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Abstract  
In this paper we describe a system called ViGLS 
(Visualization of Game Log Summaries) that generates 
summaries of gameplay sessions from game logs. ViGLS 
automatically produces visualization of the summarized 
actions that are extracted based on cognitive models of 
summarization. ViGLS is implemented using a service-
oriented architecture, de-coupling the summarization 
methods from any particular game engine being used. The 
camera code libraries used in visualization are based on 
constraint based camera control approaches and, in our 
implementation, make use of the scripting layer of the 
Unreal game engine. 

1. Introduction   
Advances in game hardware and market demand are 
motivating game makers to expand the narrative content 
and style of interaction within new game titles. For most 
players, the process of playing a game is broken across 
many relatively short sessions. Players of single player 
games often play a single game over the course of weeks 
or months, saving game state at the end of each session and 
continuing from the saved state upon returning to the game 
later. Players of Massively Multi-player Online Role 
Playing Games (MMORPGs) also participate in gameplay 
over extended periods of time (though in their cases, game 
play may continue in their absence).  It has been reported 
that players can become extremely involved in these virtual 
worlds for extended periods of time (Griffiths et al., 2003).  
 As gameplay sessions become shorter relative to the 
overall length of a game and the complexity of the 
interaction within game environments increases, a 
summary of past gameplay can make the gameplay more 
enjoyable to the player in single player games.  Further, 
game summaries provided to players in multi-player 
persistent world games could help players maintain context 
and engagement in their games during times when they are 
not logged in.  
 In the work we describe here, we use a 3D game engine 
to visualize a summary of game play derived from game 
logs. This visual approach to summarization may be more 
accessible for gamers used to experiencing the rich 3D 
interfaces when interacting with their game worlds. 
Further, since our system generates its summaries using the 
                                                 

same engine where the original game engine occurred  
actions can be recreated (almost) exactly as they were 
executed.  

2. Related Work 
Story Summarization: The problem of creating concise 
textual summaries of stories has been addressed by several 
researchers (Capus and Touringy 2003; Lehnert 1981). The 
GARUCAS framework, developed by Capus and Touringy 
(2003), summarizes a new story using stored cases 
representing stories and their summarization methods. 
When no directly matched cases are found for an input 
story to be summarized, GARUCAS builds a structure 
composed of plot units that describe the change of 
emotional states for the characters. Then, a case that shares 
the largest parts in structure with the input story is selected 
and the system utilizes its summarization method to extract 
core events from the input story. As a result, the system 
produces a qualitatively effective summary when a similar 
case to the input story is retrieved. When such cases are not 
found, however, GARUCAS requires manual annotation of 
the input story for the system to identify plot units.  
 In contrast, automated commentary generation systems 
(Tanaka-Ishii et al. 1998; Voelz et al. 1999; André et al. 
2000) take as input raw log data and produce textual 
descriptions of action.  Their objective, however, is to 
produce individual text components that describe each  
action in the log; they do not focus on managing the 
coherence of the overall summary text output. 
 
Video Summarization: As an effort to provide online 
summarization of a conventional television drama, Jung et 
al. (2007) describe the Narrative Abstraction Model, used 
to extract significant scenes from a video source by 
analyzing the changes in each shot’s visual style (e.g., 
lighting, color contrast, shot edits, spatial and temporal 
relationships). Although the model provides a complete 
solution to extracting a narrative-based summary from a 
raw video clip, its focus on visual editorial techniques as 
keys to signal scene significance may limit its applicability 
in media where these visual editorial are absent. To 
overcome these problems, we present a generic narrative 
summarization model that utilizes task-based knowledge 
(i.e., causal relations) of a given gaming experience. 
 
Game Log Summarization: To enhance the functionality of 
narrative summarization of game experiences we draw 
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upon research in cognitive and computational models of 
narrative summarization. This work builds on previous 
text-based approaches to game log summarization (Cheong 
and Young 2006) by extending the model for selecting 
important events from the game logs. Further, we utilize 
the rendering capabilities of game engines to re-create 
sequences of actions, providing effective summary videos 
to players.  
 In this work, we assume that actions included in game 
logs collectively represent goal directed behavior on the 
part of the player. We restrict our discussion here to game 
logs that are created by players following the rules of the 
game and actively trying to achieve the game objectives. 
Players may execute actions that do not eventually 
contribute to the objective of the game during their 
exploration process. All these actions are included in the 
game logs. From these actions, a set of salient events can 
be identified by their causal and temporal relationship to 
the goal of the plans (that correspond to game objectives). 
 We rely upon cognitive models of story recall (Trabasso 
and Sperry 1985) and question-answering in the context of 
stories (Graesser et al. 1991) to determine the importance 
of salient actions found in game logs.  Intelligent camera 
control systems (Jhala and Young 2006) on game engines 
provide the framework for controlling game cameras to 
satisfy given viewing constraints. This technology is used 
here to manage execution and visualization of summarized 
actions. Our approach involves three tasks: translating a 
game log into a plan structure, constructing a summary 
centered on important events in a coherent manner, and 
executing the actions in the resulting summary with 
automated camera control for visualization. These tasks are 
incorporated in a framework called ViGLS (Visualization 
of Game Log Summaries – pronounced: wiggles). 

