
Automatically Generating Symbolic Prefetches for
Distributed Transactional Memories

Alokika Dash and Brian Demsky

University of California, Irvine

Abstract. Developing efficient distributed applications while managing com-
plexity can be challenging. Managing network latency is a key challenge for
distributed applications. We propose a new approach to prefetching, symbolic
prefetching, that can prefetch remote objects before their addresses are known.
Our approach was designed to hide the latency of accessing remote objects in dis-
tributed transactional memory and a wide range of distributed object middleware
frameworks. We present a static compiler analysis for the automatic generation
of symbolic prefetches — symbolic prefetches allow objects whose addresses are
unknown to be prefetched.

We evaluate this prefetching mechanism in the context of a middleware frame-
work for distributed transactional memory. Our evaluation includes microbench-
marks, scientific benchmarks, and distributed benchmarks. Our results show that
symbolic prefetching combined with caching can eliminate an average of 87%
of remote reads. We measured speedups due to prefetching of up to 13.31× for
accessing arrays and 4.54× for accessing linked lists.

1 Introduction

Developing efficient distributed applications while managing complexity can be chal-
lenging. Recently, several researchers have developed distributed transactional mem-
ory systems that adapt ideas from work on software transactional memory for use in
distributed systems [1,2,3,4,5,6,7,8]. These systems use the transaction mechanism to
simplify managing concurrent access to data structures in distributed systems while
eliminating possibility of distributed deadlocks. Moreover, these techniques can be
adapted to provide memory transactions that guarantee durability, atomicity, and iso-
lation even in the presence of failures [1]. An additional benefit of distributed transac-
tional memory is that it batches communications to achieve consistency and allows safe
speculation. This approach amortizes communication overhead and therefore reduces
the overhead of coherency. Distributed transactional memory middleware frameworks
provide powerful constructs and sophisticated optimizations to greatly simplify the
process of developing distributed applications.

A key challenge in designing distributed software applications is managing the la-
tency of accessing remote data. Traditional prefetching approaches have had limited
success in hiding the latency of remote object accesses because they require programs
to compute or predict objects’ addresses before issuing prefetches. We propose a novel
prefetching mechanism, symbolic prefetches, as an optimization for distributed object
middleware frameworks including distributed transactional memory.
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Symbolic prefetches specify a start point in a program’s heap and a set of fields or
array indices that define a path through the heap. Symbolic prefetches allow an appli-
cation to prefetch a chain of objects (some of whose addresses are unknown) in a sin-
gle round trip message exchange instead of the multiple round trips that are currently
necessary. Therefore, symbolic prefetches have the potential to hide much of latency
of accessing remote objects. To our knowledge, this is the first prefetching approach
to specify objects in terms of paths through the heap. While we have only evaluated
symbolic prefetching in the context of a distributed transactional memory middleware
framework, we expect the technique to be applicable to a wide range of distributed ob-
ject middleware frameworks ranging from distributed object stores [9,10,11] to mobile
object frameworks.

This paper presents a novel static compiler analysis that can automatically generate
symbolic prefetches for distributed applications. It combines this static analysis with a
dynamic optimization that turns off symbolic prefetching during execution phases when
it does not yield performance benefits. This paper makes the following contributions:

• Prefetch Analysis: It presents a prefetch analysis that automatically generates sym-
bolic prefetches: a symbolic prefetch specifies the first object to be prefetched fol-
lowed by a list of fields or array indices that define a path through the heap.

• Dynamic Optimizations: It presents several novel dynamic optimizations that
lower runtime overheads.

• Evaluation: We have evaluated our implementation on several parallel and dis-
tributed benchmarks and found that our system works well and that prefetching
improves the performance of our benchmarks and can hide a significant percentage
of the network latency.

The remainder of the paper is structured as follows. Section 2 presents an example that
we use to illustrate our approach. Section 3 presents an overview of the system. Sec-
tion 4 presents programming model. Section 5 presents the prefetching analysis. Sec-
tion 6 presents dynamic optimizations. Section 7 presents our evaluation of the approach
on several benchmark applications. Section 8 discusses related work; we conclude in
Section 9.

2 Example

Figure 1 presents a distributed matrix multiplication example. The example takes as
input the matrices a and btrans and computes the product matrix c. The shared
keyword that appears in the allocation statement in the Matrix constructor indi-
cates that the allocated array is shared and can be accessed by remote machines. The
parallelmultmethod partitions the matrix multiplication into several subcomputa-
tions. Each MatrixMultiply object represents one such subcomputation and its x0
and x1 fields define the block of the product matrix that it computes.

2.1 Program Execution

We next describe the execution of aMatrixMultiply thread. AMatrixMultiply
thread starts when the program invokes the start method on the MatrixMultiply
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object’s object identifier. An object identifier uniquely identifies a shared object. The
startmethod takes as input the machine identifier for the machine that should execute
the thread. The startmethod causes the runtime to start a thread on the given machine
to execute the object’s run method.

