository system (Softlab enabler for
our prototype) together with a description of the view definitions
themselves and a definition of the graphical representation of the
elements (cf. [12]). The repository is the central coordination
channel for communication between the different components of
the framework. Ideally, the repository should offer updateable
views. If this service is not provided (like in our case) it has to be
simulated by an additional layer on top of the repository system
[12].

A generic graph editor (GraMMi) is used by the modeler to
specify the different models via the view provided onto the
metamodel. GraMMi reads the information about the graphical
representation of the different elements in a view from the
repository at runtime, configures its interface accordingly and
enforces the integrity checks that can be performed at the graph
level (formulated as graph grammar rules). Therefore, the same
graphical editor can be used for all the views ([12]).

Since the repository system does not support views on metadata
objects, an additional layer provides the view functionality. The
generator component described in this paper is called MERTGEN
in the prototype implementation. MERTGEN reads the
information about the multidimensional schema from the
repository and generates a corresponding tool specific executable
configuration for an OLAP tool (see chapters 4 to 6 for details).

When the schema designer modifies the multidimensional schema
(represented by the ME/R graph), GraMMi creates corresponding
schema evolution jobs. The evolution component (called EWOK
in the prototype) reads these evolution jobs from the repository
and generates corresponding logical evolution commands that
transform the database schema representing the multidimensional
schema and adapt the data persistently stored in the database [1].

Both MERTGEN and EWOK have tool-specific plugins for the
commercial products we chose in our prototype implementation.
Currently, our prototype supports Cognos Powerplay and
Informix Metacube as target OLAP tools.

4. THE STATIC DATA MODEL VIEW
The generation process producing the database schema and
configuration information to be used by the OLAP tool uses the
part of the metamodel which is visualized by the static view
(using the ME/R notation). Therefore, for the rest of this paper,
we concentrate on this view using the visualization in order to
illustrate the concepts. Note however, that the generation process
is naturally unaware of the graphical layout of the representation.

Figure 1. Graphical views of the comprehensive
BabelFish metamodel are used to specify the DW

11

The static data model view is the central view of the BabelFish
methodology as described in chapter 3. The purpose of the view is
to describe the multidimensional structure of the OLAP schema.
ME/R (Multidimensional Entity-Relationship Model) is an
extension of the Entity-Relationship Model especially for multi-
dimensional modeling.

vehicle
repair

vehicle
repair

day type of
garage

countryregiongarage

customer

make
vehicle
model

vehicle

year

month

costs (part)

costs (wages)

income

age

costs (total)

of persons

duration

vehicle
repair

vehicle
sale

shopseller

price manager

week

For the rest of this paper we will refer to the example schema
shown in Figure 2. It illustrates the schema of a data warehouse
that is used to analyze data about vehicle repairs and vehicle sales.
Consequently, it contains two fact relationships (vehicle repair
and vehicle sales). Each fact is characterized by quantifying
attributes (e.g. price, costs, duration, etc.) that can be analyzed
according to the dimensions (vehicle, customer, garage, seller and
day). Dimensions have a hierarchy, consisting of dimension levels
(e.g. vehicle, model, brand). Some dimensions are shared
completely (customer and the time dimension) or partially
(vehicle) by the two facts. A typical OLAP query against this
schema could be: “show me the total costs of all vehicle repairs of
make BMW in the last month”.

As the BabelFish methods requires all views to be represented as
typed graphs, ME/R schemata can be represented in this form. A
typed graph over a set of edge types ΣE and a set of node types ΣN

is defined as a tuple (N, E, tN, tE, s, t) (see [6], [1] for details).

Name

Name

Name

Name Name

Name Name

Fact node

Level node

Attribute node

NameName

Dimensions edge

Classifications edge

Has edge

The direction of the edges, i.e. the information which node is
source and which node is target, is essential for classifications
edges to represent the hierarchy (e.g. used for roll-up or drill-

down operations) inside the dimensions. The graphical
representation of the ME/R graph elements is shown in Figure 3.

