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Abstract

Automated test generation based on symbolic execution can be ben-
eficial for systematically testing safety-critical software, to facilitate test
engineers to pursue the strict testing requirements mandated by the certi-
fication standards, while controlling at the same time the costs of the test-
ing process. At the same time, the development of safety-critical software
is often constrained with programming languages or coding conventions
that ban linguistic features which are believed to downgrade the safety

of the programs, e.g., they do not allow dynamic memory allocation and
variable-length arrays, limit the way in which loops are used, forbid re-
cursion, and bound the complexity of control conditions. As a matter of
facts, these linguistic features are also the main efficiency-blockers for the
test generation approaches based on symbolic execution at the state of
the art.

This paper contributes new evidence of the effectiveness of generat-
ing test cases with symbolic execution for a significant class of industrial
safety critical-systems. We specifically focus on Scade, a largely adopted
model-based development language for safety-critical embedded software,
and we report on a case study in which we exploited symbolic execution
to automatically generate test cases for a set of safety-critical programs
developed in Scade. To this end, we introduce a novel test generator
that we developed in a recent industrial project on testing safety-critical
railway software written in Scade, and we report on our experience of
using this test generator for testing a set of Scade programs that belong
to the development of an on-board signaling unit for high-speed rail. The
results provide empirically evidence that symbolic execution is indeed a vi-
able approach for generating high-quality test suites for the safety-critical
programs considered in our case study.

Keyword automated test generation, symbolic execution, safety-critical
software
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1 Introduction

Safety-critical software systems control life-critical and mission-critical tasks
in airplanes, trains, cars, nuclear power plants and patient monitoring tools.
Since failures in these systems can have catastrophic consequences, they must
be highly reliable [1]. For this reason, the certification authorities of the specific
sectors usually impose strict standards on both the development and the quality
control activities [2, 3], in order to ensure the highest possible confidence in the
correct behavior of the developed systems.

In this context, automated test case generation can play a crucial role for
achieving the testing objectives mandated by the standards, while controlling
at the same time the associated costs. While the problem of generating a set
of test inputs for an arbitrary software program that cover a given target is
undecidable, research aims at producing automatic tools that work well “in
practice”, i.e., in a sufficient number of common cases. The techniques that
are more used by current tools are based either on random testing [4, 5], or on
search-based testing [6], or on symbolic execution [7, 8]. Random and search-
based testing sample the input space of the target programs, either in a purely
random fashion, or guided by the improvement of a fitness function, whose value
correlates with the coverage objectives to optimize [4, 9, 10, 11, 12]. On converse,
symbolic execution [13, 14, 15, 16, 17, 18, 19, 20] systematically explores the
execution paths of the program under test: it computes the execution conditions
of the explored paths, and solves these execution conditions with the help of
an automatic SMT (satisfiability-modulo-theories) solver as, e.g., Yices [21],
STP [22] or Z3 [23]. If a solution is found, this is a test input covering the path.

This paper investigates the viability of symbolic execution for automated
test generation for safety-critical software. The choice of using symbolic exe-
cution is motivated by the importance of fulfilling the relevant test objectives
(e.g., the coverage targets required by the certification standards) while testing
safety-critical software. By exploring the program paths systematically, sym-
bolic execution should be in principle able to generate at least a test case for
every test objective that can be reached on at least an execution path, a goal that
the random and search-based techniques cannot generally guarantee. Nonethe-
less we are also aware of the major challenges of designing test generators based
on symbolic execution, which result from common limitations of this technique:

(i) Coping with the so called path explosion problem: Since the number
of execution paths of a program grows exponentially with the amount of
decision logic in the program, and is generally unbounded for programs
that include recursive calls and loops governed with arbitrary conditions,
symbolic execution seldom succeeds to analyze all execution paths in finite
time. On the contrary, the systematic exploration approach often engages
symbolic execution in a very fine-grained analysis of some specific parts
of the program execution space, while leaving many other parts entirely
untested.

(ii) Suitably handling non-numeric inputs, i.e., pointers or references to dy-

2



namically allocated, possibly recursive data structures: For the analysis
to be precise, symbolic execution shall be able to discriminate the execu-
tions in which the references within the input objects in the heap could be
either assigned to null-values, or be alias of each other, or yet correspond
to distinct objects, respectively [24]. This further exacerbates the compu-
tational requirements for the analysis. The number of objects and object
configurations to be discriminated could even be unbounded for inputs
defined as recursive data structures.

(iii) Tolerating the limitations of SMT solvers in computing the solutions of
complex path constraints: In symbolic execution, failing to solve the
execution conditions of a program path can depend on either the path
being indeed infeasible, i.e., not executable with any input, or the path
constraints being too hard for the current SMT solver to be decided within
the allowed time budget, or yet outside of the theories supported by the
SMT solver. In the latter cases, the solver is unable to either provide a
solution or prove that a solution does not exist. The inability of solving
complex path constraints can result in missed test cases, or waste large
portions of test budget in the analysis of execution paths that depend on
unsatisfiable conditions that the constraint solver failed to pinpoint.

This paper contributes new evidence in support of the research hypothesis
that, although the above issues hindering the practicality of symbolic execu-
tion may hold for many general-purpose programs, they have reduced impact
for a significant class of industrial safety-critical systems, where symbolic ex-
ecution can therefore work effectively. In fact, safety-critical software often
relies on programming languages or conding standards that ban some linguistic
features, based on the (empirically motivated) ground that those features are
common causes of subtle failures. For example, one of the tenets of safety-
critical software development is avoiding unbounded consumption of time or
space resources at runtime, to cope respectively with divergence or crashes. For
this reason languages for safety-critical software development like SaferC [1]
and Scade1 (used in the avionics and in the railway domains, respectively),
or coding standards like Misra2 (required in the automotive industry) restrict
what the programmers are allowed to do. Relevant restrictions include: forbid-
ding programmers from allocating memory dynamically, instead requiring all
the memory to be allocated by local or global variables with predictable size;
statically bounding the maximum number of iterations of loops; and avoiding
recursion. Some consequences of this regime are that in such applications the to-
tal number of execution paths is finite, every execution path has a finite depth,
and many programming constructs that yield an explosion in the size of the
execution state space are not used.

In particular, this paper reports on a case study drawing on our experience
with a recent project aimed to develop an on-board signaling unit for high-speed

1https://www.ansys.com/it-it/products/embedded-software/ansys-scade-suite
2https://www.misra.org.uk/Publications/tabid/57/Default.aspx#label-dvg
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rail, following the ERTMS3 standard specification, in which we have been re-
cently involved with an industrial partner. This on-board unit is an embedded
safety-critical component that shall handle signals from several track-side de-
vices, e.g., transponders deployed along the railway and control units at the sta-
tions, and shall notify the driver or even activate the braking devices of the train
under some danger conditions. It is currently being implemented with Scade,
a system modelling language and a model-based development environment for
embedded software largely adopted in industry4 [25, 26, 27, 28, 29, 30, 31] and
certified according to the CENELEC norms [32]. As we discuss in more de-
tail in Section 2, Scade allows to specify models with a formalism based on
finite state machines, that forbids constructs like dynamic memory allocation,
variable-length arrays, non-statically-in-bound accesses to arrays, pointer arith-
metic, recursion and unbounded loops. Thanks to these restrictions, Scade
models can be automatically translated to equivalent C programs that guaran-
tee the certification standards [33, 34] required by ERA, the European Union
Agency for Railway5.

In the reported case study, we explored whether and to which extent the pro-
gramming constraints on which the safety-critical software developed in Scade
depends enable the exploitation of symbolic execution for effective automated
testing of such programs. In detail, this paper makes the following contributions:

(i) We introduce an original test generator for Scade programs based on
symbolic execution. We refer to this test generator as Tecs (Test Engine
for Critical Software). Tecs builds on the symbolic executor Klee [15]
to render an efficient symbolic analysis of the C programs that the Scade
environment compiles out of the original Scade models.

The originality of Tecs is tightly related to the goal of our case study, in
that Tecs makes several distinctive design choices that explicitly exploit
the programming constraints guaranteed for programs in Scade. First,
Tecs exploits symbolic execution to systematically analyze the state ma-
chine model that the Scade program represents. To this end, Tecs steers
the symbolic executor Klee through multiple analysis passes of the C
program that corresponds to the transition function of the state machine
model. In its algorithm, Tecs relies on the knowledge that the Scade
translator produces C programs with finite execution paths, thanks to the
avoidance of unbounded loops and recursive calls, which guarantees the
termination of each analysis pass. Second, Tecs exploits the knowledge
that all data structures are statically allocated and not recursive, and the
size of all arrays is statically specified, which implies that all input data
structures are always made of a finite set of statically identifiable distinct

3www.era.europa.eu/activities/european-rail-traffic-management-system-ertms
4 Ansys, the company that commercializes Scade and the supporting Scade Suite model-

based design environment, reports uses of Scade at Subaru for automotive applications,
and for many other safety-critical, embedded applications, including, avionics and flight con-
trol, autonomous vehicles and gas turbines. [www.ansys.com/products/embedded-software/
ansys-scade-suite]

5www.era.europa.eu
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fields. Thus, Tecs initializes the input data structures at the beginning of
symbolic execution by assigning symbolic values to all fields at any nest-
ing level (including the items in all array-typed fields). In this way, Tecs
induces a specialized, efficient symbolic execution method that shall not
cope with discriminating the possible ways of initializing the input data
structures and their internal references during the analysis.

(ii) We report new empirical data that show that Tecs successfully computed
test cases that both achieve high model coverage of a set of Scade pro-
grams developed by our industrial partner, and revealed (once enriched
with suitable assertion-style test oracles) subtle, previously unknown faults
for some considered programs. In this way, our case study provides sup-
porting evidence of both the effectiveness of Tecs and the suitability of
symbolic execution for generating test cases for the considered class of
safety critical programs.

(iii) Furthermore, we report on our experience with using the tool AFL [9],
a test generator that is very popular for security vulnerability testing, as
a possible replacement of Klee in our tool. AFL is based on random
and search-based input selection heuristics. The results clearly indicate
the weaknesses of the random selection approach, which missed many
test objectives, further underscoring the beneficial impacts of a systematic
exploration of the program state space as in our approach.

(iv) Yet, for some considered programs, we were able to compare the test
cases that Tecs automatically produced with the ones that were already
manually designed by the developers. The comparison revealed interesting
complementarities, thus confirming the usefulness and the effectiveness of
our test generator, and further supporting the exploitability of symbolic
execution to generate test cases for Scade models.