3. ViGLS: Visualization of Game Log 
Summaries 

In this section we present ViGLS, a framework for 
summarizing game experiences as narratives. As illustrated 
in Figure 1, ViGLS has a pipeline architecture consisting of 
three components: a log analyzer, a summarizer, and a 
visualizer. The log analyzer takes a game log as input and 
generates a sequence of actions structured as a totally 
ordered plan that achieves the immediate objectives of the 
game. The summarizer utilizes the resulting plan data 
structure to identify essential elements that can be included 
in an effective summary of the game’s events. Finally the 
summarized narrative is sent to the visualizer that adds 
constraints for the in-game virtual camera for visualizing 
the summary actions. An execution manager in the game 
engine manages the execution of summary actions as well 
as camera control. The following subsections discuss each 
component in detail. 
 

 
Figure 1. Pipeline Architecture of ViGLS 

3.1 The Log Analyzer 
Text files that record events in a game engine during 
player’s gameplay sessions are called game logs. 
Traditionally, logs contain administrative information and 
game state messages, although there is some consideration 
of expanding the typical information they track (Garner 
2004). In this work we create custom logs that record time 
stamped actions that players execute including relevant 
game state information. This representation provides a 
textual (ASCII) characterization of a player’s activity 
during an entire gameplay session. 
 Plan data structures in artificial intelligence typically 
represent sequences of actions and the causal and temporal 
relationships between them (Weld 1994). Each action in a 
plan is called a step. The enabling conditions of a step are 
called preconditions. The conditions in the world changed 
by a step’s execution are called the step’s effects.  Any two 
steps in a plan are connected by a causal link just when an 
effect of the first step enables a precondition of the later 
step. In order to better reason about relationships between 
player’s actions and to determine their relative importance, 
the actions present in the logs are converted to a plan data 
structure. Each action that is present in the log is added to a 
partial plan by instantiating a plan step. For instance, 
consider the log entry T4: Barman gave Lane Booze. This is 
matched with a plan step template in the action library of 
the system. This template is given here: 
 
Action: Give 
Parameters: ?giver, ?taker, ?thing 
Constraints: (person ?giver)(person ?taker)(thing ?thing) 
Preconditions: (has ?giver ?thing) 
Effects: (has ?taker ?thing) (not (has ?giver ?thing)) 
 
For this research, we use the plan structure generated by 
the Longbow planner, a hierarchical, partial-order causal 
link planner (Young et al., 1994)1. In our current work, a 
plan is represented as a totally ordered series of plan steps; 
assuming that action descriptions written in source log files 
appear in the actual order of execution, plans resulting 
from the log files’ transcription should be directly 
executable within the game environment.  
 
Converting Game Logs into Plan Data Structures  
We illustrate the plan building process through an example 
shown in Figure 2, drawn from a domain called 
WestWorld executing in the Unreal game engine. In this 

                                                 
1 For brevity, we discuss only a non-hierarchical version of 
Longbow here. 
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particular example, the user plays the character Lazarus 
Lane and is given the objective of getting a bottle of booze 
from the local bartender. The player first moves to the 
bank during the exploration process, not knowing the 
location of the bar. Then the user threatens the bartender 
with a gun (as her character does not have money to buy 
the booze) and eventually obtains the bottle. Given the log 
of these events, the log analyzer first converts the log 
messages into a sequence of instantiated actions based on a 
library of action class templates similar to the one shown 
above.  
 Next, the system creates an empty plan P with its first 
step INIT, describing the initial game world as its effects, 
and the last step FINISH, describing the goal state as its 
preconditions. It then inserts the instantiated actions from 
the log into his plan structure, ordering them between the 
INIT and FINISH steps. Finally, the system establishes 
causal links to establish the preconditions of every step in 
P. A causal link is created for each unifying effect-
precondition pair of actions in P. This is done through 
backward chaining from the FINISH step to the INIT step. 
After adding causal links for all of the plan’s steps’ 
preconditions, the system reviews each step and deletes 
any that do not contribute at least one causal link drawn 
from an effect. The complete plan P (as the diagram in 
Figure 3) is passed to the summarizer that is described in 
the next section. 