As schemata are represented as typed graphs, we use a graph
grammar to describe the syntactical constraints of the modeling
notation. A graph grammar over a set of edge types Σ E and a set
of node types Σ N is defined as a tuple (λ, P) where λ is a
nonempty initial typed graph over (Σ E, Σ N), called the axiom. P is
a finite set of productions. Each production p is of the form L Å
R where L and R are typed graphs over (Σ E, Σ N) with L being the
left hand side and R being the right hand side.

λ ::= LevelLevel
dimensionsdimensions

::= Level
dimensions

::=
has

::= Level
classifies

Level Level

::= Level
classifies

Level LevelLevel

::=Level Level
has

(1)

(2)

(3)

(4)

(5)

(6)

::= Level
dimensions

Level (7)

::=
dimensions

Level Level (8)Level
dimensions

::=LevelLevel
dimensions

Level Level
dimensions

(9)

Fact

Fact Fact

Fact Fact

Fact Fact

Fact

Fact

Attribute

Attribute

The replacement of nonterminals in graphs is far more
complicated than in linear texts [9]. Therefore, different
embedding strategies have been proposed to solve this problem.
As outlined in [9] we use the concept of contexts. This means that
both sides of the production contain a common context graph that
allows for defining which part of the existing graph the new
elements should be connected to.

Figure 4 gives an overview of the productions of the ME/R
grammar. The nodes, which are marked gray on the left hand side
represent nodes that must exist in the graph in order to apply the
production. On the right hand side, nodes marked white are new
nodes, created by the application of the production.

Details about the graph grammar can be found in [12].

5. THE TARGET PLATFORMS
There is a wide range of OLAP tools available but one can divide
all of the products into two main design principles MOLAP
(Multidimensional OLAP) and ROLAP (Relational OLAP). In
order to show the overall applicability of our approach we
implemented the generation process for two technology-leading
representatives of these principles. We chose Cognos Powerplay
representing MOLAP products and Informix Metacube as a
typical ROLAP product. Nevertheless, our findings regarding data
model expressiveness apply to all similar products.

Figure 3. Representation of ME/R as a directed graph

Figure 4. ME/R graph grammar

Figure 2. ME/R example schema

12

The only precondition for an OLAP tool to be integrated as a
target in the BabelFish environment is the existence of any kind of
an accessible (not necessarily documented) interface for schema
definitions. This can be a scripting language like MDL for Cognos
Powerplay or database tables that contain the metadata (Informix)
that can be accessed with SQL.

A comparison of the respective data models with ME/R revealed
the following differences:

• Different constructs, respectively different names for similar
constructs. Most of the OLAP tools have a different data
model, i. e. different constructs to build the multidimensional
schemata. As an example we could have a look at the
attribute node construct that can specify a fact node or a
level node in ME/R. Powerplay calls the fact attributes
“measures” but has no possibility to describe a level with a
specifying attribute. Metacube can handle attributes for level
nodes and fact nodes, but calls the attribute for a fact a
“measure”.

• Richer semantics of ME/R compared to the OLAP tools.
Merging dimensions for instance, i. e. dimensions, that have
parts of their hierarchy in common (e.g. geographic
information is part of the dimensions customer and garage in
Figure 2) cannot be modeled this way in any of the
investigated OLAP tools.

• Additional tool-specifc information. The OLAP tools can
store a lot of semantic information, e.g. data source,
description, data type, constraints, etc. This information is
missing in current ME/R schemata but ME/R has an
extension to store any kind of semantic details.

Most OLAP systems have limitations concerning the
expressiveness of the multidimensional data model, compared to
ME/R. Furthermore, there is a wide diversity in the data models of
OLAP tools and a widely ambiguous terminology. These
drawbacks strengthen our motivation to provide the user with a
tool independent notation for multidimensional schema design,
which does not impose tool-specific limitations. This complies
with our design principle that all implementation-specific details
should be hidden from the designer.

Typically, the OLAP tools have weaker semantics compared to
ME/R. We have found four different restrictions, i. e. constructs
of an ME/R schema that can not be adequately represented using
the investigated OLAP tools (cf. Table 1). For all four cases we
present a transformation that preserves as much of the original
semantics as possible in the target tool’s data model.