The atomic keyword in line 17 causes the code from lines 18 through 26 to execute
with transactional semantics. Transactional semantics means that the reads and writes
that a transaction performs are consistent with some total ordering of the transactions.
Upon entering this transaction, the thread executes compiler-inserted code that converts
the object identifier stored in the this variable into a reference to a transaction lo-
cal copy of the object. A transaction local copy of an object is made the first time the
transaction accesses an object and it contains any changes the transaction has made to
the object. This code first checks if the transaction has already accessed the object and
therefore contains a transaction local copy of the object. If not the code checks for a

1 p u b l i c c l a s s M atr ix {
2 double [ ] [ ] m;
3 p u b l i c M atr ix ( i n t M, i n t N) {
4 m = shared new double [M] [N ] ;
5 }
6 }
7 p u b l i c c l a s s M a t r i x M u l t i p l y extends Thread {
8 p u b l i c M a t r i x M u l t i p l y ( i n t x0 , i n t x1 , M a t r ix a , M a t r ix b t r a n s , M a t r ix c ) {
9 t h i s . a=a ;

10 t h i s . b t r a n s = b t r a n s ;
11 t h i s . c=c ;
12 t h i s . x0=x0 ;
13 t h i s . x1=x1 ;
14 }
15 M a t r ix a , b t r a n s , c ; i n t x0 , x1 ;
16 p u b l i c vo id run ( ) {
17 atomic {
18 f o r ( i n t i =x0 ; i<x1 ; i ++) {
19 f o r ( i n t j =0 ; j<c .m[ i ] . l e n g t h ; j ++) {
20 double prod =0 ;
21 f o r ( i n t k =0 ; k< a .m[ i ] . l e n g t h ; k++)
22 p rod+= a .m[ i ] [ k ]∗ b t r a n s .m[ j ] [ k ] ;
23 c .m[ i ] [ j ]= prod ;
24 }
25 }
26 }
27 }
28 p u b l i c s t a t i c vo id p a r a l l e l m u l t ( i n t numthreads , . . . ) {
29 Wrapper t h r e a d [ ] = new Wrapper [ numthreads ] ;
30 atomic {
31 M a t r ix a= shared new M atr ix ( L ,M) ;
32 M a t r ix b t r a n s =shared new M atr ix (N,M) ;
33 M a t r ix c= shared new M atr ix ( L ,N ) ;
34 f o r ( i n t i =0 ; i<numthreads ; i ++) {
35 i n t low= i ∗(L / numthreads ) ;
36 i n t h igh =( i == numthreads −1)?L : ( i +1)∗ (L / numthreads ) ;
37 t h r e a d [ i ]=new Wrapper ( shared new M a t r i x M u l t i p l y ( low , high , a , b t r a n s , c ) ) ;
38 }
39 }
40 f o r ( i n t i =0 ; i<numthreads ; i ++)
41 t h r e a d [ i ] . wrap . s t a r t ( machine [ i ] ) ;
42 . . .
43 }
44 }

Fig. 1. MatrixMultiply Example
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cached copy on the local machine. Our implementation caches objects to avoid com-
munication overhead. If the cache does not contain the object, then the code contacts the
machine that holds the authoritative copy of the object. The authoritative copy contains
all the committed changes and is stored on the machine that allocated the object.

In line 22, the run method accesses Matrix objects through the a and btrans
fields. To implement these field accesses, the generated code reads the object identifier
from the m field, locates the corresponding object, makes a transaction local copy, and
points a temporary at the copy. Our compiler maintains the invariant that if a transaction
uses a variable and that variable references a shared object, the variable points to the
transaction local copy for the duration of the transaction.

When the transaction completes, the run method calls the runtime to commit the
transaction. A secondary benefit of transactions in our system is that accessing remote
objects inside of transactions is cheaper than accessing them outside of transactions
because the transactions enable our system to safely speculatively prefetch and cache
objects without violating memory coherency.

2.2 Object Prefetching

The example accesses array objects that are unlikely to be available on the local ma-
chine. Our system uses symbolic prefetching to hide the latency of such accesses. Con-
sider the expression a.m[i][k] in line 22 of Figure 1. The traditional approach to
prefetching this expression would use three consecutive round trips over the network
to prefetch a, then a.m, and finally a.m[i]. Symbolic prefetches instead bundle a
starting object identifier along with a symbolic expression for a path through the heap
into a single message to the remote machine. For the example expression, our approach
would generate a single symbolic prefetch expression a.m[i] that begins with the ob-
ject identifier stored in a and then specifies the path defined by the offset of field m and
the ith array element. When the symbolic prefetch a.m[i] is executed, the system
sends a message containing the object identifier stored in a along with the symbolic
expression .m[i] to the remote machine. If the remote machine contains all three ob-
jects it sends all of them at once, and therefore all three objects can be prefetched in a
single round trip communication.

Prefetch Analysis. The prefetch analysis computes at each program point a set of sym-
bolic prefetch expressions that contain (1) a heap path to specify the objects to prefetch
and (2) an estimation of the probability that the program will access these objects. The
prefetch compiler analysis is structured as a standard backwards fixed-point computa-
tion over the control flow graph. At program statements that access a field, the analysis
creates a prefetch expression for the field access and associates an initial probability of
100% with it. For example, in line 22 the analysis would generate the prefetch expres-
sion btrans.m[j] (and a.m[i]) with a 100% probability because the statement
reads those expressions. Note that k does not appear in the prefetch expression because
b.m[j][k] does not refer to an object.

When the prefetch analysis propagates this prefetch expression backwards it hits the
for loop on line 21. To propagate the prefetch expression beyond this loop the analy-
sis uses a 90% loop conditional branch probability. As the expression propagates the
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analysis calculates new probabilities by multiplying the old probabilities with the
loop condition probability. As a result, the analysis computes the prefetch expres-
sion b.m[j] with a 90% probability after line 20. When the analysis propagates the
btrans.m[j] expression to line 19, the variable incrementj++ along with the condi-
tional branch for the loop causes the analysis to rewrite the expression btrans.m[j]
into the expression btrans.m[j+1]with an 81% probability at line 24. The analysis
computes an 81% probability for the prefetch expression btrans.m[j+1] because
the analysis propagates it through the two loop conditions at lines 19 and 21 (each with
a 90% probability). The fixed-point computation continues until it satisfies the conver-
gence criteria described in Section 5.2.

