
Automatically Generating Summary Visualizations from Game Logs

Yun-Gyung Cheong*, Arnav Jhala†, Byung-Chull Bae†, and R. Michael Young†

†Liquid Narrative Group, Department of Computer Science, North Carolina State University
*AMC Part, Graphics&OS Group, SAIT, Samsung Electronics, Co., LTD.

Abstract
In this paper we describe a system called ViGLS
(Visualization of Game Log Summaries) that generates
summaries of gameplay sessions from game logs. ViGLS
automatically produces visualization of the summarized
actions that are extracted based on cognitive models of
summarization. ViGLS is implemented using a service-
oriented architecture, de-coupling the summarization
methods from any particular game engine being used. The
camera code libraries used in visualization are based on
constraint based camera control approaches and, in our
implementation, make use of the scripting layer of the
Unreal game engine.

1. Introduction
Advances in game hardware and market demand are
motivating game makers to expand the narrative content
and style of interaction within new game titles. For most
players, the process of playing a game is broken across
many relatively short sessions. Players of single player
games often play a single game over the course of weeks
or months, saving game state at the end of each session and
continuing from the saved state upon returning to the game
later. Players of Massively Multi-player Online Role
Playing Games (MMORPGs) also participate in gameplay
over extended periods of time (though in their cases, game
play may continue in their absence). It has been reported
that players can become extremely involved in these virtual
worlds for extended periods of time (Griffiths et al., 2003).
 As gameplay sessions become shorter relative to the
overall length of a game and the complexity of the
interaction within game environments increases, a
summary of past gameplay can make the gameplay more
enjoyable to the player in single player games. Further,
game summaries provided to players in multi-player
persistent world games could help players maintain context
and engagement in their games during times when they are
not logged in.
 In the work we describe here, we use a 3D game engine
to visualize a summary of game play derived from game
logs. This visual approach to summarization may be more
accessible for gamers used to experiencing the rich 3D
interfaces when interacting with their game worlds.
Further, since our system generates its summaries using the

same engine where the original game engine occurred
actions can be recreated (almost) exactly as they were
executed.

2. Related Work
Story Summarization: The problem of creating concise
textual summaries of stories has been addressed by several
researchers (Capus and Touringy 2003; Lehnert 1981). The
GARUCAS framework, developed by Capus and Touringy
(2003), summarizes a new story using stored cases
representing stories and their summarization methods.
When no directly matched cases are found for an input
story to be summarized, GARUCAS builds a structure
composed of plot units that describe the change of
emotional states for the characters. Then, a case that shares
the largest parts in structure with the input story is selected
and the system utilizes its summarization method to extract
core events from the input story. As a result, the system
produces a qualitatively effective summary when a similar
case to the input story is retrieved. When such cases are not
found, however, GARUCAS requires manual annotation of
the input story for the system to identify plot units.
 In contrast, automated commentary generation systems
(Tanaka-Ishii et al. 1998; Voelz et al. 1999; André et al.
2000) take as input raw log data and produce textual
descriptions of action. Their objective, however, is to
produce individual text components that describe each
action in the log; they do not focus on managing the
coherence of the overall summary text output.

Video Summarization: As an effort to provide online
summarization of a conventional television drama, Jung et
al. (2007) describe the Narrative Abstraction Model, used
to extract significant scenes from a video source by
analyzing the changes in each shot’s visual style (e.g.,
lighting, color contrast, shot edits, spatial and temporal
relationships). Although the model provides a complete
solution to extracting a narrative-based summary from a
raw video clip, its focus on visual editorial techniques as
keys to signal scene significance may limit its applicability
in media where these visual editorial are absent. To
overcome these problems, we present a generic narrative
summarization model that utilizes task-based knowledge
(i.e., causal relations) of a given gaming experience.