1. Specifying attributes for dimension levels. In Figure 2 we can
find the specifying attributes age and income for the
dimension level customer which can not be represented in
some MOLAP tools.

2. Merging dimensions are very common in multidimensional
modeling. That’s why they can be very naturally expressed
within ME/R. If a part of a hierarchy is used by more than
one dimension, you have a classifies relationship from a
dimension level to a second dimension level, that is part of
another dimension. We have e.g. in our example the merging
dimensions customer and garage, that share the dimension
levels region and country.

3. Alternative paths in the classification schema graph occur if
the modeled domain allows for alternative classifications
(e.g. day-week and day-month) within the same dimensions
which can be classified according to common criterion (e.g.
year). Cf. Figure 2.

4. Multiple facts. An ME/R schema can investigate more than
one subject of analysis. For each subject we can model a fact
relationship in this schema. Fact relationships can share
dimensions, e.g. the time dimension is essential in OLAP, so
it is usually shared by all fact relationships. The example
includes two fact relationships vehicle repair and vehicle
sale, that have common dimensions, the time dimension and
the dimension customer.

Table 1. Comparison of the expressiveness of the data models
of exemplary OLAP tools

Cognos
Powerplay 6.0

Informix
Metacube 4.02

Attribute for dim. levels Not provided Supported

Alternative paths Not provided Supported

Merging dimensions Not provided Not provided1

More than one fact Not provided Supported

6. THE GENERATION PROCESS
The generation of the OLAP schema(ta) and configuration from
the conceptual ME/R schema is divided into four phases (Fig. 5):

1. Loading the static data model view from the repository
system (Softlab Enabler for our prototype). The schema is
represented as a typed graph in the view (see above).

2. The graph has to be parsed using the graph grammar of Fig.
4 to ensure syntactical correctness. This parsing can avoid
errors during the generating process and can give feedback to
the user about the type and the location of the syntactical
error.

3. The (syntactically correct) graph has now to be adapted to
the data model of the target system. As outlined above
typical OLAP systems have limitations in their
multidimensional data model (compared to ME/R).

4. Creating the output for the target system. As a result of the
adaptation of the graph in phase 3, we can now translate
every ME/R construct to a corresponding construct of the
target OLAP system. The logical schema is finally written
back into the repository (logical layer of the metamodel).

Scanning and parsing relate to the ME/R schema and are
independent of the used OLAP tool. The transformation step
handles the restrictions of the target system. When integrating a
new OLAP target system in the BabelFish tool the tools data
model has to be inspected and already known limitations can be
resolved by using the respective transformation method. The
generation phase has to translate the ME/R constructs to

1 Please note that we intend to create a star schema as Informix

does not provide a real snowflake schema. In fact merging
dimensions are possible with a snowflake schema.

13

constructs of the target system using the interface of the OLAP
tool and therefore has to be newly programmed.

Loading from
repository

Ensure syntactical
correctness

Adapting to the
target system

Generating the
OLAP output

A
na

ly
si

s
S

yn
th

es
is

Scanning: Loads the model from
the repository; representation as
directed acyclic graph

Parsing: ensures the syntactical
correctness of the graph

Transformation: transforms the
graph to an intermediate
representation to adapt it to the
target system

Generation: translates ME/R
constructs to the corresponding
constructs of the target system

6.1 Building a parser for a graphical notation
To ensure the syntactical correctness of a schema we built a parser
referring to the graph grammar of ME/R. This gives the modeler
feedback about syntactical errors, avoids errors during the
generation process and the creation of faulty OLAP schemata.

The parser, based on the graph grammar described in section 4, is
a bottom-up parser specific to our grammar. We define an order in
which the productions have to be applied and traverse the graph to
find such a production. This method avoids a complex
backtracking algorithm like outlined in [9].

6.2 Adapting the schema for the target system
As described in chapter 5, there are four characteristic limitations
in OLAP tools compared to ME/R. For all four cases we found an
adaptation of the corresponding construct to preserve as much as
possible of the semantics.

customer

income

age

...

vehicle
repaircustomer customer

...

income

age

region ...

region ...