This paper is organized as follows. Section 2 surveys the main characteris-
tics of the Scade programming language, elaborates on the language restrictions
that enable our test generation approach, and introduces a sample Scade pro-
gram that we use as working example in the paper. Section 3 details the design
of the test generator Tecs, focusing in particular on the design choices by which
Tecs exploits the programming constraints that derive from Scade. Section 4
reports on the case study in which we used Tecs to generate test cases for a set
of programs that belong to the on-board train unit developed by our industrial
partner. Finally, Section 5 surveys the related work in the field, and Section 6
outlines our conclusions and plans for future work on the topics of this paper.

2 Safety-Critical Development with Scade

In this section, we survey the main characteristics of the Scade programming
language, motivate our research hypothesis on the exploitability of symbolic
execution to generate test cases for programs in Scade, and introduce a sample
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Scade program that we use as working example in the subsequent sections of
the paper.

2.1 Scade and Characteristics of the Scade Programs

Scade is a system modelling language that allows the design, implementation
and verification of reliable embedded software systems. Ansys Inc. develops
the language and commercializes the Scade Suite development environment,
that allows to design embedded cyber-physical systems based on the Scade
language, simulate their behaviour, and generate qualifiable/certifiable code
from the models. Scade is customarily used to develop high-assurance and
safety-critical embedded systems in a wide range of application domains as,
e.g., avionics, automotive and railway.

The Scade modelling language belongs to the family of the synchronous
languages, such as Lustre [35] and Esterel [36]. Synchronous languages as-
sume that all the communications and computations in the systems that their
models represent are performed instantaneously. A Scade model is reactive,
and structured as a collection of communicating finite-state machines, proce-
dures and functions. Each state may have a hierarchical structure, similar in
spirit to, but with richer semantics than, the Statecharts [37] or UML state
machine languages [38]. The computation of a Scade model is performed as
a sequence of discrete steps referred to as execution cycles. At each execution
cycle the outputs and the next state of the model are calculated from the inputs
and the current state. At the end of a cycle the execution of the model per-
forms an instantaneous transition to the next state as it enters the next cycle. A
valid Scade model must enjoy the property of running each execution cycle in
bounded space and time, and Scade rejects models that are not deterministic
or not deadlock-free. Scade has both a textual and an equivalent graphical
syntax, and the Scade Suite development environment allows to edit a model
in either format.

Integrated in the Scade Suite development environment, the automatic code
generator Kcg translates the Scade models to semantically equivalent pro-
grams in either the Ada or the C programming language. In this paper we
consider the translation to C programs. The programs generated by Kcg are
provably equivalent to the Scade models of which they are a translation. By
virtue of the aforementioned properties of the Scade models, Kcg is able to
translate them to C programs that also are deterministic, deadlock-free, and
that run in bounded space and time. Moreover, in compliance with the Scade
language, Kcg aims to ensure that the generated programs are both embeddable,
i.e., deployable in embedded, resource-constrained environments, and compliant
with the most demanding safety levels of certification standards as, e.g., DO-
178C [2], IEC 61508 [39], EN 50128 [3], and ISO 26262 [40]. To this end, Kcg
translates a Scade model to a program expressed in a suitable subset of the C
programming language that does not contain programming constructs that are
deemed “intrinsically unsafe” or unfriendly with resource-constrained environ-
ments. A more precise characterization of the C language subset that Kcg uses
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as a target for the translation of Scade models follows:

• Its semantics is unambiguous and precise (e.g., no undefined behaviors);

• It is ISO C18 compliant;

• It conforms to the Misra C 2012 coding standard rules;

• It has no dynamic memory allocation, all the memory is statically allo-
cated (i.e., no use of heap memory or of variable-length arrays);

• It has no recursive function calls;

• All loops are statically bounded: their number of iterations is determined
by constant values known at code generation time;

• No expression has side effects (e.g., no use of pre and post increment
operators);

• The code is decomposed into elementary assignment statements to local
variables (e.g., no assignment to formal parameters of functions);

• There is no dynamic address calculation (“pointer arithmetic” expres-
sions), no variable aliasing (including the fact that arrays are always ac-
cessed by their declaration names via the array subscript operator), no
pathological use of the array subscript operator;

• All the array accesses are bounded within the respective array index
ranges: the values of the indices of array accesses are determined by con-
stant values known at code generation time.

The restrictions over the C language adopted by Kcg are motivated by the
required compliance with the highest safety levels of the certification standards
that the generated code must address. These standards discourage, or utterly
forbid, the use of dynamic memory, aliasing, unbounded iteration and recursion,
to ensure that the program always runs in bounded space and time. Further-
more, Kcg does not ever produce recursive data structures while translating
Scade programs in C: indeed, the main purpose of recursive data structures
is implementing unbounded containers, but since a well-formed Scade model
always runs in bounded space there is no real need for its C translation to use
unbounded containers. We remark that the nature of Scade models—their be-
ing deterministic, deadlock-free, and bounded in space and in time—is precisely
what allows such a limited fragment of the C language to adequately express
the full semantics of the Scade language.

In the target environment, the embedded software must interact with the
sensors and the actuators of the hardware platform. In order to link the Scade
programs to the hardware developers must implement suitable glue code, i.e.,
peripheral drivers, interfacing the Kcg code generated from a Scade model and
the external environment. We remark that the test generation problems that we
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Figure 1: A sample Scade model for a car wing mirror controller

consider in this paper refer to the inputs and the outputs of the Kcg-generated
programs, i.e., the inputs and outputs of the Scade models, regardless of the
possible glue code that binds these inputs and outputs to sensors and actuators
of the final system.

2.2 Working example

We will use a simple Scade model to introduce the main concepts and termi-
nology about Scade, and to show how a Scade model is converted into C code:
this will help the reader in better understanding how our approach described in
Section 3 works.

Figure 1 shows a Scade model that describes a simple controller for the
wing mirrors of a car, for which it is possible to activate the behavior of closing
the wing mirrors automatically when the car gets locked. The state machine
has two states (the boxes in the left and right part of the figure, respectively)
that represent whether the car is either locked or unlocked, respectively. The
input signal ctrl governs the possible transitions between these two states. The
program starts in the state CAR IS LOCKED (the state on the left of the
figure) and then, if ctrl gets set to UNLOCKED the program changes state
to CAR IS UNLOCKED (the state on the right of the figure). Conversely, if
ctrl gets set to LOCKED the program returns to CAR IS LOCKED. The
signal ctrl can be thought as the input that the car receives from a remote
controller.

The program has three further inputs and three outputs. The three in-
puts are aggregated in the data structure mirrorData, which is referred in
both states of the Scade models in Figure 1. The data structure mirrorData
consists of two fields: Field mirrorData.automaticControl (dereferenced with
the Scade operator represented as a rectangle in the top part of state CAR -
IS LOCKED) controls whether or not the automatic-closing behavior is cur-
rently active; Field mirrorData.mirrorState (dereferenced in both program
states) is an array of two items, each defining the latest state (either OPEN or
CLOSED) that the driver has set for either wing-mirror. The three outputs are
carState, which records the current state of the car, and the two items of array
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mirrorCommand, which indicate the commands (either OPEN or CLOSED)
sent to the wing-mirrors. The carState is simply assigned as LOCKED or
UNLOCKED in the two states of the program, respectively. Scade represents
the assignment with an arrow that connects a value to the receiving variable,
e.g., LOCKED → carState represents the assignment of the output carState
in the program state CAR IS LOCKED.

The main behavior of program is to define the commands sent to the wing
mirrors when the control system is in each of the two program states, re-
spectively. If the automatic-closing behavior is active, the wing mirrors shall
close automatically upon locking the car. Otherwise, they shall just remain
as they are. Upon unlocking the car, the wing mirrors shall always return
as they were when the car got locked. The program encodes this behavior
as follows. When the car gets locked (state CAR IS LOCKED) the outputs
mirrorCommand are assigned with the if-then-else block represented as the
white rectangle in the bottom-right part of state CAR IS LOCKED in Fig-
ure 1. The if-then-else block takes mirrorData.automaticControl as condition
(entering from the top of the block): If the automatic control is active, the out-
puts mirrorCommand are both assigned as the constant CLOSED (entering
at the top-left corner of the block). Otherwise, if the automatic control is not
active, they are assigned to the values in the array mirrorData.mirrorState
(entering at the bottom-left corner of the block). When the car gets unlocked
(state CAR IS UNLOCKED) the outputs mirrorCommand are always as-
signed the values of mirrorData.mirrorState.

Compiling the Scade program of Figure 1 with Kcg yields the C program
excerpted in Figure 2. The program defines the entry function WingMirror-

Control CarControl (excerpted at the bottom of the figure) that encodes the
behavior of the system. This function will be continuously executed at each ex-
ecution cycle on the target board. As parameters, the program takes pointers to
two data structures inC and outC of type inC WingMirrorControl CarControl

and outC WingMirrorControl CarControl, respectively: inC wraps the in-
puts that the state machine receives at the beginning of each execution cycle,
and outC wraps the outputs of the state machine, along with a special field
(WingMirrorFSM state nxt) that Kcg generates to encode the next state of
the state machine after each execution cycle. The top part of the code lists the
type definitions for both inC and outC data structures, and their nested types.

The body of the entry function consists of two switch statements executed
in sequence. The first switch statement calculates the next state, and stores it
in the temporary variable WingMirrorFSM state act. The second switch state-
ment calculates the outputs, and assigns the fields of outC. For example, when
the first switch statement computes the next state SSM st CAR IS UNLOCKED -

WingMirrorFSM, corresponding to the model state CAR IS UNLOCKED, the
second switch statement assigns the outputs outC->mirrorCommand to the val-
ues of the inputs inC->wingMirrorData.mirrorState, the output outC->carState
to UNLOCKED, and the output outC->WingMirrorFSM state nxt to SSM st CAR -

IS UNLOCKED WingMirrorFSM.