Game Log Summarization: To enhance the functionality of
narrative summarization of game experiences we draw

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference

167

upon research in cognitive and computational models of
narrative summarization. This work builds on previous
text-based approaches to game log summarization (Cheong
and Young 2006) by extending the model for selecting
important events from the game logs. Further, we utilize
the rendering capabilities of game engines to re-create
sequences of actions, providing effective summary videos
to players.
 In this work, we assume that actions included in game
logs collectively represent goal directed behavior on the
part of the player. We restrict our discussion here to game
logs that are created by players following the rules of the
game and actively trying to achieve the game objectives.
Players may execute actions that do not eventually
contribute to the objective of the game during their
exploration process. All these actions are included in the
game logs. From these actions, a set of salient events can
be identified by their causal and temporal relationship to
the goal of the plans (that correspond to game objectives).
 We rely upon cognitive models of story recall (Trabasso
and Sperry 1985) and question-answering in the context of
stories (Graesser et al. 1991) to determine the importance
of salient actions found in game logs. Intelligent camera
control systems (Jhala and Young 2006) on game engines
provide the framework for controlling game cameras to
satisfy given viewing constraints. This technology is used
here to manage execution and visualization of summarized
actions. Our approach involves three tasks: translating a
game log into a plan structure, constructing a summary
centered on important events in a coherent manner, and
executing the actions in the resulting summary with
automated camera control for visualization. These tasks are
incorporated in a framework called ViGLS (Visualization
of Game Log Summaries – pronounced: wiggles).

3. ViGLS: Visualization of Game Log
Summaries

In this section we present ViGLS, a framework for
summarizing game experiences as narratives. As illustrated
in Figure 1, ViGLS has a pipeline architecture consisting of
three components: a log analyzer, a summarizer, and a
visualizer. The log analyzer takes a game log as input and
generates a sequence of actions structured as a totally
ordered plan that achieves the immediate objectives of the
game. The summarizer utilizes the resulting plan data
structure to identify essential elements that can be included
in an effective summary of the game’s events. Finally the
summarized narrative is sent to the visualizer that adds
constraints for the in-game virtual camera for visualizing
the summary actions. An execution manager in the game
engine manages the execution of summary actions as well
as camera control. The following subsections discuss each
component in detail.

Figure 1. Pipeline Architecture of ViGLS

3.1 The Log Analyzer
Text files that record events in a game engine during
player’s gameplay sessions are called game logs.
Traditionally, logs contain administrative information and
game state messages, although there is some consideration
of expanding the typical information they track (Garner
2004). In this work we create custom logs that record time
stamped actions that players execute including relevant
game state information. This representation provides a
textual (ASCII) characterization of a player’s activity
during an entire gameplay session.
 Plan data structures in artificial intelligence typically
represent sequences of actions and the causal and temporal
relationships between them (Weld 1994). Each action in a
plan is called a step. The enabling conditions of a step are
called preconditions. The conditions in the world changed
by a step’s execution are called the step’s effects. Any two
steps in a plan are connected by a causal link just when an
effect of the first step enables a precondition of the later
step. In order to better reason about relationships between
player’s actions and to determine their relative importance,
the actions present in the logs are converted to a plan data
structure. Each action that is present in the log is added to a
partial plan by instantiating a plan step. For instance,
consider the log entry T4: Barman gave Lane Booze. This is
matched with a plan step template in the action library of
the system. This template is given here:

Action: Give
Parameters: ?giver, ?taker, ?thing
Constraints: (person ?giver)(person ?taker)(thing ?thing)
Preconditions: (has ?giver ?thing)
Effects: (has ?taker ?thing) (not (has ?giver ?thing))

For this research, we use the plan structure generated by
the Longbow planner, a hierarchical, partial-order causal
link planner (Young et al., 1994)1. In our current work, a
plan is represented as a totally ordered series of plan steps;
assuming that action descriptions written in source log files
appear in the actual order of execution, plans resulting
from the log files’ transcription should be directly
executable within the game environment.

Converting Game Logs into Plan Data Structures
We illustrate the plan building process through an example
shown in Figure 2, drawn from a domain called
WestWorld executing in the Unreal game engine. In this