Prefetch Placement. After the prefetch analysis computes prefetch expressions for
all program points, the compiler computes where to generate code for the symbolic
prefetches. In general, we want to place prefetches as early as possible while ensuring
that there is a high probability that the prefetches will fetch useful objects. The analysis
places prefetches on control flow edges where the prefetch probabilities cross a thresh-
old. By default we set this threshold at 30%. For example, the compiler might place a
prefetch for the analysis-generated expression btrans.m[j+10] after line 19 as its
probability will drop below 30% if it propagates across the loop body again; and would
place prefetches for analysis-generated expressions btrans.m[0], btrans.m[1],
btrans.m[2], btrans.m[3], ..., and btrans.m[9] before line 18 as this is the
first statement of the transaction.

3 System Overview

Our distributed transactional memory is object-based — data is accessed and committed
at the granularity of objects. Our system uses a partitioned global address space (PGAS)
programming model [12] with two classes of objects: local and shared objects. Shared
objects are assigned a globally unique object identifier when they are allocated. The
object identifier is then used to reference the object.

Each shared object has an authoritative copy that contains the most recent commit-
ted version and resides on the machine that allocated the object. When a transaction
accesses a shared object, it makes a transaction local copy of the object. The transac-
tion then performs all updates to the transaction local copy.

Each shared object has a version number, which is incremented when a transaction
commits an update to the object. Our system uses the version numbers to check if the
transaction local copies of objects are up to date when committing. We use a standard
two phase transaction commit protocol [13] with commit-time locking and validation.

Each machine contains an object cache that can cache recently accessed objects.
There is no guarantee that these objects are up to date. However, a best effort invalida-
tion approach ensures with high probability that stale object copies are removed from
the cache. The commit procedure ensures that committed transaction always access the
latest versions of objects.

We use an optimistic approach to commit transactions. It is possible for some trans-
actions to end up aborting repeatedly with prefetched objects that could be more likely
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to be stale with eager prefetching. Our system can admit such zombie transactions
(transactions that have accessed stale objects) . As our system is type safe and its dis-
tributed nature increases the cost of guaranteeing that a transaction always operates on
consistent snapshots, we use a sandboxing approach that validates a transaction’s read
set periodically or upon runtime errors.

4 Programming Model

Our system extends Java with several language constructs designed to support dis-
tributed transactional memory. We add the atomic keyword for declaring that a block
of code should have transactional semantics. This keyword can be applied to either (1)
a method declaration to declare that the method should be executed inside a transaction
or (2) a block of code enclosed by a pair of braces. The shared memory extensions are
similar to those present in Titanium [12].

The shared keyword can be used as a modifier to the new allocation statement to
declare that an object should be allocated in the shared heap. Object fields in shared
objects can only reference other shared objects. Local objects can reference both shared
and local objects. However, the developer must declare that a field in a local object
references a shared object by using the shared keyword in that field’s declaration.

In general, methods are polymorphic in whether their parameters are shared. The de-
veloper may desire that method has different behavior depending on whether its param-
eters are shared. Our compiler supports creating different method versions for shared
and local objects — the shared version is designed by the shared keyword and the
local version by the local keyword. The compiler uses a flow-sensitive, data-flow
analysis to infer for each program point whether a variable references a shared object
or a local object. The compiler uses the analysis results to generate specialized versions
of methods for each calling context.

5 Prefetching

Traditional address-based prefetching approaches were largely designed to hide the la-
tency of the local memory system — addressed-based prefetching incurs large latencies
when accessing remote linked data structures because the computation must compute
an object’s address before prefetching it. In effect this requires waiting for a round trip
over the network for each object to be accessed in the linked data structure.

Our prefetching approach eliminates the need to know an object’s address prior to
prefetching it. Symbolic prefetches describe paths through the heap that traverse the
objects to be prefetched. Symbolic prefetches have the form:

symbolic prefetch := base object identifier(.field | [integer])∗

The base object identifier component of the symbolic prefetch holds the object iden-
tifier of the first object to be prefetched. The list of fields and array indices define a
path through the heap from the first object. We combine the runtime technique with a
compiler analysis that automatically generates prefetches for arbitrary structures and
arrays. Symbolic prefetches allow our system to prefetch multiple objects along a chain
of references with a single round-trip network communication. Consider the following
code:
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1 L i n k e d L i s t s e a r c h ( i n t key ) {
2 f o r ( L i n k e d L i s t p t r =head ; p t r != n u l l&&p t r . key != key )
3 p t r = p t r . n e x t ;
4 re turn p t r ;
5 }

Without prefetching, traversing a remote linked list of length n requires n consecutive
round-trip communications. If we add a prefetch for ptr.next.next.next.next.next
between lines 2 and 3, the runtime will have prefetch requests in flight for the next linked
list node and the subsequent four nodes that follow that node1. The example prefetch
enables the search method to potentially execute five times faster. Longer symbolic
prefetches can further increase the potential speedup. Note that while prefetching objects
for five loop iterations ahead may not be sufficient to hide all of the latency of accessing
remote objects, the latency of the single round trip communication is now divided over
the five objects that have prefetch requests in flight. In this example the symbolic prefetch
effectively decreases the latency of accessing the remote objects by 80%.

5.1 Prefetch Analysis

We have developed an unsound, intraprocedural static analysis in our compiler that uses
a simple probabilistic model to generate prefetches for the objects that the program
may access and to estimate the probabilities that the objects represented by the prefetch
expressions will be accessed. The probabilistic model is naı̈ve and makes assumptions
of independence that are not true in general. However, the object access frequencies
need not be precise and simply provide an approximation of the program’s data access
patterns. It is safe for the analysis to be unsound because prefetches do not affect the
program’s correctness.