9



typedef struct {
Lock c t r l ;
MirrorData mirrorData ;

} inC WingMirrorControl CarControl ;

typedef struct {
MirrorStateArray mirrorCommand ;
Lock carSta te ;
SSM ST WingMirrorFSM WingMirrorFSM state nxt ;

} outC WingMirrorControl CarControl ;

typedef struct {
kcg boo l automaticControl ;
MirrorStateArray mir ro rState ;

} MirrorData ;

typedef MirrorState MirrorStateArray [ 2 ] ;

typedef enum {UNLOCKED, LOCKED} Lock ;

typedef enum {OPEN, CLOSED} MirrorState ;

void WingMirrorControl CarControl (
inC WingMirrorControl CarControl ∗ inC ,
outC WingMirrorControl CarControl ∗outC ) ;

{
SSM ST WingMirrorFSM WingMirrorFSM state act ;
k c g s i z e idx ;

switch ( outC−>WingMirrorFSM state nxt ) {
case SSM st CAR IS UNLOCKED WingMirrorFSM :

i f ( inC−>c t r l == LOCKED) {
WingMirrorFSM state act =
SSM st CAR IS LOCKED WingMirrorFSM ;

}
else {

WingMirrorFSM state act =
SSM st CAR IS UNLOCKED WingMirrorFSM ;

}
break ;

case . . .
}

switch ( WingMirrorFSM state act ) {
case SSM st CAR IS UNLOCKED WingMirrorFSM :

kcg copy WingMirrorArray ( outC−>mirrorCommand ,
inC−>mirrorData . mi r ro rState ) ;
outC−>ca rSta t e = UNLOCKED;
outC−>WingMirrorFSM state nxt =
SSM st CAR IS UNLOCKED WingMirrorFSM ;
break ;

case . . .
}

}

Figure 2: Excerpt of the C program that Kcg generates for the Scade model
in Figure 1
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Figure 3: Workflow of Tecs

3 Generating Scade Test Cases

In this section, we introduce a test generator to automatically generate unit-
level test cases for embedded programs written in Scade. Our test generator
for Scade programs is built on top of the symbolic executor Klee, and explic-
itly relies on the C language restrictions that Kcg enforces (as we discussed in
Section 2). We designed the test generator with the aim of exploring whether
and to which extent these restrictions identify a class of programs that by de-
sign mitigate many common sources of open issues for test generators based on
symbolic execution. In this section we describe the design of the test generator,
while in the next section we report on the effectiveness of the test generator to
derive test cases for a set of Scade programs implemented in a recent project
in which we are participating along with an industrial partner.

Figure 3 shows the main components of our test generator, and the workflow
that these components comprise. We refer to our test generator as Tecs, the
Test Engine for Critical Software. Tecs relies on the Kcg compiler, which
is part of the cross-compilation tool chain of the Scade Suite, to convert the
Scade program under test into an equivalent program written in C.

Then, Tecs includes a Driver synthesizer that augments the obtained C
program with an analysis driver written itself in C. The analysis driver embodies
the actual analysis algorithm that Tecs uses to explore the state space of the
program under test: It assigns the program inputs with symbolic values, and
then calls the original program multiple times, aiming to trigger the possible
transitions of the state machine model that the Scade program represents.
Thus, by executing the analysis driver with symbolic execution, Tecs steers
multiple analysis passes of the execution paths in the program, with each new
pass depending on the (symbolically represented) results of the previous pass.
As we explain in detail in Section 3.1, the Driver synthesizer tailors the general
analysis algorithm to the specific signature of the program under test.

To accomplish symbolic execution according to the analysis algorithm pro-
vided with the analysis driver, Tecs relies on Klee, a well known state-of-the-
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art symbolic executor for programs in C [15]. Klee generates test inputs for
each execution path that the analysis driver induces through the program as
follows. First, Klee performs symbolic execution along each execution path to
compute the associated path condition, being the path condition a (quantifier
free) logic formula that represents the conditions that the inputs shall satisfy
for the program to execute along the given path. Then, Klee attempts to solve
each path condition with the STP [41] constraint solver. If a path condition
has a solution, this is a set of concrete inputs for executing the corresponding
execution path; Otherwise, if there is no solution, the path is infeasible, i.e., no
input can drive the execution of the program through it. Yet, a further and
unfortunate phenomenon is that some path conditions could be formulas that
the STP constraint solver cannot solve within the allowed timeout (1 millisec-
ond in our current experiments), and thus the test generation process might
result in either or both missed test cases and wasted analysis time. As we al-
ready commented in the introduction section, this phenomenon is a common
source of ineffectiveness for test generators based on symbolic execution, but
also a phenomenon that we hypothesize to be rare for the safety-critical pro-
grams in Scade. Indeed, in the case study that we report in Section 4 we did
not experience any unsolved path condition.

Next, Tecs filters the execution paths explored during symbolic execution
by computing the minimal set of execution paths that guarantee the maximum
coverage of the relevant test objectives (Figure 3, Minimizer). In fact, main-
taining test suites that include a test case for each execution path is by far
beyond the typical certification requirements, and cannot be generally afforded
by producers. The Minimizer aims to produce a test suite of manageable size,
while avoiding to miss test objectives.

As a limitation of our current prototype, Tecs delegates the task of the
Minimizer to an internal algorithm of Klee, which can be optionally activated
to limit the provided test inputs only to the execution paths that improve state-
ment coverage. This is a sub-optimal minimization behavior, and indeed in
the experiments that we report later in this paper we observed that some test
objectives that are considered in the Scade Test tool (which refers to modi-
fied condition/decision coverage, a finer criterion than statement coverage) were
missed. We discuss the results of the experiments in detail in Section 4. In fu-
ture releases, we aim to improve our tool by providing a dedicated Minimizer,
which is the reason why we illustrated the Minimizer as a logical component of
the approach in Figure 3.

As final step, Tecs constructs a Scade test case (Figure 3, Test synthesizer)
for each of the selected C tests. It thus obtains a test suite in Scade format,
which can be executed within the Scade test environment.

Below we discuss in detail the design of the Driver synthesizer and the Test
synthesizer. We then close this section by remarking the core original ideas
that our test generator Tecs settles in the analysis algorithm that it instructs
with the Driver synthesizer. The Test synthesizer is rather an engineering effort,
though important to finalize the generated test suites.
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3.1 The Driver Synthesizer

The goal of the Driver synthesizer is to augment the C translation of the Scade
model under test with an analysis driver, designed to steer the symbolic analysis
of the execution paths in the program. In pure technical terms, the analysis
driver provides the entry-function that Klee shall symbolically execute in order
to generate test inputs for the program under test. The analysis driver assigns
symbolic values to the program inputs, and then calls the target program one
or multiple times with the symbolic inputs, to unfold the possible sequences of
transitions of the state machine that the program represents. Indeed each call to
the target program corresponds to firing a transition of the state machine, and
thus each execution path through the analysis driver corresponds to a sequence
of state transitions that Tecs has to analyze symbolically.

The Driver synthesizer builds an analysis driver that steers Klee to sym-
bolically execute (and thus generate test inputs for) the program paths and the
execution sequences that satisfy the single-state-path-coverage (SSPC) testing
criterion with respect to the state machine model implemented in the Scade
program. The SSPC criterion requires to exercise all paths and execution se-
quences that traverse states at most once [42].

The resulting analysis driver comes in the shape of a general algorithm,
representing the overall steering strategy for satisfying the SSPC criterion, and a
set of automatically generated hook functions called from the general algorithm,
representing the program-specific tailoring of the analysis driver. Algorithm 1
formalizes the general steering algorithm of the analysis driver in pseudo-code,
with the calls of the hook functions represented within framed pseudo-code.
The hook functions are either functions that already belong to the C program
generated with Kcg, or functions that the Driver synthesizer generates and
injects in the program. The general algorithm indicates that the analysis driver
starts in a state that corresponds to the initial state of the program (line 6),
with the program outputs initialized to default values by calling the initialization
routine that Scade specifically generates as part of the code of each component
(line 5), and considering an initially empty set of visited states (line 7). The

hook function default values (line 5) for initializing the program outputs with
default values is part of the C program generated by Kcg. Then, the driver
iterates through the loop at lines 8–14, where it calls the program under test
once per iteration (line 10), until the execution of the program leads to an
already visited state (line 8). Exiting the loop corresponds to an execution
sequence that we must consider according the SSPC testing criterion and for
which Klee will then generate a corresponding test input.

At each iteration of the the loop at lines 8–14, the analysis driver triggers the
possible state transitions of the Scade program by first assigning the program
inputs with fresh symbolic values (line 9), and then symbolically executing the
program under test to analyze the possible execution paths (line 10). For each
analyzed path, it saves the current symbolic values of the outputs to enable the
Tecs Test synthesizer to generate regression oracles later on (line 11), updates
the set of visited states (line 12), and iterates with the analysis of the next state
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Algorithm 1 The algorithm of the analysis driver

Let:
1: program be the program under test,
2: inputs be a reference to the inputs of the program,
3: outputs be a reference to the outputs of the program,
4: s0 be the initial state of the program,

5: outputs← default values()

6: state← s0

7: visited← ∅
8: while state /∈ visited do
9: inputs← fresh symbols()

10: state′, outputs← program(state, inputs, outputs)

11: save symbolic expressions(outputs)

12: visited← visited ∪ {state}
13: state← state′

14: end while

(line 13). The hook functions at the first three steps inside the loop crucially
depend on the restrictions that Kcg enforces to foster dependable safety-critical
software. Below, we explain these hook functions in detail.

Function fresh symbols (Algorithm 1, line 9) This hook function assigns
the program inputs with symbolic values. The Driver synthesizer generates the
code of the hook function fresh symbols based on the knowledge that Kcg does
not generate recursive data structures, dynamic memory allocation or variable-
length arrays. This guarantees the viability of unfolding all fields of primitive
types that belong to the input data structures at any nesting level, since these
fields are necessarily a finite set. Thus, the analysis driver synthesizer customizes
the code of function fresh symbols such that it assigns each primitive-typed
input (received either as an input variable or as a field nested in an input
data structure) to a fresh symbolic value, while it initializes all pointer-typed
inputs and arrays with references to concrete memory locations.6 The Driver
synthesizer uses the tool ANTLR4 [43] to parse the type definitions in the C
program for the sake of generating the code of function fresh symbols.