1 For brevity, we discuss only a non-hierarchical version of
Longbow here.

168

particular example, the user plays the character Lazarus
Lane and is given the objective of getting a bottle of booze
from the local bartender. The player first moves to the
bank during the exploration process, not knowing the
location of the bar. Then the user threatens the bartender
with a gun (as her character does not have money to buy
the booze) and eventually obtains the bottle. Given the log
of these events, the log analyzer first converts the log
messages into a sequence of instantiated actions based on a
library of action class templates similar to the one shown
above.
 Next, the system creates an empty plan P with its first
step INIT, describing the initial game world as its effects,
and the last step FINISH, describing the goal state as its
preconditions. It then inserts the instantiated actions from
the log into his plan structure, ordering them between the
INIT and FINISH steps. Finally, the system establishes
causal links to establish the preconditions of every step in
P. A causal link is created for each unifying effect-
precondition pair of actions in P. This is done through
backward chaining from the FINISH step to the INIT step.
After adding causal links for all of the plan’s steps’
preconditions, the system reviews each step and deletes
any that do not contribute at least one causal link drawn
from an effect. The complete plan P (as the diagram in
Figure 3) is passed to the summarizer that is described in
the next section.

3.2 The Summarizer
The summarizer performs two tasks on the plan generated
by the log analyzer: kernel extraction and coherency
checking. Kernels refer to essential story events that cannot
be eliminated from a potential summary without harming
the reader’s story understanding (Chatman 1978). As
illustrated in Figure 4, the summarizer is composed of
three subcomponents: a) the kernel extractor extracts
kernels from the given plan by measuring the importance
or weight of each plan step, b) the coherency evaluator
checks the coherency of a potential summary, and c) the
viewer model characterizes a viewer’s preference and
elements of his or her narrative comprehension process.

Figure 4. Architecture of the Summarizer

The Kernel Extractor
The kernel extractor determines which story events (or
steps) in a plan are most important for the story’s summary
and uses this evaluation to construct kernels. To select
important story events for kernels, the kernel extractor
rates the significance of each step in the story plan by
taking into account two factors: (1) the causal relationships
of each action with other actions and the goal state and (2)
the viewer’s preference in the viewer model. The relative
weights of these two factors are controlled by coefficients
that can be set by the system designer. In this section, we
describe the role of each coefficient and its impact on the
summary. Specifically, two coefficients associated with
characters and items are particularly relevant to game
environments.
 Our approach to analyze the causal relationship among
story events is based on the causal chain network model for
the story recall, devised by Trabasso and Sperry (1985).
This model asserts that the number of direct causal
connections into and out of a story action is closely related
to a reader’s recall of that action and his or her subjective
judgment of its importance to the story. Using the causal
network model as a starting point, we define three types of
elements to characterize events in a story plan: the opening
act, the closing act, and the motivating act. Opening acts
are the first actions in the story – those that connect
propositions from the initial state to later events; closing
acts are the last actions that occur in the story; motivated
acts are plan steps that directly connect to the goal state.
 As the summarizer takes a plan-structured log from the
log analyzer, it analyzes the characteristics of the plan
structure in terms of the causal relationships between steps,
each character’s importance, and each item’s importance.
The current version of the summarizer calculates the
importance of characters and items based on the frequency
with which the character or items play a role in the story’s
actions relative to the overall set of events in the story.
 After the kernel extractor finishes the analysis of causal
relationships, character importance, and item importance, it
calculates w(a), the final importance of step a, using the
following equation:

())()()()()()()(aITkaCHkaOUTkaINITkaINkkaw itchoini
aCC

c ++++⋅= (1)

T1: Player “Lane” moved from “Bank” to “Bar”.
T2: Player “Lane” looked at “Barman”.
T3: Player “Lane” threatened “Barman” with “Gun”.
T4: Character “Barman” gave “Lane” “Booze”

Figure 2. A game log example

Figure 3. A plan that is converted from the game log

IN
IT

MoveToTarget(Lane, Bar)

LookAt(Lane, Barman) Threaten(Lane, Barman, Gun)

Give(Barman, Lane, Booze) FIN
IS

H

IN
IT

MoveToTarget(Lane, Bar)

LookAt(Lane, Barman) Threaten(Lane, Barman, Gun)