3.2 The Summarizer 
The summarizer performs two tasks on the plan generated 
by the log analyzer: kernel extraction and coherency 
checking. Kernels refer to essential story events that cannot 
be eliminated from a potential summary without harming 
the reader’s story understanding (Chatman 1978). As 
illustrated in Figure 4, the summarizer is composed of 
three subcomponents: a) the kernel extractor extracts 
kernels from the given plan by measuring the importance 
or weight of each plan step, b) the coherency evaluator 
checks the coherency of a potential summary, and c) the 
viewer model characterizes a viewer’s preference and 
elements of his or her  narrative comprehension process.  
 

 
Figure 4. Architecture of the Summarizer 

 
The Kernel Extractor 
The kernel extractor determines which story events (or 
steps) in a plan are most important for the story’s summary 
and uses this evaluation to construct kernels. To select 
important story events for kernels, the kernel extractor 
rates the significance of each step in the story plan by 
taking into account two factors: (1) the causal relationships 
of each action with other actions and the goal state and (2) 
the viewer’s preference in the viewer model. The relative 
weights of these two factors are controlled by coefficients 
that can be set by the system designer. In this section, we 
describe the role of each coefficient and its impact on the 
summary. Specifically, two coefficients associated with 
characters and items are particularly relevant to game 
environments. 
 Our approach to analyze the causal relationship among 
story events is based on the causal chain network model for 
the story recall, devised by Trabasso and Sperry (1985).  
This model asserts that the number of direct causal 
connections into and out of a story action is closely related 
to a reader’s  recall of that action and his or her subjective 
judgment of its importance to the story. Using the causal 
network model as a starting point, we define three types of 
elements to characterize events in a story plan: the opening 
act, the closing act, and the motivating act. Opening acts 
are the first actions in the story – those that connect 
propositions from the initial state to later events; closing 
acts are the last actions that occur in the story; motivated 
acts are plan steps that directly connect to the goal state. 
 As the summarizer takes a plan-structured log from the 
log analyzer, it analyzes the characteristics of the plan 
structure in terms of the causal relationships between steps, 
each character’s importance, and each item’s importance. 
The current version of the summarizer calculates the 
importance of characters and items based on the frequency 
with which the character or items play a role in the story’s 
actions relative to the overall set of events in the story.  
 After the kernel extractor finishes the analysis of causal 
relationships, character importance, and item importance, it 
calculates w(a), the final importance of step a, using the 
following equation: 
 

( ) )()()()()()( )( aITkaCHkaOUTkaINITkaINkkaw itchoini
aCC

c ++++⋅=  (1) 

T1: Player “Lane” moved from “Bank” to “Bar”. 
T2: Player “Lane” looked at “Barman”.  
T3: Player “Lane” threatened “Barman” with “Gun”. 
T4: Character “Barman” gave “Lane” “Booze” 

Figure 2. A game log example 

Figure 3. A plan that is converted from the game log 

IN
IT

MoveToTarget(Lane, Bar)

LookAt(Lane, Barman) Threaten(Lane, Barman, Gun)

Give(Barman, Lane, Booze) FIN
IS

H

IN
IT

MoveToTarget(Lane, Bar)

LookAt(Lane, Barman) Threaten(Lane, Barman, Gun)

Give(Barman, Lane, Booze) FIN
IS

H
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Here IN(a) returns the number of incoming causal links to 
step a except the links that originate from the initial state; 
INIT(a) returns the number of incoming causal links from 
the initial state to step a; OUT(a) returns the number of a’s 
outgoing causal links when cc(a) returns the causal chain 
value of a; ki, kin, ko, and kc are coefficients for causal 
relationships;  kch and kit are coefficients for character 
importance and item importance; CH(a) and IT(a) return 
the character importance and the item importance 
respectively; CC(a) represents the causal chain value of an 
event that is determined by the event’s causal chain type. 
 In this formula significant categories, such as motivated 
acts, are assigned higher integer values in order to increase 
the likelihood that they will be selected as kernels. The 
particular values for these coefficients can be determined 
empirically. For instance, to increase the contribution of 
causal relationships to the summary, the coefficients ki, kin, 
ko, and kc can be set to any positive real numbers greater 
than 1. In contrast, setting these coefficients to real 
numbers between 0 and 1 will reduce their effects on the 
summary. 
 After computing the importance of each story event, the 
top N events are identified as kernels. The value for N can 
be set by the user as a desired story length, or it can be 
calculated from a predefined ratio against the total number 
of actions in the plan. The kernel extractor sends these N 
kernels and their importance values to the coherency 
evaluator. 
 