The analysis is a backwards program analysis that computes a set of prefetch tuples
P ⊆ Φ × R containing a symbolic prefetch expression φ ∈ Φ and a corresponding
probability d ∈ R for each program point. Each symbolic prefetch expression φ =
VI0I1...In−1 ∈ Φ is comprised of a variable V and a sequence of field offsets or array
indices I = .offset | [index]. Each array index index = tmp0 + ... + tmpm−1 + c is a
sum of m temporary variables represented by the terms tmpi and a constant offset c.

The analysis initializes the set of tuples for each program point to the empty set. The
ordering relation for the set of prefetch tuples at each program point is P1 � P2 iff
∀〈φ, d1〉 ∈ P1, ∃d2 > d1 such that 〈φ, d2〉 ∈ P2.

Figure 2 presents the transfer functions for the analysis. The transfer functions for
statements that read an object reference from a field or an array element generate new
symbolic prefetches with an associated probability of 100% and rewrite any symbolic
prefetches that contain the destination variable. The transfer functions for statements
that make assignments, write to fields, or write to array elements rewrite symbolic
prefetches that begin with the same variable and field or array index. Figure 3 presents
the REPLACE function that rewrites the symbolic prefetch. The REPLACE(φ1, φ2,P)
function takes all prefetch tuples in P that contain a symbolic prefetch expression with
the prefix φ1 and replace that prefix with φ2. The REPLACE function simply copies the

1 The prefetch look-ahead distance is not fixed. Instead it depends on the analysis’s estimation
of how likely the prefetched values are to be used.
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st [[st]](P)

x = y.f (REPLACE(x, y.f,P) − 〈y.f, ∗〉) ∪ 〈y.f, 1〉
x = y[t] (REPLACE(x, y[t],P) − 〈y[t], ∗〉) ∪ 〈y[t], 1〉
x = y REPLACE(x, y,P)
x.f = y REPLACE(x.f, y,P)
x[t] = y REPLACE(x[t], y,P)
t = t1+t2 REPLACE(t, t1+t2,P)

t = c REPLACE(t, c,P)
other

assignments to x P − 〈x, ∗〉

Fig. 2. Transfer Functions

REPLACE(φ1, φ2,P) = COMBINE(REWRITE(φ1, φ2,P))

REWRITE(φ1, φ2,P) = {〈π(φ, φ1, φ2), d〉 | 〈φ, d〉 ∈ P}
COMBINE(P) = {〈φ, d〉 | {d0, d1, ..., dn−1} = P(φ),

d = 1 − (1 − d0)(1 − d1)...(1 − dn−1)}

π(φ,φ1, φ2) =

{
φ2I0...In if φ = φ1I0...In

φ otherwise

Fig. 3. Equation for the REPLACE Function

prefetch tuples with symbolic prefetch expressions whose prefixes do not match. One
potential issue is that a rewritten symbolic prefetch may match an existing symbolic
prefetch. The COMBINE function computes the new probability making the assumption
that the probabilities for the symbolic prefetches are independent. We have omitted the
REPLACE functions for index variables for space reasons.

Our analysis associates a probability with each conditional branch. By default, we
assume that loops continue with a 90% probability and other conditional branches take
the true branch with a 50% probability. The prefetch tuples for a given exit edge of a
conditional branch are weighted by the branch probability for that exit. The two sets of
symbolic tuples are merged and if two symbolic tuples have identical symbolic prefetch
expressions they are replaced with a new symbolic tuple with a probability equal to the
sum of their probabilities. We note it is straightforward to extend the analysis to use
branch statistics collected from profiling.

5.2 Termination of Prefetch Analysis

While the transfer functions are monotonic, the partial order onP is not a lattice because
there is no top element. Therefore, the standard termination arguments for dataflow
analysis do not apply. We extend our prefetch analysis to ensure termination. One issue
is that the analysis can generate symbolic prefetch expressions of unbounded length.
We address this issue by introducing a minimum symbolic prefetch probability μ. If a
prefetch tuple has a probability less than μ at a program point, the analysis drops that
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prefetch tuple. A second issue is that the analysis can converge slowly as the analysis
makes increasingly smaller increments to the symbolic prefetch probabilities. We in-
troduce a minimum change threshold δ. If the probability changes by less than δ, the
fixed-point algorithm considers the probability to be the same.

5.3 Prefetch Placement

There is a trade-off between placing prefetches early to minimize the time that the
application waits for data and waiting long enough to make sure that the program is
likely to use the prefetched data. This trade-off can depend on the specific architecture
of the machine and the application — bandwidth constraints can be satisfied by delaying
prefetches, while latency constraints can be satisfied by moving prefetches earlier. Our
implementation, therefore, allows the developer to specify a probability threshold σ.
Our compiler places symbolic prefetches at the program point that the probability for a
prefetch expression crosses this threshold. By default we selected σ to be 30%.