Give(Barman, Lane, Booze) FIN
IS

H

169

Here IN(a) returns the number of incoming causal links to
step a except the links that originate from the initial state;
INIT(a) returns the number of incoming causal links from
the initial state to step a; OUT(a) returns the number of a’s
outgoing causal links when cc(a) returns the causal chain
value of a; ki, kin, ko, and kc are coefficients for causal
relationships; kch and kit are coefficients for character
importance and item importance; CH(a) and IT(a) return
the character importance and the item importance
respectively; CC(a) represents the causal chain value of an
event that is determined by the event’s causal chain type.
 In this formula significant categories, such as motivated
acts, are assigned higher integer values in order to increase
the likelihood that they will be selected as kernels. The
particular values for these coefficients can be determined
empirically. For instance, to increase the contribution of
causal relationships to the summary, the coefficients ki, kin,
ko, and kc can be set to any positive real numbers greater
than 1. In contrast, setting these coefficients to real
numbers between 0 and 1 will reduce their effects on the
summary.
 After computing the importance of each story event, the
top N events are identified as kernels. The value for N can
be set by the user as a desired story length, or it can be
calculated from a predefined ratio against the total number
of actions in the plan. The kernel extractor sends these N
kernels and their importance values to the coherency
evaluator.

The Coherency Evaluator and the Viewer Model
Studies suggest that plan-related reasoning process in
humans can be modeled effectively by partial-order
planning algorithms (Rattermann 2001) and that
refinement search (Kambhampati et al. 1995) – the plan
construction process performed by the planning system
used here – can be used essentially as a surrogate to
characterize a user’s plan reasoning process (Young 1999).
To determine if a given set of kernels will appear to a user
as a coherent story summary, we exploit a plan-based
model of the user’s anticipated comprehension process
when viewing the candidate summary. This viewer model
is composed of a reasoning algorithm, a reasoning resource
bound, task knowledge describing the story world’s
domain, and a representation of the user’s preferences for
action sequences. The model is implemented using the
Longbow planning system (Young et al. 1994).
 To evaluate a set of candidate kernels, the viewer model
uses its planning algorithm to re-create a complete set of
plan actions that lead to achievement of the story
objectives (including less important but causally relevant
actions). If a complete plan can be constructed from the
kernels, we rate the set of kernels as coherent. Otherwise,
the coherency evaluator adds actions to the candidate set in
the order of importance until it finds a set of kernels that
lead to a complete plan, at which point it terminates.

3.3. The Visualizer and the Execution
Environment
The summary of actions selected by the summarizer is
visualized by:

1) Selecting appropriate camera placement parameters for
viewing the actions in the summary plan (essentially
choosing camera shots).

2) Taking character actions from the summary plan and
executing them in a game world, concurrently maintaining
the camera positions to film the actions and avoid
occlusions with scene geometry.

Task 1 is carried out by a shot planner and Task 2 is
handled by an execution manager implemented on the
Unreal game engine.

Shot Planner: The action summary generated by the
skeleton builder is a plan data structure specifying, among
other details, the sequence of summarized actions. This
action sequence is input to a camera shot planner (Jhala
and Young 2006) that determines appropriate shot types
and shot sequences needed to film the input actions. The
camera planner’s directives maintain focus of the camera
on the salient elements of each action in the summary and
specify appropriate camera visualization parameters. The
parameters for camera actions are bound through
constraints that refer to the story actions filmed by the
camera. Each camera action starts at the beginning of the
execution of the relevant story action and maintains focus
till the beginning of the next action. The plan operator for a
camera’s track action is shown below.

Operator: Track-Actor-Absolute
Description: Tracks an object at an absolute distance and angle.
Parameters: ?obj, ?shot-type, ?shot-angle,
?tstart, ?tend, ?tsetup, ?teasein
Preconditions: (focus ?obj ?shot-type ?shotangle)@[?tstart)
Constraints: (> 10 (- ?tend ?tstart)) (agent ?step ?obj)
Effects: (tracked ?obj ?shot-type ?shotangle)@[?tstart, ?tend)
(Bel V (Occurs ?act))

 Each story action in a summary is also associated with a
text action that executes as a subtitle describing the action.
These subtitles are built using simple text templates that
are filled in by the parameters bound by the story action.
The summary visualization is executed and recorded using
the Zocalo service-oriented architecture for interactive
storytelling (Young et al. 2004). An application written in
C# schedules the execution of actions by dispatching them
in the order specified by the planning algorithm, sending
SOAP commands to control the game engine via a socket
connection.