The Coherency Evaluator and the Viewer Model 
Studies suggest that plan-related reasoning process in 
humans can be modeled effectively by partial-order 
planning algorithms (Rattermann 2001) and that 
refinement search (Kambhampati et al. 1995) – the plan 
construction process performed by the planning system 
used here – can be used essentially as a surrogate to 
characterize a user’s plan reasoning process (Young 1999). 
To determine if a given set of kernels will appear to a user 
as a coherent story summary, we exploit a plan-based 
model of the user’s anticipated comprehension process 
when viewing the candidate summary. This viewer model 
is composed of a reasoning algorithm, a reasoning resource 
bound, task knowledge describing the story world’s 
domain, and a representation of the user’s preferences for 
action sequences.  The model is implemented using the 
Longbow planning system (Young et al. 1994).  
 To evaluate a set of candidate kernels, the viewer model 
uses its planning algorithm to re-create a complete set of 
plan actions that lead to achievement of the story 
objectives (including less important but causally relevant 
actions).  If a complete plan can be constructed from the 
kernels,   we rate the set of kernels as coherent. Otherwise, 
the coherency evaluator adds actions to the candidate set in 
the order of importance until it finds a set of kernels that 
lead to a complete plan, at which point it terminates. 

3.3. The Visualizer and the Execution 
Environment 
The summary of actions selected by the summarizer is 
visualized by: 

1) Selecting appropriate camera placement parameters for 
viewing the actions in the summary plan (essentially 
choosing camera shots). 

2) Taking character actions from the summary plan and 
executing them in a game world, concurrently maintaining 
the camera positions to film the actions and avoid 
occlusions with scene geometry. 

Task 1 is carried out by a shot planner and Task 2 is 
handled by an execution manager implemented on the 
Unreal game engine. 
 
Shot Planner: The action summary generated by the 
skeleton builder is a plan data structure specifying, among 
other details, the sequence of summarized actions. This 
action sequence is input to a camera shot planner (Jhala 
and Young 2006) that determines appropriate shot types 
and shot sequences needed to film the input actions.  The 
camera planner’s directives maintain focus of the camera 
on the salient elements of each action in the summary and 
specify appropriate camera visualization parameters. The 
parameters for camera actions are bound through 
constraints that refer to the story actions filmed by the 
camera. Each camera action starts at the beginning of the 
execution of the relevant story action and maintains focus 
till the beginning of the next action. The plan operator for a 
camera’s track action is shown below.  
 
Operator: Track-Actor-Absolute 
Description: Tracks an object at an absolute distance and angle. 
Parameters: ?obj, ?shot-type, ?shot-angle,  
?tstart, ?tend, ?tsetup, ?teasein 
Preconditions: (focus ?obj ?shot-type ?shotangle)@[?tstart) 
Constraints: (> 10 (- ?tend ?tstart)) (agent ?step ?obj) 
Effects: (tracked ?obj ?shot-type ?shotangle)@[?tstart, ?tend) 
(Bel V (Occurs ?act)) 
 
 Each story action in a summary is also associated with a 
text action that executes as a subtitle describing the action.  
These subtitles are built using simple text templates that 
are filled in by the parameters bound by the story action. 
The summary visualization is executed and recorded using 
the Zocalo service-oriented architecture for interactive 
storytelling (Young et al.  2004). An application written in 
C# schedules the execution of actions by dispatching them 
in the order specified by the planning algorithm, sending 
SOAP commands to control the game engine via a socket 
connection.  
 
Execution Manager: An action executor process 
implemented on the game engine reads the SOAP plan and 
runs methods corresponding to each of the plan’s actions 
within the game engine (each operator in the story plan is 
represented by an action method with matching 
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parameters). Each action method contains functions for 
checking preconditions, executing the body of the action, 
and verifying that effects of the action hold after it 
completes. The general action class signature is as follows: 
 
Class Track-Actor-Absolute extends ZAction_ZCamera 
 Actor ObjectOfAttention; 
 …. Other Parameters … 
 function checkPreconds() { … } 
 state executing {  
   function tick {  
    maintainCameraConstraints(); 
    } 
     } 
 function assertEffects() { … } 
     function markasexecuted{ return bSuccess; } 
 