The first case is a dimension level with a describing attribute,
which can not be modeled in some MOLAP systems (see Figure
6). Just skipping the attributes solves the modeling problem but
the extra information about the dimension level would be lost. To
avoid this, we create a new fact node with all the attributes

(because fact nodes can possess attributes), which is the source of
a dimensions edge to the original dimension level. In other words
the new fact node is one-dimensional but inherits the full
hierarchy of this dimension.

You might notice that the schema now has (at least) two fact
nodes, which conflicts with limitation of some OLAP tools. For
this reason the transformation rules have to be applied in the order
as presented here.

vehicle
repair

vehicle
repair

countryregiongarage

customer

vehicle
repair

vehicle
repair

countryregiongarage

customer countryregion

A different approach to the problem, modeling the level attributes
as dimension levels, has been abandoned to avoid adding extra
semantics to the schema that is not useful, e.g. a new classification
edge between customer and age.

Merging dimensions are the second problem we have to solve.
None of the evaluated tools could deal with merging dimensions
(please note that a snowflake schema in a ROLAP tool generally
could easily handle the problem. However, Informix Metacube
does not support a normalized schema). In order to obtain the full
hierarchy for all dimensions, we have to duplicate the hierarchy
starting at the dimension level, where the merging occurs. As an
example, in Figure 7 the hierarchy region-country is duplicated
for the dimension customer as it is already part of the dimension
garage. The structure now reflects the original hierarchy, but what
gets lost is the information that the data of region and country has
the same origin for both dimensions.

day

year

month week

...

day

year

month week

...

year

The next step is to resolve alternative paths inside a dimension
(see Figure 8). The data model of Powerplay can not describe this,
because it can only handle dimension schemata with a tree
structure (different hierarchies can not merge in an endpoint).
Similar to the problem of merging dimensions, we duplicate the

Figure 5. Four phases of the generation process

Figure 6. Attributes of a dimension level

Figure 7. Merging dimensions

Figure 8. Alternative paths inside a dimension

14

dimension beginning at the merging point, obtaining the full
hierarchy.

Finally, a Powerplay schema can only describe one multi-
dimensional cube. To analyze different subjects you have to create
a multidimensional cube in a single Powerplay schema for each.

Referring to our graph, we have to create disjoint sub graphs with
only one fact in each sub graph to generate the schemata for
Powerplay. After deploying step 1 to 3, the only connecting points
between the various facts in our graph can be shared dimensions.
These shared dimensions have to be duplicated for each of the
facts.

vehicle
repair

vehicle
repair

vehicle
repair

vehicle
sale

...

...

... vehicle
repair

vehicle
repair

vehicle
repair

vehicle
sale

...

...

...

day

...

day

...

day

In order to summarize, the conducted transformation operations
preserved a large part of the original semantics such that all the
queries that can be answered by the ME/R schema can be
answered by the OLAP schema as well. This is achieved by
generating redundancies whenever it is necessary. What we have
lost are the integrity constraints, due to the fact, that we have
duplicated elements.

6.3 Generating the OLAP output
After preparing the graph for the generation, i. e. the graph has
been transformed to adapt it to the limitations of the data models
of the target systems and extra information has been added to the
graph, it can now be used to create a target-dependent OLAP
schema. Table 2 presents the mapping of elements of the ME/R
data model to the corresponding elements of the target data
models. We found some redundancies in the target system’s data
model definitions, presumably for performance reasons (e.g. the
first level of a dimension has to be defined in Powerplay, although
this information is already inherent in the definition of the
dimension levels).

In order to avoid interference with a running warehouse system,
the generation process must work without connecting to the
system. Therefore, we have to use a language that can create the
schemata of the OLAP products to write scripts containing the full
schema. In the case of Powerplay there is MDL (Model Definition
Language) that can be seen as a data definition language to create
Powerplay schemata.