6 We remark that, by initializing all pointers and arrays with references to concrete memory
locations, our approach guarantees by-design that no memory access through a pointer can
ever result into a symbolic memory access (a memory access in which the memory location
itself – or the base of the array – is a symbolic, non-deterministic value) during symbolic
execution. Accessing arrays with symbolic indices can still lead to non-deterministic memory
accesses, which Klee models with formulas expressed in the theory of arrays [41], consistently
with the semantics of the program under test. In this case, our approach guarantees that these
formulas predicate on concrete, non-overlapping arrays of fixed size, which can be addressed
without particular challenges with SMT solvers at the state of the art [41].
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1 inC WingMirrorControl CarControl ∗ f r e sh symbo l s ( ) {
2 inC WingMirrorControl CarControl ∗ r e t = malloc ( s izeof ( . . . ) ) ;
3 k l e e i n i t (&ret−>c t r l , ” . . . ” ) ;
4 ret−>wingMirrorData = malloc (2 ∗ s izeof ( . . . ) ) ;
5 k l e e i n i t (&ret−>wingMirrorData [ 0 ] , ” . . . ” ) ;
6 k l e e i n i t (&ret−>wingMirrorData [ 1 ] , ” . . . ” ) ;
7 return r e t ;
8 }

Figure 4: The hook function fresh symbols for the sample program of Figure 2

Let us consider, for instance, the working program that we introduced in Fig-
ure 1. With reference to the corresponding C program of Figure 2, the Driver
synthesizer generates the hook function fresh symbols as indicated in Figure 4.
By inspecting the considered C program, the analysis driver synthesizer identi-
fies that the data structure of type inC WingMirrorControl CarControl, which
represents the program inputs, includes a field ctrl and a field wingMirrorData,
respectively. The former field is defined as an enumeration type, i.e., a primi-
tive type, and the latter field is an array, i.e., a non-primitive type. Thus, the
Driver synthesizer inspects the definition of the array, revealing that it consists
of two items of primitive type (again an enumeration). The generated func-
tion fresh symbols ultimately consists of C code that initializes a new instance
of the data structure in memory (Figure 4, line 2), relies on Klee (operation
klee init) to initialize the primitive field ctrl with a new fresh symbol (line 3),
initializes the non-primitive field wingMirrorData as a new array instance with
two items (line 4), and initializes the two items in the array with further fresh
symbols (lines 5 and 6).

The operation klee init for initializing the inputs with fresh symbols takes
two main parameters: one is the input to be initialized passed by reference,
and the other one is a name (a string of characters) to be associated with that
symbolic value. For instance, we might define the name ”ctrl” for the fresh
symbol that function fresh symbols associates with the input ret->ctrl at
line 2. Upon generating test inputs as possible concrete values of the symbols,
Klee will use the provided name to indicate the input data to which those
values refer. We postpone to Section 3.2 the discussion on how we specifically
define the names for the fresh symbols to facilitate the task of synthesizing
Scade test cases out of the test inputs obtained with Klee.

Executing the program under test (Algorithm 1, line 10) The hook
function program at line 10 represents a call to the program under test, which
is already part of the C code generated with Kcg. The program receives the
current state, the freshly initialized symbolic inputs and the current values of
the outputs, and executes a state transition, possibly yielding a new state and
new outputs. When executing program, Tecs relies on the knowledge that the
C translation of a Scade model consists (by construction) of all deterministic
and terminating program paths, and thus the symbolic execution is guaranteed
to terminate without need of enforcing any scope bound for the analysis.
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Function save symbolic expressions (Algorithm 1, line 11) This hook
function saves the symbolic expressions associated with the outputs after each
execution of the program under test. This enables Tecs to solve (at a later step)
these expressions to concrete values that consistently match with the selected
inputs, and use those value to define regression oracles within the test cases.
At the state of the art, generating regression oracles is a common functionality
offered by most test generators [12]: a regression oracle defines the expectation
that the outputs shall be equal to the values observed during the test generation
process, which is trivially true when executing the test cases against the pro-
gram that is being considered, but may provide meaningful insights on possible
regressions against future new versions of the program.

The same considerations that we discussed for function fresh symbols, re-
lated to the possibility of unfolding the primitive fields in the input data struc-
tures at any nesting level in finite steps, hold as well for function save symbolic -
expressions with the only change that, in this case, the function unfolds the
symbolic expressions associated with all primitive fields that belong to the out-
put data structures of the program. For our working program, Tecs customizes
function save symbolic expressions to save the symbolic expressions associated
with the primitive-typed output carState and the two primitive outputs that
comprise the array mirrorCommand.

Technically, function save symbolic expressions generates a fresh symbol
for each primitive-typed output, and informs Klee of the assumption that the
new fresh symbol shall be equal to the value of the symbolic expression that is
currently associated with the given output. This can be done with the the Klee
API klee assume. For instance, for saving the symbolic expression associated
with the output carState, save symbolic expressions generates a new fresh
symbol (say s) and then calls klee assume(s==carState). This leads Klee
to compute a result for the symbol s that reveals the value of carState at
the moment when the assumption was evaluated during symbolic execution,
consistently with the values that Klee computed for all other inputs.

Weak transitions We now discuss a refinement of the steering algorithm
(Algorithm 1) aimed to handle a special types of state transitions, called weak
transitions, which can be defined in Scade models. When a weak transition
is fired, the actions that it defines are activated and the state is updated, but
the outputs of the target state become active one execution cycle later. Thus,
a weak transition requires two, rather than one, execution cycles to complete.
During the second cycle the state machine stays in the destination state of the
weak transition, that is therefore visited twice.

Algorithm 2 extends the analysis driver to handle weak transitions. This new
algorithm is equal to Algorithm 1, but includes the additional steps highlighted
with gray-shadowed background. The algorithm has a new dependency on the
predicate weak transition(statea, stateb) (line 5) that indicates whether or not
the transition from statea to stateb is a weak transition. We can deduce this
information automatically out of the metadata that Scade associates with the
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Algorithm 2 The algorithm of the analysis driver extended for weak transitions
Let:
1: program be the program under test,
2: inputs be a reference to the inputs of the program,
3: outputs be a reference to the outputs of the program,
4: s0 be the initial state of the program,

5: weak transition be a predicate that is true for state-pairs that correspond to weak transitions.

6: outputs← default values
7: state← s0
8: visited← ∅
9: stutter ← false

10: while state /∈ visited do
11: inputs← fresh symbols()
12: state′, outputs← program(state, inputs, outputs)
13: save symbolic expressions(outputs)

14: if ¬ stutter then

15: visited← visited ∪ {state}
16: end if

17: stutter ← weak transition(state, state’)

18: state← state′

19: end while

program under test. After each execution step, if a weak transition is fired,
i.e., if the predicate weak transition(state, state′) is true at line 17, then the
variable stutter memorizes the fact. In this case, at the next iteration, the
destination state of the weak transition is not added to the set of the visited
states (line 14). This allows the program to complete the weak transition, which
requires to visit that state once again, and then progress further on.

3.2 The Test Synthesizer

The Tecs Test synthesizer uses the test inputs obtained with Klee to con-
struct test cases in Scade format. Figure 5.b reports a sample test case in
Scade format that was generated with Tecs. It consists of two test steps:
The first test step sets (SSM::set test statements) ctrl to UNLOCKED, autom-
aticControl to false and mirrorState to OPEN for both wing mirrors, in order
to unlock the car and opening the wing mirrors. Thus, the test case doublechecks
(SSM::check) that, after this step, carState is equal to UNLOCKED and the out-
puts mirrorCommand are both assigned to OPEN. When the test case executes
the statement SSM::cycle, Scade executes the test step and checks the values
of the outputs accordingly. The second test step switches ctrl to LOCKED, and
automaticControl to true, then expecting that the carState moves to LOCKED

while issuing mirrorCommand outputs equal to CLOSED.
To synthesize the test cases in Scade format, the Tecs Test synthesizer

renders the test inputs that Klee yielded for a given execution path in the
form of suitable SSM::set test statements, and renders the regression oracles
that Klee yielded for that path in the form of suitable SSM::check test state-
ments. For the execution paths that Klee explored by issuing multiple calls
of the program under test, the corresponding test cases shall include separate
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Name of the fresh symbol (field, type, sequence) Test enum
field type seq input value

inC.ctrl enum Lock 1 0 UNLOCKED
inC.wingMirrorData.automaticControl boolean 1 false -
inC.wingMirrorData.mirrorState[0] enum MirrorState 1 0 OPEN
inC.wingMirrorData.mirrorState[1] enum MirrorState 1 0 OPEN
outC.carState enum Lock 1 0 UNLOCKED
outC.mirrorCommand[0] enum MirrorState 1 0 OPEN
outC.mirrorCommand[1] enum MirrorState 1 0 OPEN
inC.ctrl enum Lock 2 1 LOCKED
inC.wingMirrorData.automaticControl boolean 2 true -
inC.wingMirrorData.mirrorState[0] enum MirrorState 2 0 OPEN
inC.wingMirrorData.mirrorState[1] enum MirrorState 2 0 OPEN
outC.carState enum Lock 2 1 LOCKED
outC.mirrorCommand[0] enum MirrorState 2 1 CLOSED
outC.mirrorCommand[1] enum MirrorState 2 1 CLOSED

(a) The test inputs that Klee generated for an execution path (through the analysis driver) for the
sample Scade program of Figure 1

###################################################
## WingMirrorControl WingMirrorFSM , Test case : 00002
####################################################

#Test step 1
SSM : : s e t c t r l UNLOCKED
SSM : : s e t wingMirrorData . automaticControl fa l se
SSM : : s e t wingMirrorData . mi r ro rState {(OPEN,OPEN)}
SSM : : check carSta te UNLOCKED
SSM : : check mirrorCommand {(OPEN, OPEN)}
SSM : : cy c l e

#Test s tep 2
SSM : : s e t c t r l LOCKED
SSM : : s e t wingMirrorData . automaticControl true
SSM : : s e t wingMirrorData . mi r ro rState {(OPEN, OPEN)}
SSM : : check carSta te LOCKED
SSM : : check mirrorCommand {(CLOSED, CLOSED)}
SSM : : cy c l e

(b) The Scade test case synthesized out of the test inputs from Klee

Figure 5: A test case generated for the sample program of Figure 1

a test step (SSM::cycle) for each program call, and the Test synthesizer shall
consistently map the test inputs that correspond to each program call with the
inputs of each step within the Scade test cases.

The Test synthesizer relies on a set of naming conventions that the analysis
driver enforces when defining the names for the symbolic values. In detail, the
analysis driver makes sure that the name of each fresh symbol specifies (i) the
name of the input field initialized with the fresh symbol, (ii) the type of the
input field, and (iii) the sequence number of the program call for which the
analysis driver instantiated the fresh symbol.