Execution Manager: An action executor process
implemented on the game engine reads the SOAP plan and
runs methods corresponding to each of the plan’s actions
within the game engine (each operator in the story plan is
represented by an action method with matching

170

parameters). Each action method contains functions for
checking preconditions, executing the body of the action,
and verifying that effects of the action hold after it
completes. The general action class signature is as follows:

Class Track-Actor-Absolute extends ZAction_ZCamera
 Actor ObjectOfAttention;
 …. Other Parameters …
 function checkPreconds() { … }
 state executing {
 function tick {
 maintainCameraConstraints();
 }
 }
 function assertEffects() { … }
 function markasexecuted{ return bSuccess; }

 Action classes on the game engine are of three types:
controller action classes control character actions in the
game environment and are responsible for playing
appropriate character or object animations, sub-title action
classes execute as informational text overlays on the screen
and use a fixed set of text-templates, camera action classes
execute by updating a global set of geometric constraints
on the properties of the game engine’s camera.
 An automated cinematographer continually computes
camera positions to satisfy the current set of constraints set
by the executing camera action classes. This process
executes in real-time and ensures occlusion free viewing of
actions. Our execution management module is based on the
Mimesis architecture developed by (Young et al. 2004).
The algorithm for planning camera movements and their
execution is described in more detail by Jhala and Young
(2006).

4. Example
This section presents an example of a visualized summary
of a game experience produced by ViGLS. Section 4.1
describes a text summary generated by the summarizer,
taking as input a plan-structured game log that is the output
of the log analyzer. Section 4.2 shows a visualization of the
summary generated in Section 4.1.

[15] Lane moved to the bank. [14] Lane moved to the bar. [13]
Lane looked at the barman. [12] Lane threatened the barman
with a gun. [11] The threatened barman gave Lane a bottle of
booze that he had. [10] Lane moved to the bank. [9] Lane
moved to the smithy. [8] Lane looked at the blacksmith. [7]
Lane bribed the blacksmith with the booze with him. [6] The
bribed blacksmith gave Lane a machete that he had. [5] Lane
moved to the bank. [4] Lane looked at the teller. [3] Lane bribed
the teller with the machete. [2] The bribed teller gave Lane gold
that she had.

Figure 5. Story created by Longbow realized into text

4.1. Summarization
The output of the summarizer is a set of important actions
selected from the plan-structured input log data. As shown
in Figure 5, we realized the input story plan into text using
simple templates (here one sentence represents a single
action in the plan). In the story the protagonist Lane plans
to threaten a barman, bribe a blacksmith, and bribe a teller
to get gold in the bank.
 As described above, manipulating coefficient values in
the summarizer setting will bring in different summary
results. For instance, with default coefficient settings –
where ki= 3.0, kin=1.0, ko=3.0, kc=1.0, kch=0.5, and kit=0.3;
Opening/Closing factors=1.0; Motivated factor=2.0 –, the
summarizer determines actions #2, #3, #7, #6, and #9 (#2
is the action with the highest importance value) as kernels
consisting of five actions. With the same factors except the
modification of kin (the coefficient associated with the
number of incoming causal links from the initial state)
from 1.0 to 3.0, the summarizer determines actions #2, #3,
#6, #7, and #12 as the kernels. Future studies will seek to
determine how to set these values to reflect viewers’
preferences.

4.2. Visualization of the Summary
As explained in Section 3.3, a visualization of the
summary is created by sending the summary plan –
including character actions, text actions, and camera
actions — to the game engine’s execution environment.
Figure 6 presents screenshots taken from the output of the
visualization. Due to space limitations, subtitles in these
screenshots are too small to be read here. In summary,
Plate 1 in the picture shows Lane threatening the bartender.
Plate 2 on the right shows the bartender giving the bottle to
Lane. In Plate 3, Lane is seen leaving the bar with the
bottle. The rest of the plates show Lane at the bank bribing
the teller to get gold.

5. Discussion
This paper describes a framework for summarizing game
experiences by translating a game log into a plan data
structure, then extracting essential events from the plan
based on their causal relationships to the story goals.
Summaries created by the algorithm are based on cognitive
models of narrative comprehension. The algorithm can be
applied to different domains by manipulating the co-
efficient values appropriate for each domain.
 We build on our previous work developing methods for
executing game engine events and controlling a 3D camera
dynamically to create effective videos for the generated
summaries. In future work, we plan to conduct user studies
to evaluate the effectiveness of summaries presented in a
visual form compared to traditional text based summaries.
Our assumption is that game players will prefer visual
summaries with descriptive sub-title text over text-only
summaries.