 Action classes on the game engine are of three types: 
controller action classes control character actions in the 
game environment and are responsible for playing 
appropriate character or object animations, sub-title action 
classes execute as informational text overlays on the screen 
and use a fixed set of text-templates, camera action classes 
execute by updating a global set of geometric constraints 
on the properties of the game engine’s camera.   
 An automated cinematographer continually computes 
camera positions to satisfy the current set of constraints set 
by the executing camera action classes. This process 
executes in real-time and ensures occlusion free viewing of 
actions. Our execution management module is based on the 
Mimesis architecture developed by (Young et al. 2004). 
The algorithm for planning camera movements and their 
execution is described in more detail by Jhala and Young 
(2006). 

4. Example 
This section presents an example of a visualized summary 
of a game experience produced by ViGLS. Section 4.1 
describes a text summary generated by the summarizer, 
taking as input a plan-structured game log that is the output 
of the log analyzer. Section 4.2 shows a visualization of the 
summary generated in Section 4.1. 

[15] Lane moved to the bank. [14] Lane moved to the bar. [13] 
Lane looked at the barman. [12] Lane threatened the barman 
with a gun. [11] The threatened barman gave Lane a bottle of 
booze that he had. [10] Lane moved to the bank. [9] Lane 
moved to the smithy. [8] Lane looked at the blacksmith. [7] 
Lane bribed the blacksmith with the booze with him. [6] The 
bribed blacksmith gave Lane a machete that he had. [5] Lane 
moved to the bank. [4] Lane looked at the teller. [3] Lane bribed 
the teller with the machete. [2] The bribed teller gave Lane gold 
that she had.  

Figure 5. Story created by Longbow realized into text 

 

4.1. Summarization 
The output of the summarizer is a set of important actions 
selected from the plan-structured input log data. As shown 
in Figure 5, we realized the input story plan into text using 
simple templates (here one sentence represents a single 
action in the plan). In the story the protagonist Lane plans 
to threaten a barman, bribe a blacksmith, and bribe a teller 
to get gold in the bank. 
 As described above, manipulating coefficient values in 
the summarizer setting will bring in different summary 
results. For instance, with default coefficient settings – 
where ki= 3.0, kin=1.0, ko=3.0, kc=1.0, kch=0.5, and kit=0.3; 
Opening/Closing factors=1.0; Motivated factor=2.0 –, the 
summarizer determines actions #2, #3, #7, #6, and #9 (#2 
is the action with the highest importance value) as kernels 
consisting of five actions. With the same factors except the 
modification of kin (the coefficient associated with the 
number of incoming causal links from the initial state) 
from 1.0 to 3.0, the summarizer determines actions #2, #3, 
#6, #7, and  #12 as the kernels. Future studies will seek to 
determine how to set these values to reflect viewers’ 
preferences.  

4.2. Visualization of the Summary 
As explained in Section 3.3, a visualization of the 
summary is created by sending the summary plan –   
including character actions, text actions, and camera 
actions — to the game engine’s execution environment. 
Figure 6 presents screenshots taken from the output of the 
visualization. Due to space limitations, subtitles in these 
screenshots are too small to be read here. In summary, 
Plate 1 in the picture shows Lane threatening the bartender. 
Plate 2 on the right shows the bartender giving the bottle to 
Lane. In Plate 3, Lane is seen leaving the bar with the 
bottle. The rest of the plates show Lane at the bank bribing 
the teller to get gold.  

5. Discussion  
This paper describes a framework for summarizing game 
experiences by translating a game log into a plan data 
structure, then extracting essential events from the plan 
based on their causal relationships to the story goals. 
Summaries created by the algorithm are based on cognitive 
models of narrative comprehension. The algorithm can be 
applied to different domains by manipulating the co-
efficient values appropriate for each domain.  
 We build on our previous work developing methods for 
executing game engine events and controlling a 3D camera 
dynamically to create effective videos for the generated 
summaries. In future work, we plan to conduct user studies 
to evaluate the effectiveness of summaries presented in a 
visual form compared to traditional text based summaries. 
Our assumption is that game players will prefer visual 
summaries with descriptive sub-title text over text-only 
summaries. 
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Figure 6. Automatically generated summary visualization 

 This work advances previous work on game log 
summarization with two main contributions.  First, ViGLS 
generates summaries in the visual medium by procedurally 
re-creating the summary on the game engine.  Second, we 
describe in detail the impact of various coefficients in the 
summarization algorithm and extend the summarization 
model to include additional coefficients that represent the 
importance of characters and objects in the game.   
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