For instance, with reference to the the code of function fresh symbols gen-
erated for our working program (Figure 4), the fresh symbol that the analysis
driver associates with the input field ctrl at the second call of the program
under test (for the execution paths that make at least two calls of the program)
is named as ”field: inC.ctrl, type: enum Lock, sequence: 2”. Thus, when Klee
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yields a test input 1 for that symbol, the test synthesizer understands that the
value 1 shall be assigned to the input field ctrl at the second program call
made in the test case. Moreover, knowing that the field is of type enum Lock, it
can deduce that the value 1 refers to the second item defined in that enumera-
tion, i.e., the value LOCKED. Thus, the test synthesizer generates the assignment
ctrl = LOCKED at second test step.

Figure 5 shows the test inputs (Figure 5.a) that Klee generates for an execu-
tion path through the analysis driver for the sample Scade program of Figure 1,
and the Scade test case that Tecs synthesizes correspondingly (Figure 5.b).
The figure indicates the test inputs in tabular form to improve readability. Each
row of the table corresponds to a test input from Klee. The first three columns
represent the name that the analysis driver associated with the fresh symbol.
As we described above, each symbol name is comprised of a field-, type- and
sequence-specifier. The fourth column indicates the specific test input value
that Klee yielded. The fifth column shows the matching enumeration value for
test inputs of enumeration types. The test inputs that correspond to the fields
of the data structure inC were generated in the hook function fresh symbols of
the analysis driver: They indicate the input values for the test case. The ones
that correspond to the fields of the data structure outC were generated in the
hook function save symbolic expressions: They indicate values for regression
oracles.

As the table indicates, Klee generated 14 inputs for the considered execution
path. These 14 inputs refer to two subsequent calls of the program under test
that occur within the execution path, as the value of the sequence-specifier,
either 1 or 2, indicates that the first 7 test inputs map to the first program call,
and the following 7 test inputs map to the second program call, respectively.

Thus, Tecs synthesizes a Scade test case consisting of two test steps (Fig-
ure 5.b). The first test step sets (SSM::set) ctrl to UNLOCKED, automaticCon-
trol to false and mirrorState to OPEN for both wing mirrors. This results in
unlocking the car and opening the wing mirrors, and in fact the test case defines
the regression oracles (SSM::check) stating that this test step shall lead to a state
in which the carState is equal to UNLOCKED and the outputs mirrorCommand are
both set to OPEN. When the test case executes the statement SSM::cycle, Scade
executes the test step and checks the values of the outputs accordingly. The
second test step switches ctrl to LOCKED, and automaticControl to true, then
expecting in the assertions that the carState moves to LOCKED while issuing
CLOSED for both mirrorCommand outputs.

3.3 Remarks

The method that Tecs realizes to initialize the program inputs with symbolic
values, execute the program, and save the values of the outputs, would hardly
work if we were addressing the symbolic execution of an arbitrary C program.
Thus, our design of the test generator Tecs is tightly connected to the research
hypotheses that this paper formulates about the class of programs identified
by programming languages for safety-critical software, out of which we refer to
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Scade as a representative case.
In detail, with reference to the hook functions fresh symbols and save sym-

bolic expressions that we introduced and discussed in this section, if the inputs
and the outputs of the program could be defined of the type of dynamically
allocated recursive data structures, the analysis driver that Tecs synthesizes
might lead Klee though infinite recursive steps in the attempt to initialize the
fields at any nesting level, since the possible nesting levels would be unbounded
for a recursive data structure. If dynamic memory allocation had to be consid-
ered, symbolic execution should handle pointer-aliases for the pointers present
in input data, by considering all the possible alternative initializations in which
they could either hold null values, or refer to any compatible memory location
that belongs to the input state [24]. If input arrays with non-statically-known
length were allowed, there would be no immediate way to initialize them by
unfolding their internal items.

With reference to the hook function program (which executes the state tran-
sitions of the Scade program under test), Tecs relies on the knowledge that
the program under test is fully deterministic and does not include unbounded
loops or recursion. This assumption guarantees that the analysis driver always
analyzes a finite number of execution paths in each pass of the program, and
always terminates for each execution path, without need of specifying any cus-
tomized bound neither in the target program, nor within the symbolic executor.
In general, this is impossible for symbolic-execution-based test generators that
address arbitrary programs.

4 Case Study

In this section we report on a case study where we evaluated the effectiveness of
symbolic execution, as instantiated in our tools Tecs described in Section 3, for
generating test cases for safety-critical software developed in Scade. We con-
sidered a set of Scade programs developed as part of a project for an on-board
signaling unit for high speed rail. This project is currently being developed
by an industrial partner, with whom we are collaborating. We used Tecs to
automatically generate test cases for the considered Scade programs, and we
evaluated our approach in terms of both the ability of Tecs to successfully
accomplish the test generation process, and the quality of the resulting test
suites.

Below we explain the research questions that drove our evaluation, describe
the considered Scade programs, present the experimental setting of the case
study, report on the results, and discuss the main threats to the validity of our
current conclusions.

4.1 Research Questions

In the case study we aimed to answer the following research questions:
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• RQ1: Does Tecs accomplish test generation within acceptable test bud-
gets?

• RQ2: What is the quality of the test suites that Tecs generates?

We answer RQ1 by quantifying how many execution paths Tecs actually
analyzes when generating test cases for a set of Scade programs implemented
by our industrial partner (presented below in Section 4.2), and how long it takes
overall to complete the test generation process for those programs. RQ1 aims
to produce empirical evidence that we can effectively exploit symbolic execution
to generate test cases for safety-critical software in Scade. As we explained in
Section 3, Tecs concretizes this hypothesis by tailoring its implementation of
symbolic execution on the restrictions by which Kcg fosters by-design safety
guarantees in the programs. Thus, as RQ1 states, we aim to empirically confirm
whether or not Tecs, by its distinctive design, indeed succeeds to accomplish
the test generation process within acceptable test budgets.

We answer RQ2 by evaluating the quality of the test suites that Tecs gen-
erates for the considered programs. We evaluate the quality of the test suites
(i) in absolute terms, i.e., by measuring the size and the structural thoroughness
of the test suites and by experiencing with the generated test suites to support
component-level testing of the considered programs, (ii) in comparison with the
manually derived test suites that were already available for three of the consid-
ered programs, (iii) in comparison with test suites automatically derived with
a search-based test generation approach [9]. RQ2 aims to confirm the merit of
generating test cases based on symbolic execution.

4.2 Subject Programs

We considered the 37 Scade programs listed in Table 1. The table defines an
identifier (first column) that we use to refer to each subject program in the se-
quel of the paper, and provides a short description (second column) of the task
that each program executes. These programs are part of the on-board signal-
ing unit for high speed rail that our industrial partner is currently developing.
For example, the first program, shunting implements the Shunting procedure.
In the railway terminology, shunting is the process of sorting railway vehicles
into complete trains. When a train is in shunting mode, the on-board unit is
responsible for the supervision of the speed limit that is allowed during the
shunting operations, and to stop the train when it passes the defined border of
the shunting area. The shunting procedure that we consider as subject program
shall handle the messages that the train receives from both the driver and the
ground signaling equipment, to make decisions on when activating or deactivat-
ing the shunting mode. The other programs implement several control tasks, as
checking and verify the consistency of the data that the on-board unit receives
from the ground components, computations of information for monitoring and
controlling the train, rendering appropriate messages to the driver, and sending
commands to the actuators.
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Table 1: Subject programs
Subject #Description

shunting Sorts railway vehicles into a complete train
dc 1, dc 2, ..., dc 14 Check data consistency of received messages
radiohole Deactivates radio connection supervision when train is in a radio hole area
crossnonlx Monitors a level crossing area that is not protected by external authorities
baliseinfo Renders messages from on-railway transporders to the driver
emergency 1 Updates on-board data when receiving an emergency message
emergency 2 Acknowledges radio control center when receiving an emergency message
mema Rejects movement authorities if there are emergency messages
trackside Receives and stores values from trackside equipments
vbc Updates the list of known transponders
coordfromrbc Updates the coordinate system as specified by the ground control
adfactordmi 1 Warns the driver if the railway adhesion factor is slippery
adfactordmi 2 Renders the railway adhesion factor in the GUI
driveridins Updates the driver ID as indicated through the GUI
eirene Stores the EIRENE number as indicated through the GUI
ertmslevel Updates the operating level as indicated through the GUI
natvalues Verifies the national values of the currently traversed region
networkidins Updates the identifier of the radio network
rbcidins Stores the ID of the radio control center ID as indicated through the GUI
trainDataUpdate Updates the train data stored on board
trainDataInsertion Inserts new train data among the ones stored on board
message129 Notifies changes of train data to the radio control center
runnumber 1 Updates the train ID on board
runnumber 2 Notifies changes of the train ID to the radio control center

Table 2 summarizes the main statistics on the internal structure of the sub-
ject programs, i.e., the number of the states (column #States) and state tran-
sitions (columns #Transitions) of the state machine that corresponds to each
Scade program, the number of inputs (column #Inputs) and outputs (column
#Outputs) of each Scade program, and the number of lines of C code that cor-
respond to each program after exporting it with Kcg. For the state transitions,
the table reports separately the number of weak and strong (non-weak) tran-
sitions, since the weak transitions count double in the sequences of transitions
that Tecs analyzes, as we explained in Section 3.1 (Algorithm 2). The lines of
C code refer to the code within the C functions that specifically correspond to
each Scade program, without counting the lines of code of the data-type defini-
tions in those programs. In fact, each program includes more than 8,000 further
lines of code that define the data-types used in the C functions, and which Tecs
parses with ANTLR4 to instantiate the hook functions of the analysis driver.