We instrument the prefetch analysis to record the mapping γ(φ, E) → φ′ which
maps the symbolic prefetch φ at the source of the edge E to the corresponding sym-
bolic prefetch φ′ at the target of the edge E. Prefetches are placed on edges where the
probability of using the objects specified by a symbolic prefetch crosses the developer
specified threshold. Formally, we state this criterion by defining the function τ below to
check if a prefetch crosses the probability threshold at the an edge E:

τ(φ, E) = (Pdst(E)(φ) > σ) ∧ (Psrc(E)(γ(φ, E)) < σ)
Simply using this threshold-crossing criteria to generate prefetch calls can place re-

dundant prefetch calls. We therefore extend our static analysis to check whether the
symbolic prefetch is redundant. We define the set SN at each program point to be the set
of symbolic prefetches that have been prefetched when the program executes the state-
ment at node N . This set is the intersection of the set of prefetched symbolic prefetches
along each incoming edge E to node N . We split the prefetched symbolic prefetches
into two components: SE is the set of symbolic prefetches that have been prefetched
before the source node of E has been executed and δE is the set of prefetches inserted
at E. The equations for each set follow:

SN =
⋂

E=incoming edges to N

(SE ∪ δE)

SE = {γ(φ, E) | φ ∈ Ssrc(E)}
δE = {φ | ∃d, 〈φ, d〉 ∈ Psrc(E), τ(φ, E)}

We use a fixed point algorithm to compute these sets for all program points. At each
edge E, our prefetch placement algorithm places prefetches for the symbolic prefetches
in δE −SE , the set of symbolic prefetches that cross the threshold but have not already
been prefetched.

5.4 Prefetch Runtime Mechanism

Our analysis generates prefetch calls at each prefetch site. A prefetch call takes as in-
put the site identifier of the prefetch call, the number of prefetches, an array of base
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object identifiers for each prefetch, an array of lengths of each prefetch, and an array
of unsigned shorts that stores the sequence of field offsets and array indices for every
prefetch at that site. The runtime system differentiates between fields and array indices
based on the type of the previous object in the path.

Processing a prefetch starts by locally looking up the base object identifier compo-
nent of the prefetch request in both the local distributed heap and the object cache —
in many cases some of the objects in the request are available locally. If the object is
found locally, the local runtime uses the field offset (or array index) to look up the ob-
ject identifier of the next object in the path and removes the first offset value from the
symbolic prefetch. The runtime repeats this procedure to process the components of the
prefetch request that are available locally. The runtime then prunes the local component
from the prefetch request to generate a new prefetch request with the first non-locally
available object as its base object identifier.

The runtime groups the prefetch requests by the machine that is authoritative for the
base object identifier. The local machine next sends the prefetch requests to the remote
machines. Each request contains the machine identifier that should receive the response.
Note that it may become apparent at runtime that a prefetch request is redundant. Con-
sider the two prefetch requests a.f.g and b.f.g.h. If at runtime both the expressions a
and b reference the same object, the set of objects described by the prefetch request
a.f.g is a subset of the set of objects described by the prefetch request b.f.g.h. If one
request subsumes another request, the runtime drops the subsumed request.

When the remote machine receives a prefetch request it begins by looking up the
base object identifier in its local distributed heap and then (optionally) if necessary
in its object cache. Once it finds the object, it looks up the next object identifier by
using the field offset or array index from the symbolic prefetch. It repeats this process
until it has served the complete request. As it serves the request it sends the copies of
the objects to the machine that initiated the prefetch request. When the local machine
receives objects it adds the objects to its object cache.

If the remote machine does not have an object specified by the symbolic prefetch,
it forwards the remainder of the prefetch request along with the machine identifier of
the machine that originated the request to the machine that holds the authoritative copy
of the object. Forwarding is necessary because a single machine may not have all the
objects for the symbolic prefetch.

Our prefetching implementation includes a heuristic optimization for frequently up-
dated objects. Consider for example a shared hash table data structure. The hash ta-
ble’s array may be frequently updated and reference objects on different machines, and
therefore will likely introduce an extra forwarding step in processing the prefetch. If the
local machine does not contain a valid copy of the object, our implementation checks
whether the local machine contains an invalid copy of an object. The intuition is that
while invalid objects cannot safely be used to execute transactions, their fields or el-
ements often contain the correct reference. If an invalid object is present locally, the
runtime uses the invalid object copy to skip forwarding while processing the prefetch.
This heuristic avoids the network latency that would be incurred if the request has to
be forwarded and is safe because the actual transaction never accesses the invalidated
objects.
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6 Dynamic Prefetching Optimizations

In some applications, transactions repeatedly access the same objects. For example,
matrix multiplication accesses some of the same objects in different iterations of the
outermost loop. In this case, a prefetch call will repeatedly prefetch the same objects.
Processing repeated prefetches introduces overhead and yields no performance benefits
as the objects are already cached.

We observe that in many benchmarks, the execution transitions between phases in
which it accesses new objects and phases in which it accesses the same objects. We
therefore support a mechanism that dynamically shuts down prefetch sites when they
stop providing benefits. This mechanism allows the application to benefit from prefetch-
ing while minimizing the overhead.

Each time a prefetch is generated for objects that are already in the local cache, the
runtime increments a count associated with the prefetch site. When the prefetch site
generates a prefetch request that is not locally available, the runtime resets this count.
Once this count hits a threshold, the runtime sets a flag that shuts down this prefetch
site. Our implementation continues to monitor the prefetch site by occasionally retrying
prefetches after a shutdown. If the prefetch retry request prefetches a non-cached object,
the runtime turns the prefetch site back on.

7 Evaluation

We ran our benchmarks on a cluster of eight 3.06 GHz Intel Xeon servers running
Linux and connected through gigabit Ethernet. Our implementation contains over
120,000 lines of code and is available for download along with all benchmarks at
http://demsky.eecs.uci.edu/compiler.php. To evaluate our Java com-
pilation, we have performed experiments to compare the code outputted by our compiler
with hand-developed C code and have found the performance to be similar. We present
results for several microbenchmarks, five scientific benchmarks, and two distributed
benchmarks. We report results for: Base, versions without caching or prefetching, and
Prefetch, versions with both caching and prefetching. For the scientific benchmarks,
we report results for 1J, single-threaded reference Java implementations compiled into
C code. For the distributed benchmarks, we also report results for Caching, versions
with only caching enabled. We average execution times over ten executions.