171

Figure 6. Automatically generated summary visualization

 This work advances previous work on game log
summarization with two main contributions. First, ViGLS
generates summaries in the visual medium by procedurally
re-creating the summary on the game engine. Second, we
describe in detail the impact of various coefficients in the
summarization algorithm and extend the summarization
model to include additional coefficients that represent the
importance of characters and objects in the game.

6. Acknowledgements
The authors wish to thank the Lawdogs Unreal mod team
for use of the Lawdogs mod in the construction of the
WestWorld game environment. Portions of this work were
supported by NSF CAREER Award # 0092586 and Award
#0414722.

References
André, E., Binsted, K., Tanaka-Ishii, K., Luke, S., Herzog,
G., and Rist, T. 2000. Three RoboCup Simulation League
Commentator Systems. AI Magazine 21(1):57-66.
Capus, L. and Tourigny, N. 2003. A case-based reasoning
approach to support story summarization. International
Journal of Intelligent Frameworks 18: 877-891.
Chatman, S. 1978. Story and Discourse: Narrative
Structure in Fiction and Film. Ithaca, NY: Cornell
University Press.

Cheong, Y. and Young, R. M. 2006. A framework for
summarizing game experiences as narratives. In
Proceedings of AIIDE-06.
Graesser, A.C., Lang, K.L., & Roberts, R.M. 1991.
Question answering in the context of stories. Journal of
Experimental Psychology: General 120(3): 254-277.
Garner, S. 2004 June 24. Half-Life Standard Log Format
Specification version 1.03. < http://www.hlstats.org/logs/>.
Accessed 2006 March 24.
Griffiths, M. D., Davies, M.N.O. & Chappell, D. 2004.
Online computer gaming: a comparison of adolescent and
adult gamers. Journal of Adolescence 27: 87-96.
Jhala, A. & Young, R. M., Representational requirements
for a plan based approach to automated camera control.
2006. In Proceedings of AIIDE-06.
Jung, B., et al. 2007. A narrative-based abstraction
framework for story-oriented video. ACM Transactions on
Multimedia Computing, Communications and Applications
3(2), Article No.11.
Kambhampati, S., Knoblock, C. A., and Yang, Q. 1995.
Planning as Refinement Search: A Unified Framework for
Evaluating Design Tradeoffs in Partial-Order Planning.
Artificial Intelligence 76(1-2): 167-238.
Lehnert, W.G. 1981. Plot units and narrative
summarization. Cognitive Science 5(4): 293-331
Rattermann, M. J., Spector, L., Grafman, J., Levin, H. and
Harward, H. 2002. Partial and total-order planning:
evidence from normal and prefrontally damaged
populations. Cognitive Science 25(6): 941-975.
Tanaka-Ishii, K., Noda, I., Frank, I., Nakashima, H.,
Hasida, K., and Matsubara, H. 1998. ‘MIKE: An automatic
commentary framework for soccer. In Proceedings of
ICMAS, 285– 292.
Trabasso, T. and Sperry, L.L. 1985. Causal Relatedness
and Importance of Story Events. Journal of Memory and
Language 24: 595-611.
Voelz, D., André, E., Herzog, G., and Rist, T. 1999.
Rocco: A RoboCup Soccer Commentator Framework. M.
Asada and H. Kitano (eds.): RoboCup-98, LNAI 1604: 50-
60, Springer-Verlag Heidelberg Berlin.
Weld, D. An Introduction to Least Commitment Planning.
1994. AI Magazine 15(4): 27-61.
Young, R.M., Pollack, M.E., and Moore, J.D. 1994.
Decomposition and causality in partial-order planning. In
Proceedings of AIPS-94, 188-194.
Young, R.M. 1999. Using Grice's Maxim of Quantity to
Select the Content of Plan Descriptions. Artificial
Intelligence 115(2): 215-256.
Young, R.M., Riedl, M., Branly, M., Jhala, A., Martin, R.
J. and Saretto, C.J. 2004. An architecture for integrating
plan-based behavior generation with interactive game
environments. Journal of Game Development 1(1).

172