For instance, the Scade implementation of shunting is a state machine
with 5 states, 2 weak transitions and 8 strong transitions, in which the states
and the transitions are based on computations and conditions that involve 12
input and 14 output variables, respectivey, including the variables that repre-
sent the messages received and sent from on-board unit. Many subjects (all
but shunting, radiohole and crossnonlx) implement computations that the
on-board unit shall keep on repeating at each execution cycle, and thus they
consist of a single state transition which represents the execution of the com-
putation, and which keeps the program always in the same state. For instance,
the dc 1..14 programs implement data consistency checks that the on-board
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Table 2: Statistics of the subject programs
Scade model C code

Subject #States #Transitions #Inputs #Outputs LOC(∗)

weak strong
shunting 5 2 8 12 14 646
dc 1 1 1 - 13 7 175
dc 2 1 1 - 1 2 43
dc 3 1 1 - 5 3 95
dc 4 1 1 - 3 4 62
dc 5 1 - 1 3 1 32
dc 6 1 1 - 3 4 67
dc 7 1 - 1 3 1 32
dc 8 1 - 1 2 1 30
dc 9 1 1 - 5 15 464
dc 10 1 1 - 3 9 239
dc 11 1 1 - 1 3 69
dc 12 1 1 - 14 17 96
dc 13 1 1 - 3 7 67
dc 14 1 - 1 1 1 35
radiohole 3 2 1 2 2 361
crossnonlx 3 2 1 6 4 556
baliseinfo 1 1 0 1 2 147
emergency 1 1 1 0 9 4 865
emergency 2 1 1 0 9 6 711
mema 1 1 0 4 1 798
trackside 1 1 0 3 0 225
vbc 1 1 0 7 1 1,011
coordfromrbc 1 1 0 1 1 366
adfactordmi 1 1 1 0 3 1 125
adfactordmi 2 1 0 1 1 1 54
driveridins 1 1 0 1 1 262
eirene 1 0 1 3 1 124
ertmslevel 1 0 1 1 1 109
natvalues 1 0 1 1 1 265
networkidins 1 0 1 1 1 109
rbcidins 1 1 0 1 1 189
trainDataUpdate 1 1 0 2 19 136
trainDataInsertion 1 0 1 2 1 291
message129 1 1 0 5 1 353
runnumber 1 1 1 0 1 1 154
runnumber 2 1 1 0 4 1 116

(∗) C code LOC values refer to the lines of code in the C functions specific of each Scade program,

but each program includes more than 8,000 additional lines of code of data-type declarations, which

define the data structures that comprise the inputs and the outputs of the programs.

unit shall perform at each execution cycle. These programs define either a weak
or a strong transition according to whether or not, respectively, the check that
they implement depends on feedback loops with their own outputs.

At the level of the C code, the considered programs range between 30 and
1,011 lines of code (plus the code defining the data types, i.e., as said, more
than 8,000 additional lines of code) being program dc 8 and program vbc the
smallest and the largest program, respectively.

4.3 Experimental setting

Our case study consisted of a set of experiments, one for each of the subject
programs listed in Table 2, in which we ran Tecs to generate test cases for
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the subject programs, executed the test cases in the Scade Suite and collected
model coverage data.

We ran Tecs on cloud facility hosted at our university, using a virtual ma-
chine equipped with Linux Ubuntu, 48 cpus, 150 GB of ram memory, which
allowed for running multiple instances of Tecs in parallel.

We handled the Scade programs with Scade Suite Version 2020 R2, which
includes the corresponding version of the Kcg compiler that we use to obtain
the C version of the subjects programs. We executed the test cases with the
tool Scade Test Version 2020 R2.

During the experiments, for each subject program, we tracked the number of
paths that Tecs identified during the symbolic execution phase, measured the
time that it took to complete the test generation process, counted the number
of test cases that it generated, and computed the model coverage that the test
cases achieve against the Scade programs.

For measuring the model coverage of the test cases we relied on the Scade
Test tool, which automatically computes the model coverage while executing
the test cases. The coverage computed with Scade Test refers cumulatively to
the portion of executed states, and the modified condition/decision coverage of
the transition guards.

In the case of programs shunting, radiohole and crossnonlx we were able
to compare the test cases generated with Tecs with manually selected test suites
that were already available for those programs at the time of our experiment.
We compared the manual and the automatic test suites with respect to their
difference in model coverage, focusing on the items that either test suite covers
and the other one does not.

For all other subject programs, the engineers at our industrial partners de-
cided to rely directly on our tool (as Tecs in fact became available while those
programs were being implemented), aiming to optimize their effort for designing
and implementing the test cases for those programs. To this end, they aug-
mented the test cases generated with Tecs with (manually defined) assertion-
style test oracles, aiming to obtain test suites that could be readily used for
component-level testing of the considered programs (other than for future re-
gression testing of those programs). This resulted in a semi-automatic approach
to component-level testing empowered by our tool Tecs, and allowed us to fur-
ther validate the quality of the test suites generated with Tecs in terms of
usefulness for detecting component-level failures in the context of our industrial
project.

We remark that, on one hand, this choice of our partner affected our abil-
ity to extensively crosscheck the differences in effectiveness of automatically
and manually generated test suites, respectively, since no manual test suite ex-
isted to compare with for any subject program but shunting, radiohole and
crossnonlx; On the other hand we believe that the choice of dismissing fully
manual testing in favour of working with semi-automatic test cases (obtained by
enriching with assertions the ones generated with Tecs) supports the positive
perception of our industrial partner on the effectiveness of our approach.
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Table 3: Results of Tecs for the subject programs considered in our case study
#test steps

subject time (s) #paths #tests avg max coverage
shunting 286 3,367 20 3 5 86%
dc 1 2 616 8 2 2 91%
dc 2 <1 2 2 2 2 100%
dc 3 <1 16 6 2 2 100%
dc 4 <1 3 2 2 2 92%
dc 5 <1 4 2 1 2 89%
dc 6 <1 3 2 2 2 90%
dc 7 <1 4 2 1 2 80%
dc 8 <1 4 3 1 2 83%
dc 9 2 208 9 2 2 100%
dc 10 <1 64 9 2 2 93%
dc 11 <1 3 2 2 2 100%
dc 12 <1 3 3 2 2 72%
dc 13 <1 20 4 2 2 98%
dc 14 <1 4 2 1 1 82%
radiohole 117 45 6 3 3 95%
crossnonlx 647 294 13 3 3 84%
baliseinfo 1 3 3 1 2 97%
emergency 1 15 28 14 1 2 94%
emergency 2 29 8 6 1 2 82%
mema 23 17 7 1 2 89%
trackside 1137 3 3 1 2 99%
vbc 164 77 12 1 2 94%
coordfromrbc 41 7 5 1 2 83%
adfactordmi 1 1860 3 3 1 2 85%
adfactordmi 2 1 2 2 1 1 96%
driveridins 5 10 10 1 2 89%
eirene 3 3 3 1 1 94%
ertmslevel 2 3 3 1 1 94%
natvalues 1230 4 4 1 1 90%
networkidins 1 3 3 1 1 94%
rbcidins 3 4 4 1 2 95%
trainDataUpdate 47 2 1 1 2 89%
trainDataInsertion 28 4 3 1 1 95%
message129 99 80 10 1 2 83%
runnumber 1 2 3 3 1 2 94%
runnumber 2 3 22 7 1 2 92%

4.4 Results

Table 3 summarizes the data on the execution of Tecs in our experiments, and
the test cases that it generated. For each subject program (column program), the
table reports the time in seconds taken to complete the overall test generation
process (column time), the number of execution paths analyzed with symbolic
execution (column #paths), the number of test cases generated after executing
the minimization step (column #tests), the average and maximum number of
test steps within the test cases (columns #test steps), and the model coverage
of the test cases (column coverage).

Test budget requirements (RQ1)

Overall, the data in Table 3 support a positive answer to the research question
RQ1 on whether Tecs accomplishes the test generation process within accept-
able test budgets. Furthermore, as Tecs completed in finite time in all exper-
iments, these data also support our hypothesis that, thanks to the language
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Table 4: Data on the queries issued to the constraint solver
subject time (s) #paths #queries >1 ms
radiohole 117 45 484 0
crossnonlx 647 294 502 0
emergency 2 29 8 280 0
mema 23 17 122 0
trackside 1137 3 1305 0
vbc 164 77 279 0
coordfromrbc 41 7 155 0
adfactordmi 1 1860 3 2530 0
natvalues 1230 4 1296 0
trainDataUpdate 47 2 215 0
trainDataInsertion 28 4 121 0
message129 99 80 133 0

restrictions that Scade embraces to promote safe programs, we can exploit
symbolic execution to efficiently explore the execution space of the programs
under test without need of specifying custom bounds for the analysis.

In detail, for most subject programs, Tecs took a few seconds to complete
the test generation process. It took more than 1 minute only for 8 out of
37 subject programs, and more than 10 minutes only for 4 programs, namely,
crossnolx, trackside, adfactordmi 1 and natvalues, the maximum time be-
ing 31 minutes (1,860 seconds) in the experiment with program adfactordmi 1.

In all experiments Tecs used most computation time to complete the sym-
bolic execution with Klee, under the guidance of the Tecs analysis driver,
while the other phases of Tecs, i.e., synthesizing the analysis driver, and syn-
thesizing the test cases in Scade format, took negligible time.

We investigated in further detail the experiments in which the time budget
was not justified by the (low) number of symbolically executed paths. For
these cases, we investigated whether the time budget was bounded by some
complex execution conditions that took long time for the constraint solver to
compute the solutions. To this end, we logged the number of queries that the
symbolic executor issued to the constraint solver, and the queries for which the
constraint solver took more than a specified time. Table 4 shows these data in
particular for the subject programs (column subject) for which Tecs executed
for a number of seconds (column time) higher than the number of symbolically
analyzed execution paths (column #paths). The table reports the number of
the queries issued in total to the solver (column #queries) and restricted to
the ones that took more than a millisecond to be solved (column >1). As the
table shows, indeed no query took more than a millisecond, confirming that
the execution conditions generated during the analysis of the Scade programs
result in simple constraint solving problems. For these programs we were able
to map the execution time to the large data structures that comprise their
inputs, which required the initialization and the handling of many symbolic
values during symbolic execution.
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Quality of the Test Suites (RQ2)

Table 3 shows that the test suites that Tecs generated in our experiments
consist of a minimum of 1 test case, for program trainDataUpdate, up to a
maximum of 20 test cases for shunting. The number of corresponding test
steps is either 1 or 2 in all test cases generated for the programs that consist
of only a strong or a weak transition, respectively, while it is higher for the
three programs that define Scade models with more states and transitions,
i.e., shunting (5 states, 10 transitions), radihole (3 states, 3 transitions) and
crossnonlx (3 states, 3 transitions). For these programs, the generated test
cases consist of 3 test steps on the average, up to a maximum of 5, 3 and 3 test
steps for shunting, radihole and crossnonlx, respectively.

The generated test suites achieved a model coverage of 100% for 4 subject
programs, at least 90% for 19 further programs, at least 80% for 13 programs,
and 72% in the only case of program dc 12.