We performed all of the experiments on a LAN-based test bed system. The rela-
tive benefits of eliminating message exchanges through symbolic prefetches increase as
the round trip message latency between machines increases. Therefore, we expect that
symbolic prefetches will yield much larger benefits for wide area networks because they
have significantly larger latencies than our LAN-based test bed system.

7.1 Microbenchmarks

The microbenchmarks are intended to quantify the benefits of prefetching. We present
results from a three-dimensional array traversal microbenchmark to measure the
performance gains from prefetching objects for regular access patterns. The array

http://demsky.eecs.uci.edu/compiler.php
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microbenchmark sums all of the elements in a 10×32,000×4 array of integers that is lo-
cated on a remote machine. Prefetching improves the performance of this microbench-
mark by a factor of 13.31×. The linked list microbenchmark traverses a remote linked
list with 1,000,000 nodes. Prefetching improves the performance of this benchmark by
4.54×. The speedup of the linked list microbenchmarks is limited because each prefetch
must traverse many linked-list nodes to prefetch one new linked list node.

7.2 Distributed SpamFilter

The distributed spam filter benchmark is a collaborative spam filter that identifies spam
using user feedback. It is based on the Spamato spam filter project and contains 2,457
lines of code [14]. In the original version, a collection of spam filters communicates
information to a centralized server. Our implementation replaces the centralized server
with distributed data structures.

When the spam filter receives an email, it calculates a set of MD5-hash based signa-
tures for that message. It generates Ephemeral hash-based signatures for the text parts
of a message and Whiplash URL-based signatures for the URLs in the message. It then
looks up those signatures in a distributed hash table that maps a signature to the associ-
ated spam statistics. The spam statistics are generated from collaborative user feedback.
The spam filter uses those statistics to estimate whether an email is spam. If the user
corrects the spam filter’s categorization of an email, it updates the spam statistics for all
of the signatures in that email.

Figure 4 presents the results for the distributed spam filter benchmark. Our workload
presents each spam filter client with 1,000 emails. Note that our workload holds the
work constant per client machine. Therefore, the total amount of work increases as we
add more clients. The observed increase in execution time has two primary causes: (1)
the hash table is more likely to contain the hash signature and therefore lookups access
more objects and (2) a larger percentage of the objects are remote. We show the results
for caching to quantify the benefits of caching versus prefetching. Prefetching provides
speedups up to 4.54× relative to the base version and 1.49× relative to the caching
version. Prefetching and caching hide up to 98% of remote reads relative to the base
version and prefetching hides up to 87% of remote reads relative to the caching version.
Figure 5 presents the abort rate for transactions running on multiple clients for this
benchmark. Up to 9% of transactions abort due to conflicts. We omit Java comparisons
because we do not have a Java version of this benchmark.

7.3 Distributed Multiplayer Game

In the multiplayer game benchmark clients play the roles of tree planters and lumber-
jacks. The benchmark contains 1,420 lines of code. The game is played on a map by
planters and lumberjacks — planters plant trees while lumberjacks cut trees. Both the
planters and lumberjacks choose a location in the map to either plant a tree or cut one
down and take the shortest path to the destination. The clients use the A* graph search
algorithm to plan routes. The clients introduce contention in this benchmark when they
attempt to plant or remove trees in the same region of the map. If a client accessed the
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part of the map updated by another client, the transactional version aborts the transac-
tion surrounding that move. The Java version is optimized to only recompute a client’s
move if another client’s move makes client’s original move illegal.

SpamFilter Base Caching Prefetch
1 1.50s — —
2 13.41s 4.39s 2.95s
4 17.12s 5.17s 3.83s
8 20.97s 6.40s 5.32s

Fig. 4. SpamFilter Results

SpamFilter Game SOR
Thds Base Prefetch Base Prefetch Base Prefetch

2 4.2% 5.8% 0.2% 0.2% 0.0% 0.2%
4 6.1% 8.3% 1.0% 0.2% 0.2% 0.5%
8 8.1% 9.0% 2.5% 1.0% 0.7% 1.2%

Fig. 5. Abort rate

Figure 6 presents results for the multiplayer gaming benchmark. The game is played
on a map of size 400×100 for 512 rounds. We held the work constant per client machine
and therefore the total amount of work increases as we add more clients. For this bench-
mark, perfect scaling occurs when the execution time holds constant as the number of
machines increases. This benchmark accesses the same data in different transactions
and therefore caching provides a benefit. Prefetching and caching provided speedups of
up to 26%. Prefetching and caching hide up to 77% of remote reads relative to the base
version and prefetching hides up to 26% of remote reads relative to the caching version.

Game Java Base Caching Prefetch
1 46.78s 8.06s — —
2 51.99s 10.22s 9.99s 9.76s
4 71.54s 12.75s 11.35s 10.93s
8 97.22s 16.73s 13.69s 12.34s

Fig. 6. Multiplayer Game Results

The base version is faster than the Java version because of the way the A* algorithm
accesses the map. In the Java version, the server transfers the map at the beginning of
each round to make the code manageable. The transactional version only transfers the
parts of the map that are needed. We see a 7.87× speedup for the 8 threaded prefetching
version relative to the 8 threaded Java version.