In fact, MDL is not designed to be directly written by the schema
designer, which is mirrored in the fact that the MDL parser has no
error handling. To build the multidimensional data definition
statements in MDL the ME/R graph has to be traversed multiple
times, because the creation of the constructs has to be done in a
special order in MDL. Furthermore, the construction needs
(sometimes redundant) information of other corresponding parts

of the graph (e.g. a dimension level requires information of all the
hierarchies in its dimension). The example of MDL below shows
the definition of the dimension “vehicle” and its first dimension
level:

DimMake "Vehicle" DimType Regular
RootCatMake "Vehicle" Dimension "Vehicle"
DrillCatMake "By Vehicle" Dimension "Vehicle"
Root "Vehicle"
LevelMake "Brand" Dimension "Vehicle" Drill "By
Vehicle" Parent "" Source "Brand"
(other dimension levels analogously)

Table 2. Mapping of ME/R elements and the elements of the
target data models

ME/R data
model

Powerplay data
model

Metacube data model

Schema Multiple models. DSS System.

Fact node Single model. Fact table.

Dimension level
node

Level. Default attribute of a
dim. element.

Attribute of a
level node

Not provided2. Attribute of a dim.
element.

Attribute of a
fact node

Measure. Measure (internal
terminology: fact).

Dimensions edge Not necessary due to
the limitation of one
fact per model.

Modeling element
dimension. Relation-
ship between a dim.
and fact is stored in a
separate table.

Classifications
edge

Stored with the target
node3.

Hierarchy (internal
terminology: rolls up).

Has edge No corresponding
element.

No corresponding
element, stored with a
measure.

Metacube as a ROLAP product stores the data and the metadata,
e.g. the names of the dimension levels, the hierarchical structure
etc., in a relational database system (in our case Informix
Dynamic Server 7.30). In order to create the OLAP schema for
Metacube we use SQL DDL statements. As we decided to use a
star schema we first have to define the tables for the data, i.e. a
table for each fact node (and its corresponding attributes) and
each dimension (with its dimension levels and attributes).
Furthermore, the meta information of the schema has to be
inserted in the tables where Metacube stores the metamodel (SQL
DML statements). The (simplified) example below gives an
expression of the SQL scripts automatically generated by our
generation tool. The mnemonics (e.g. l_1 for the first dimension
level of the dimension) simplifies the interaction with other
BabelFish views working on the generated warehouse system.

2 The adaptation of the schema for Powerplay has eliminated these

level attributes
3 This modeling is responsible for the restriction that alternative

paths in dimensions are not possible.

Figure 9. More than one facts (with shared dimensions)

15

These scripts, generated by the prototype generator MERTGEN
defines fully functional OLAP schemata for both target systems.

-- create dimension table for the data
create table "informix".dt_4 (id integer
primary key, l_1 varchar(30), l_2 varchar(30),
l_3 varchar(30));

-- create the entries in the (existing)
Metacube system tables
-- create a dimension
insert into "metacube".dim (dim_id,
dss_system_id, dim_desc, dim_type,
dim_schema_name, dim_table_name,
dim_to_fact_key) values (4, 1, ’Vehicle’, 0,
’informix’, ’dt_4’, ’id’);
-- define user interface for the dimension
insert into "metacube".ui_dim (dim_id,
dss_system_id, icon_bitmap, nofilter_label)
values (4, 1, 0, ’All Values’);
-- correlation between facts and dimensions
insert into "metacube".fact_dim_mapping
(dss_system_id, fact_table_id, dim_id,
fact_to_dim_key) values (1, 1, 4, ’l_4_id’);
-- create user interface for this element
insert into "metacube".ui_fact_dim
(fact_table_id, dim_id, dss_system_id,
screen_order) values (1, 4, 1, 1);

7. CONCLUSIONS AND FUTURE WORK
The central assumption of our BabelFish approach is that the data
warehouse designer models the universe of discourse on a
conceptual level using graphical notations. He is being supported
by a computer aided warehouse engineering (CAWE) environ-
ment. This environment generates the implementation of the
conceptual design models, thus hiding the implementation details
(e.g. limitations of the target system) from the modeler. In this
paper, we discussed the issues of this automatic generation
process for both the OLAP database schema and the frontend
configuration.