Uncovered Items We inspected the programs with uncovered items in fur-
ther detail, to investigate the reason why Tecs missed the generation of test
cases that cover those items. We tracked the uncovered items to four distinct
motivations:

• Items that depend on infeasible program paths: In fact, many subject
programs include infeasible paths, the most frequent case being the one
of programs structured with some (sub-)procedures, where the procedures
define general algorithms, but the program calls them only in specialized
contexts (e.g, with constant values passed for some parameters) and thus
inhibits the possibility of executing some branches (e.g., the branches that
depend on parameter values different than the used constants).

• Unreported coverage: The Scade Test tool does not report the coverage
of the items that, although executed during the test cases, do not map to
any observable output of the Scade operators in the programs under test.
In the considered programs, this happens for a set of operators defined to
update stored data: these operators take an input, and use it to do the
update, without producing any explicit output. This leads to the Scade
test tool to misleadingly classify some items of our subject programs as
uncovered. As we are discussing with our partner, this observation calls
for some refactoring of the mentioned operators, to improve the precision
of the coverage measurements.

• Functional behaviors out of the scope the single-state-path-coverage test-
ing criterion that Tecs uses for steering the test generation process:
We observed uncovered functional behaviors in program shunting. The
Scade model of this program includes two model states in which the train
expects a message from the ground equipment. These states implement
the degraded behavior of assuming that the ground equipment is not re-
sponding, if the expected message is not received within a specific number
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of execution cycles. As a matter of facts, these behaviors correspond to
execution sequences that iterate in the same state for multiple execution
cycles, and are thus out of the scope of the single-state-path-coverage
testing criterion that Tecs is designed to satisfy.

• Uncovered modified condition/decision targets: As we commented in Sec-
tion 3 while discussing the Miminizer step of Tecs, a limitation of the
current implementation is to select test cases based on statement coverage,
which is a grosser grained criterion than the modified condition/decision
coverage of transition guards considered in Scade Test. This resulted in
a few uncovered modified condition/decision targets in the current exper-
iments, even if Tecs analyzed all execution paths. As said, we aim to
overcome this limitation of Tecs in future release.

Out of the above cases, only the last two map to limitations of our approach.
While the former of these limitations suggests the strategy of complementing the
automatically generated test cases for the programs with missing coverage (by
searching for functional behaviors that require iterating multiple times though
the same state), the latter could be mitigated by improving the implementation
of Tecs. We evaluated the room for the coverage improvement that we might
achieve with a different strategy for selecting test cases out of the symbolically
analyzed execution paths. To this end, we re-executed Tecs after disabling the
Miminizer option in Klee, thus making Tecs compute exactly one test case for
each symbolically analyzed execution path. Table 5 compares the number of test
cases and the coverage results that we achieved with and without the Minimizer,
respectively (but for program shunting for which the high number of test cases
computed without Minimizer – 3,367 test cases – exceeded the capability of
Scade Test to execute the test suite). In the table, we highlighted in bold
the 6 cases in which the coverage rate improved without using the Minimizer.
The amount of improvement was 1% for radiohole and message129, 2% for
crossnolx and emergency 2, 4% for mema, and up to 7% for dc 1.

Comparison with Manually Derived Test Cases In the case of the sub-
ject programs shunting, radiohole and crossnonlx we were able to compare
the test cases generated with Tecs with manually selected test suites that were
already available for those programs at the time of our experiment. These test
suites were designed in a functional fashion based on the software requirements
specified for the program, using the model-based test criterion of executing at
least once all non-cyclic paths of the state machine and all conditions involved
in the state transitions. The engineers reported to us that the analysis of the
requirements, the selection of the test cases and their manual implementation
in a the test suite took overall 16 man-hours (two days of work), 3 man-hours
(about half day) and 9 man-hours (about one day) for shunting, radiohole
and crossnlnlx respectively. They tracked the main challenges to i) devising a
suitable functional partitioning of the relevant cases to be tested (which in turn
required to reiterate multiple times the study and the analysis of the require-
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Table 5: Results of Tecs with and without the Minimizer

with Minimizer no Minimizer
subject #tests coverage #tests coverage
shunting 20 86% 3,367 n.a.
dc 1 8 91% 616 98%
dc 2 2 100% 2 100%
dc 3 6 100% 16 100%
dc 4 2 92% 3 92%
dc 5 2 89% 4 89%
dc 6 2 90% 3 90%
dc 7 2 80% 4 80%
dc 8 3 83% 4 83%
dc 9 9 100% 208 100%
dc 10 9 93% 64 93%
dc 11 2 100% 3 100%
dc 12 3 72% 3 72%
dc 13 4 98% 20 98%
dc 14 2 82% 4 82%
radiohole 6 95% 45 96%
crossnonlx 13 84% 294 86%
baliseinfo 3 97% 3 97%
emergency 1 14 94% 28 94%
emergency 2 6 82% 8 84%
mema 7 89% 17 93%
trackside 3 99% 3 99%
vbc 12 94% 77 94%
coordfromrbc 5 83% 7 83%
adfactordmi 1 3 85% 3 85%
adfactordmi 2 2 96% 2 96%
driveridins 10 89% 10 89%
eirene 3 94% 3 94%
ertmslevel 3 94% 3 94%
natvalues 4 90% 4 90%
networkidins 3 94% 3 94%
rbcidins 4 95% 4 95%
trainDataUpdate 1 89% 2 89%
trainDataInsertion 3 95% 4 95%
message129 10 83% 80 84%
runnumber 1 3 94% 3 94%
runnumber 2 7 92% 22 92%

cov = n.a., if Scade Test failed due to too many test cases

ment documents), ii) analyzing the implementation to identify suitable input
and test step sequences for exercising the identified set of relevant cases, and
iii) rendering the test cases in the specific language and format required by the
Scade test tool (that we exemplified in Figure 5.b).

Table 6 reports the main statistics of the manual test suites (columns Manual
test suite) for the three considered programs, sided to the statistics of the test
suites that Tecs generated (columns Tecs) for each of the programs. For each
test suite we report the time taken to generate the test suite (column time), the
number of test cases (column #tests) and the corresponding model coverage
(column coverage).

The manually derived test suites are sightly more compact in terms of num-
ber of test cases than the automatically generated counterparts, but it is clear
that pay higher costs in terms of working effort (several hours) in comparison
with the relatively shorter time that developers must wait to obtain the test
cases with Tecs. In terms of coverage, the manual test suite of shunting
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Table 6: Comparison between automatically and manually derived test suites
Manual test suite TECS

subject time #tests coverage time #tests coverage
shunting 16 h 15 95% 286 s 20 86%
radiohole 6 h 1 94% 117 s 6 95%
crossnonlx 9 h 3 80% 647 s 13 84%

achieves higher model coverage than the test suite that Tecs generated for this
program, but Tecs achieved higher model coverage than the manual test suites
for radiohole and crossnonlx.

We analyzed the difference in the coverage data, focusing in particular on
the items of the coverage domain that either test suite hits and the other one
does not. In detail, for shunting, the manually designed test suite successfully
executed the degraded behaviors (since they correspond to a specific transitions
indicated in the requirements) that Tecs missed as we already commented
above. On the other hand, the manually designed test suite missed some possible
combinations of the conditions that participate in the transition guards, some
of which were hit with Tecs thanks to the systematic analysis of all execution
paths in the program. Instead, we did not find any manually tested behavior
that Tecs did not cover in radiohole and crossnonlx, where Tecs was in
fact able to cover some additional rare combinations.

In summary, our case study indicated that the test generation approach
that we propose in this paper, as instantiated in the tool Tecs, successfully
exploits symbolic execution to generate high-quality test suites for safety-critical
programs in Scade, thus confirming the main research hypothesis of this paper.
The test suites that we automatically generated with Tecs in our experiments
readily satisfied most domain-relevant test objectives, unveiling at the same
time small portions of test objectives that require dedicated handling. This
straightforwardly suggests a combined approach in which the testers of safety-
critical software can efficiently start working with the test cases automatically
computed with Tecs, and then complementarily concentrate on the yet-missed
behaviors, thus crucially improving both costs and the effectiveness of their
test-design efforts.

Usefulness of Tecs for semi-automatic component-level testing To
further investigate the quality of the test suites generated with Tecs, we worked
jointly with our industrial partner to exploit those test suites for component-
level testing of the considered programs. To this end, the test suites generated
with Tecs were augmented with assertion-style test oracles defined by test engi-
neers based on the documented requirements, thus resulting in a semi-automatic
approach to generating the component-level test cases. Manually adding the
assertions took limited effort, a few minutes per test case: It required the test
engineers to crosscheck the concrete inputs already provided in the test cases
with the expectations defined in the requirement documents. This, we remark,
is a radically simpler task than the manual effort quantified in Table 6, to de-
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Table 7: Faults identified in the subject programs considered in our case study
subject fault
dc 10 Wrong amount of data written in a queue

Wrongly defined algorithm
coordfromrbc Missing update of a state variable

Array updated with index starting at second (instead of first) item
emergency 1 Output value out of expected range

Wrongly defined algorithm
emergency 2 Interrelated variables updated in wrong sequence
total 7 faults

sign and implement the test cases from scratch, which encompasses a very much
larger set of time consuming activities (such as, identifying a functional parti-
tioning out of the requirements, devising suitable test steps and inputs, and
implementing the Scade test cases from scratch).

Table 7 describes the faults that we identified by executing the test suites
obtained in this way. Overall we revealed 7 previously unknown faults in four of
the subject programs considered in our experiment. These results support the
usefulness of the test suites generated with Tecs for component-level testing.

Comparison with search-based testing We investigated if our approach
could work also by using search-based random testing heuristics in place of
symbolic execution. To this end, we implemented an alternative version of Tecs
that used the test generator AFL [9] instead of Klee to produce the test inputs.
AFL is a test generator that is very popular for security vulnerability testing:
it starts by performing random mutations on a set of (seed) inputs provided
by developers, and then progresses in search-based fashion by considering the
newly generated inputs that increase code coverage as additional seeds. In our
setting we executed AFL on the analysis-driver programs generated by Tecs,
providing initial seeds that included an input value for each program input
that Tecs handled symbolically when using Klee: For each subject program,
we seeded AFL with the input values from the the first test case that we had
generated when using Klee.