Figure 5 presents the abort rate for transactions in this benchmark.
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7.4 Scientific Benchmarks

We next present results from five scientific benchmarks: 2DConv, Moldyn, MatrixMul-
tiply, SOR, and 2DFFT. These benchmarks do not access the same versions of objects
in multiple transactions and therefore caching adds no benefit beyond the base version.
We therefore omit caching results for the scientific benchmarks and only report results
for the base and the prefetching versions. Figure 7 presents the speedups for all sci-
entific benchmarks relative to single-threaded Java version and Figure 8 presents the
absolute execution times.

2DConv. The 2D Convolution benchmark computes the application of a mask to a
2D image. Each machine computes a region of the output image in parallel. The base
version contains 1,015 lines of code. The output and input matrices are shared objects
in our experiment with dimensions 10,000×1,000 with a convolution mask of 13×13.
Figure 8 presents results for the 2DConv benchmark. The 8 threaded prefetching version
provides a speedup of 5.44× over the single-threaded Java version. Prefetching hides
nearly 100% of remote reads and provides speedups of up to 9%.

Molecular Dynamics. Moldyn is from the Java Grande benchmark suite [15]. The
base version contains 1,172 lines of code. Moldyn models the interaction of molecular
particles. We used 8,788 particles and 50 iterations. The 8 threaded prefetching version
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provides a speedup of 5.35× over the single-threaded Java version. This benchmark
accesses a small number of remote objects and therefore we observe speedups of up to
4% from prefetching even though prefetching hides up to 79% of remote reads.

2DConv MolDyn Matrix Multiply SOR 2DFFT
Base Prefetch Base Prefetch Base Prefetch Base Prefetch Base Prefetch

1J 34.20s — 103.10s — 96.00s — 239.05s — 16.29s —
1 37.11s — 113.92s — 96.48s — 646.86s — 25.09s —
2 21.32s 19.71s 67.57s 67.46s 58.62s 56.31s 362.29s 360.98s 17.08s 14.81s
4 11.86s 10.75s 34.02s 32.72s 35.53s 31.28s 183.66s 183.13s 11.15s 9.79s
8 6.74s 6.29s 19.91s 19.26s 23.61s 19.19s 100.17s 98.00s 8.61s 7.69s

Fig. 8. Scientific Benchmark Results

Matrix Multiply. The matrix multiplication benchmark implements the standard ma-
trix multiplication algorithm for matrix A and matrix B to get the product matrix C.
This version computes fifty 650×650 product matrices. All matrices are shared objects.
The computation of each product matrix is partitioned over multiple machines. The 8
threaded prefetching version provides a speedup of 5.00× over the single-threaded Java
version and prefetching improves performance by 19%. Prefetching hides up to 88% of
remote reads for this benchmark.

SOR. The SOR benchmark is from the Java Grande benchmark suite [15]. SOR con-
tains 737 lines of code. It performs 200 iterations of an over-relaxation algorithm on
a 8,000×8,000 grid. The 8 threaded prefetching version provides a speedup of 2.43×
over the single-threaded Java version. The one machine distributed transactional ver-
sion is slower than the single-threaded Java version because each machine must locally
copy many large array objects to implement transactions. This overhead means that al-
though the benchmark scales extremely well, the 8-threaded version is only a little over
two times faster than the single-threaded Java version, Figure 5 presents the abort rate
for transactions running on multiple machines. Prefetching only improves the perfor-
mance up to 2% even though prefetching hides up to 83% of remote reads because this
benchmark accesses a small number of remote objects.

2DFFT. The 2DFFT benchmark is a two-dimensional fast Fourier transform. The base
version contains 889 lines of code. The algorithm was taken from Digital Signal Process-
ing by Lyon and Rao. We set the matrix dimensions to 1,500×1,500 and we compute the
FFT for five matrices. The FFT of each matrix is parallalized across all machines. The
computation performs 1D FFT in parallel, a serial transpose, and then 1D FFT in parallel.
The 8 threaded prefetching version provides a speedup of 2.11× over the single-threaded
Java version. The speedup was limited as the transpose operation is performed serially
and the benchmark requires moving a large amount of data across the network relative
to the amount of computation that is performed. Prefetching improves performance up
to 13% and hides up to 99% of remote reads.
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7.5 Prefetching Effectiveness

Figure 9 presents the hit percentage in the cache for the prefetching versions. We hit in
the cache 87% of the time on average eliminating the majority of requests over the net-
work. Figure 10 presents the total numbers of remote reads averaged over all machines
participating in the running the transactions per benchmark. The Base version shows
the number of remote reads without prefetching, the Cache version shows the number
of remote reads with caching alone, and the Prefetch version shows the number of
remote reads with prefetching. We omit results for the Cache version of the scien-
tific benchmarks as they never access the same object in two transactions and therefore
the Cache versions perform exactly the same number of remote reads as the Base
versions. Note that reducing remote reads eliminates the latency from an equivalent
number of round trips.
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Thds SpamFilter Game 2DConv MolDyn Matrix Multiply SOR 2DFFT
Base Cache P Base Cache P Base P Base P Base P Base P Base P

2 94037 18059 2197 10335 4312 4049 10018 2 1740 359 32736 5059 1205 201 15029 85
4 104303 21118 3907 11791 3632 2699 5018 1 1740 359 36936 4541 1276 269 7529 82
8 109220 22929 5525 13115 4398 3194 2518 2 1740 359 35816 5136 1301 289 3780 71

Fig. 10. Remote Read Results - Scientific Benchmarks (P = Prefetch)
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7.6 Tunable Parameters

We studied the sensitivity of the benchmarks’ performance to the tunable parameters
for the loop conditional branch probability and the probability threshold σ. For the first
experiment we executed all of the benchmarks for several different branch probabilities
in the range between 50% and 96%. We found that all benchmarks achieved maximum
performance for probabilities larger than 90% and that in this range performance was
relatively insensitive to the exact value. We conducted a similar experiment for the user
defined probability threshold σ. We varied the threshold between 50% for less aggres-
sive prefetching and 5% for more aggressive prefetching. We found that we achieved
maximum performance for thresholds near 30% and that near this value performance
was relatively insensitive to the exact value.