The different expressiveness of the conceptual notation compared
with the data models of the commercial OLAP tools turned out to
be the main challenge for the generation process. However, we
managed to find transformations of the conceptual
multidimensional schema (described as graph transformations)
that preserved a large part of the semantics. Experiments showed
that the resulting OLAP application matched the designers view
of the application domain’s universe of discourse. Additionally,
an analysis of the data model of other OLAP tools showed that in
general our list of limitations presented in section 5 is a good
classification of OLAP tool limitations. Thus, implementing
handlers for these limitations, it is possible to keep large parts of
the generation component independent of the actual target system
(of course, the code generation is always tool specific).

These results show that a generation is generally feasible and
useful, encouraging further research work in this direction. For
example, generation of schemata is only useful during the initial
design phase when no data has been loaded into the system yet.
During later iterations of the design cycle, changes to the schema
also have take the existing data into account. This schema
evolution issue for OLAP systems has been extensively discussed
in [1].

OLAP tools offer different tuning parameters for the
implementation of a logical multidimensional schema on the

physical layer (e.g. snowflake schema vs. starschema, sparsity
handling mechanisms). In order to exploit these mechanisms it is
necessary to have information exceeding the information
contained in the static schema (e.g. concerning the typical
workload). Therefore, it seems promising to research the
possibility of using larger parts of the warehouse metamodel (e.g.
the dynamic view) as input to the generation process.

8. REFERENCES
[1] M. Blaschka: FIESTA – A Framework for Schema Evolution

in Multidimensional Databases, PhD thesis, Technische
Universität München, Germany, 2000.

[2] Dan Bulos. OLAP database design: A new dimension.
Database Programming&Design, Vol. 9(6), June 1996.

[3] L. Cabibbo, R. Torlone: From a Procedural to a Visual
Query Language for OLAP. In 10th IEEE Int. Conference on
Scientific and Statistical Database Management (SSDBM
98), Capri, Italy, 1998.

[4] M. Golfarelli, D. Maio, S. Rizzi: Conceptual design of data
warehouses from E/R schemes. In Proc. of the 31st Hawaii
Int. Conference on System Sciences (HICSS’98), Hawaii,
USA January 1998.

[5] M. Golfarelli, S. Rizzi: A Methodological Framework for
Data Warehouse Design, In Proc. of the 1st International
Workshop on Data Warehousing and OLAP (DOLAP),
Washington, DC, USA, 1998.

[6] K. Hahn, C. Sapia, M. Blaschka: Automatically Generating
OLAP Schemata from Conceptual Graphical Models,
Technical Report, FORWISS, Munich, Germany, October
2000, www.forwiss.tu-muenchen.de/~system42/publications

[7] A. Harren, O. Herden: Conceptual Modeling of Data
Warehouses, Poster, ER 1999.

[8] R. Müller, Th. Stöhr, E. Rahm: An Integrative and Uniform
Model for Metadata Management in Data Warehousing
Environments, In Proc. of the Int. Workshop on Design and
Management of Data Warehouses (DMDW), Heidelberg,
Germany, 1999.

[9] J. Rekers, A. Schürr: Defining and Parsing Visual
Languages with Layered Graph Grammars, Journal of
Visual Languages and Computing 8(1): 27-55, 1997

[10] C. Sapia: On Modeling and Predicting User Behavior in
OLAP Systems, In Proc. of the Int. Workshop on Design and
Management of Data Warehouses (DMDW’99), Heidelberg,
Germany, 1999.

[11] C. Sapia, M. Blaschka, G. Höfling, B. Dinter: Extending the
E/R Model for the Multidimensional Paradigm, In Int.
Workshop on Data Warehouse and Data Mining
(DWDM’98), Singapore, 1998.

[12] C. Sapia, M. Blaschka, G. Höfling: GraMMi -Using a
Standard Repository Management System to build a Generic
Modeling Tool, In Proc. Hawaii Int. Conference on System
Sciences (HICSS’00), Maui, Hawaii, USA, 2000.

[13] J. Trujillo, M. Palomar, J. Gómez: The GOLD Definition
Language (GDL): An Object Oriented Formal Specification
Language For Multidimensional Databases, In Proc. ACM
Symposium on Applied Computing (SAC’00), Como. Italy,
2000

16