8 Related Work

We survey related work in prefetching, distributed shared memory systems, and dis-
tributed transactional memory systems.

8.1 Distributed Transactional Memory Systems

We next survey the large body of existing research on distributed transactional memory.
Symbolic prefetching is applicable to most of these systems and would greatly improve
their performance by hiding much of their latency to access remote objects.

Researchers have explored distributed transactional memory [16,17] systems as a
mechanism for providing stronger consistency properties. Bodorik et al. developed a
hardware-assisted lock-based approach, in which transactions must hold a lock on a
memory location before accessing location [18]. Hastings extended Camelot distributed
system to support transactions through a lock-based approach [19]. Ahn et al. developed
a lock-based distributed shared memory with support for transactions [20]. LOTEC is
another lock-based transactional distributed shared memory [21]. All of these imple-
mentations incur round trip network latencies whenever the application accesses a re-
mote object because the machine must first communicate to acquire a lock.

DiSTM is a distributed transactional memory system [5]. Its commit process checks
whether any running transactions conflict with the current transaction and therefore
may not scale well. Anaconda is a distributed transactional memory system that uses
a distributed commit algorithm [3]. It uses a three phase commit protocol in which
locks are first acquired, the transaction is validated against running transactions on other
nodes, and finally it updates the objects.

D2STM is a fault-tolerant distributed transactional memory system [1]. D2STM
replicates objects to provide fault tolerance. D2STM is a non-voting based transactional
memory approach that uses atomic broadcast to ensure that all nodes see the transac-
tion commit requests in the same order. A transaction’s read set is encoded as a bloom
filter and is validated against transactions that have committed since the beginning of
the committing transaction.

Manassiev et al. introduced a version-based transactional distributed shared memory
that replicates all program state on all machines [8]. Sinfonia allows machines to share
data in a fault-tolerant and scalable manner using mini-transactions [22].
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Bocchino et al. developed a word-based software transaction memory [7]. Herlihy
and Sun proposed a distributed transaction memory for metric-space networks [6]. Their
design moves objects to the local machine before writing to the object.

8.2 Prefetching

Researchers have developed several techniques for prefetching recursive data structures.
Luk and Mowry propose to greedily prefetch object fields, automatically add prefetch
pointers to objects that point to objects to prefetch, and linearize recursive data struc-
tures when possible [23]. Greedy prefetches require knowing the address of an object.
Prefetch pointers do not help with the initial traversal of data structures. Linearizing
is only applicable if the creation order is the same as the traversal order. Cahoon and
McKinley proposed an analysis for software prefetching [24]. Roth et al. propose a
hardware-based approach to prefetching linked data structures that hides the latency
of accessing linked data structures in useful work [25]. Wu et al. [26] and Inagaki et
al. [27] propose stride prefetching for irregular references. However, in distributed sys-
tems the latency of accessing remote memory is likely to be longer than the time that
can be filled with useful work.

Researchers have explored communication optimizations for distributed computa-
tions. Zhu and Hendren combine multiple reads into a single block [28]. Because their
approach requires that the address of objects to be read is known, it incurs a round trip
network latency for accessing each object in a linked data structure traversal. Rogers
et al. propose thread migration to improve the performance of accessing remote data
structures [29]. An issue with thread migration is that it cannot provide efficient simul-
taneous access to data that spans multiple machines.

Gupta proposes a naming scheme for objects in data structures to enable fast traver-
sals of remote data structures [30]. In this approach many data structure updates require
renaming all the objects in a data structure and propagating changes to all machines.

Speight uses a dynamic prediction-based prefetching approach [31]. Joseph and
Grunwald use Markov predictors to generate prefetches on a single machine [32]. Ferd-
man and Falsafi store access sequences and then stream the addresses from these access
sequences into a chip’s cache [33]. These prefetching approaches typically require ob-
ject accesses that repeat during execution — as our caches for remote objects can be
much larger than CPU caches it is likely that such objects are already in the cache.

8.3 Distributed Systems

Researchers have developed distributed object stores that present a transparent object-
oriented view of storage. Such systems are designed to simplify scalable service in
cluster environments. TODS [11] is a cluster object storage system. Thor [10] pro-
vides a distributed object-oriented database system that supports object navigation and
therefore incurs additional message round trips for each commit. Ceph [9] is a scalable
object based storage system that uses metadata server (MDS) clusters for managing a
distributed file system. We expect that symbolic prefetching along with our prefetch
analysis would improve the performance of these distributed object stores.

Distributed shared memories were intended to provide developers with a sim-
ple shared memory abstraction on message-passing machines. While earlier systems
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provide a strict consistent memory model, other sophisticated approaches [34,35,36]
achieve higher performance by weakening the memory consistency guarantees and re-
duce coherence overheads. Developing software for weaker memory models requires
the developer to understand complicated consistency properties.

9 Conclusion

Transactional memory provides a powerful new approach to developing distributed ap-
plications — it provides information about the granularity of a thread’s accesses to
distributed data structures and a mechanism to enable speculative optimizations. We
have presented an analysis that generates symbolic prefetches for objects. Our prefetch
analysis and runtime provides developers with a simple programming model for writing
applications in a distributed system. Our benchmark results show that our system pro-
vides excellent performance and that prefetching can hide the latency of the majority of
remote object accesses.
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