The task of AFL was then to discover (by means of its search-based heuris-
tics) further input values, as needed to cover the branches of the program under
test. Technically, we exploited the feature of AFL to feed back its own test
generation mechanism with the test cases that execute new branches. Upon
identifying test inputs that make the program execute new branches, AFL saves
those test cases in a queue, aiming to consider them as possible seeds at next
steps. Thus, for each subject program, we proceeded as follows: we executed
AFL for 5 hours; We used our tool to translate the test cases in the final queue
into test cases in Scade format; We executed the test cases with Scade Test to
collect the corresponding coverage data. We also repeated each test generation
attempt 3 times to control for the random characteristics of AFL.

Table 8 reports on test cases generated with AFL for the programs consid-
ered in our case study (but program natvalues for which AFL unexpectedly
generated a broken instrumentation that made the program crash deterministi-
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Table 8: Comparison between Tecs and AFL
TECS AFL

subject #tests coverage #tests coverage diff.
shunting 20 86% 12 46% 40%
dc 1 8 91% 16 89% 2%
dc 2 2 100% 1 100% 0%
dc 3 6 100% 5 100% 0%
dc 4 2 92% 2 86% 6%
dc 5 2 89% 1 89% 0%
dc 6 2 90% 3 84% 6%
dc 7 2 80% 1 50% 30%
dc 8 3 83% 1 50% 33%
dc 9 9 100% 6 100% 0%
dc 10 9 93% 6 93% 0%
dc 11 2 100% 1 100% 0%
dc 12 3 72% 3 60% 12%
dc 13 4 98% 4 82% 16%
dc 14 2 82% 1 64% 18%
radiohole 6 95% 4 68% 27%
crossnonlx 13 84% 6 19 % 65%
baliseinfo 3 97% 2 45% 52%
emergency 1 14 94% 1 6% 88%
emergency 2 6 82% 6 54% 28%
mema 7 89% 5 41% 49%
trackside 3 99% 5 20% 79%
vbc 12 94% 3 40% 54%
coordfromrbc 5 83% 7 57% 26%
adfactordmi 1 3 85% 2 71% 14%
adfactordmi 2 2 96% 3 96% 0%
driveridins 10 89% 2 65% 24%
eirene 3 94% 3 66% 28%
ertmslevel 3 94% 4 88% 6%
natvalues 4 90% - - -
networkidins 3 94% 2 75% 19%
rbcidins 4 95% 2 49% 46%
trainDataUpdate 1 89% 4 60% 29%
trainDataInsertion 3 95% 6 89% 6%
message129 10 83% 8 77% 6%
runnumber 1 3 94% 2 70% 24%
runnumber 2 7 92% 7 93% -1%

cally at runtime). The table indicates the information of the test cases generated
with Tecs when equipped with Klee (columns Tecs), in comparison with the
number of test cases and corresponding model coverage data achieved with AFL
(columns AFL), and shows the difference between the coverage measurements
in either case (column diff ).

The data in the table indicate that the two approaches led to generating test
suites of comparable size in most cases, but the model coverage achieved with
AFL was often significantly lower than the coverage achieved with Tecs. AFL
achieved the same amount model coverage as Tecs for 7 programs (namely,
dc 2, dc 3, dc 5, dc 9, dc 10, dc 11 and adfactordmi 2), achieved more cov-
erage than Tecs only for 1 program (namely, runnumber 2), and achieved less
coverage than Tecs for the remaining 28 programs. In the 28 cases in which
Tecs outperformed AFL, the difference in coverage ranged between 2% and
88%, with a median of 26%. In the only case in which AFL outperformed Tecs,
the difference in coverage was rather limited (1%) due to a single MC/DC ob-
jective that Tecs did not cover because it missed a specific truth value for a
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condition that did not belong to the path condition of the corresponding exe-
cution path, while AFL could hit by mutating inputs at random. We interpret
these data as clear evidence that a tool like AFL does not suite for our goal
of testing safety-critical software, and we believe that the type of weaknesses
that we observed by experiencing with AFL likely generalize to search-based
test generators at the state of the art.

4.5 Threats to validity

The main internal threats to the validity of our findings are concerned with the
risk of implementation errors in Tecs (that could bias our results), and with
use of coverage indicators to evaluate the quality of the test suites.

We extensively tested Tecs to ascertain its correctness, and manually cross-
checked several result samples. For the implementation of the symbolic execu-
tion phase, which is at the core of the results that we computed with Tecs, we
relied on Klee, a state of the art symbolic executor actively maintained and
largely used in the community. Thus we are confident in the validity of the
results that we obtained with Tecs.

We evaluated the quality of the test suites that Tecs computed in our ex-
periments based on the model coverage indicators obtained with the tool Scade
Test. We drew on the documentation provided from Ansys and on the advising
of the industrial partner with whom we are collaborating, to reckon that the
coverage indicators computed with Scade Test correspond to domain-relevant
coverage requirements. However, we are well aware that any coverage measure-
ment is just a proxy of the effectiveness of the test cases, and we cannot take for
granted that high coverage rates necessarily correspond to high fault-detection
power. We attacked this issue by showing that the test suites generated by our
tool, once complemented with assertion-style test oracles, succeeded in revealing
component-level faults of the considered Scade programs. We look forward to
experiencing Tecs on further Scade programs that are currently being devel-
oped in the project, to collect further data on which faults we can indeed detect
with the help of the test cases generated with Tecs.

The external threats to validity relate to the extent to which our finding can
generalize. So far, we experienced Tecs against the set of subject programs
considered in this paper, which are admittedly only a small sample of the pos-
sible safety-critical programs. Nonetheless, on one hand, these programs are a
representative sample of the safety-critical software that our industrial partner
typically develops, following the most prominent certification standards in the
railway sector; On the other hand, the restrictions that Scade embraces to pro-
mote the safety of the programs are common to other programming languages
for developing safety critical software, e.g., SaferC. Thus, we believe that our
result might in fact generalize.
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5 Related Work

We surveyed the most relevant techniques for automated test generation for soft-
ware programs in the introduction of this paper, encompassing test generators
based on random testing, search-based testing and symbolic execution. Random
testing and search-based testing derive test cases by either randomly sampling
the possible program inputs or based on dynamic data about the execution of
the programs. Symbolic execution systematically unfolds the execution space
of the programs under test and generates test cases by solving the execution
of the possible program paths. Then we have then described our approach to
test case generation for safety-critical programs in Scade, which is based on
symbolic execution, and compared our approach with a analogous embodiment
based on search-based testing by referring to the tool AFL. Other results on the
effectiveness of automated test generation in safety critical systems are provided
in [44, 45].

The research that we described in the paper is also related to other ap-
proaches for automated model-based testing, to methods for formally specifying
and verifying safety-critical software, and to other pieces of research on verifying
programs in Scade.

5.1 Automated model-based testing

Our approach can be seen as related to model-based testing, which derives test
cases by analyzing program specifications or program behaviors expressed in
suitable modelling languages, e.g., UML class diagrams, state machines or se-
quence diagrams [46, 38]. Model-based testing has been successfully applied to
complement verification of formal specifications expressed in languages as B, Z
or VDM [47]. For a comprehensive survey of model-based testing we refer the
readers to the work of Utting et al. [48] and Dias Neto et al. [49].

The approach that we presented in this paper addresses the test generation
problem based on the analysis of the execution paths in the programs, and
naturally lends itself to complement or be complemented with further test cases
generated either manually or yet automatically in model-based fashion.

In particular our approach shares similarities with the ones of Polyglot
[50, 51] and SAUML [52], which exploit symbolic execution to generate test
cases for systems modeled with statechars and UML-RT state machines, respec-
tively. Polyglot is similar to Tecs in that it translates statecharts to programs
(specifically programs in Java) and then exploits symbolic execution (by means
of the symbolic executor SPF [53] that addresses Java), to generate test cases
that achieve path coverage up to some specified depth. SAUML extends sym-
bolic execution to directly analyze the UML-RT models (i.e., it works without
converting the models to programs) to check properties like reachability and
invariants, and to generate test cases. Our approach differs from both these
approaches in the way Tecs distinctively uses symbolic execution within an
analysis algorithm tailored on the characteristics of the Scade models, which
foster programs with finite path spaces and input data structures comprised of
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finite sets of distinct fields.

5.2 Formal methods for safety-critical software

Safety-critical systems need to strictly comply with their requirements as they
were elicited in the earliest phases of the development process. Formal meth-
ods [54] define one or more languages with mathematically precise semantics
that can be used to describe the requirements, the domain constraints and the
designs, and to prove or disprove relevant properties thereby, e.g., absence of
deadlock or unreachability of unsafe states. Most formal method define math-
ematically rigorous procedures to ensure that the artifacts produced at every
step of a development process refine the artifacts produced at earlier steps, thus
preserving all their relevant properties. The downside of these approaches is the
degree of mathematical sophistication that they demand to software engineers
and designers, who should be able to model a system with a formal specification,
prove (or disprove) its properties, refine an abstract (not directly computable)
specification progressively to a concrete (computable) one, and translate a con-
crete specification to an executable program in a given programming language.
To this end, formal methods are often accompanied with tools that assist in per-
forming their tasks, with various degrees of automation, which anyway hardly
balance the aforementioned complexity.

Formal methods differ for the breadth of their scope. At one end of the
spectrum, methods like B or its successor Event-B [55] aim at producing a
complete, correct-by-construction approach, encompassing all the phases of the
development lifecycle. These methods usually refrain from testing the final im-
plementation, in the assumption that having proved both a sufficient set of
correctness properties on the abstract designs, and their preservation through
the refinement steps may suffice to ensure that the final program is correct
by-construction. Other formal approaches do not have the generality of a full
correct-by-construction method, and focus only on assisting a well defined part
of the software development process. This is the case of Alloy [56], a language
and a tool for modeling systems that is suited to assist the specification and
abstract design activities. Similarly, Z [57] is customarily used as a system mod-
eling language, although there also exists a well-established theory of refinement
for Z [58].

Formal approaches that do not have the generality of correct-by-construction
methods can benefit from software testing to provide some degree of assurance
that the derived implementations comply with the corresponding requirement
specifications. Even correct-by-construction approaches might require testing,
to cope with the weak (i.e., unproved) points of the refinement and translation
chain, or simply to comply with certification requirements [47].

5.3 Automated test generation for Scade models

Scade can be regarded as a formal modeling approach focused on the detailed
design and implementation phases of the software lifecycle. The Scade lan-
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guage is derived from the synchronous dataflow programming languages Lus-
tre [35], with some programming constructs derived from the programming
language Esterel [36] and from the graphical, state-machine-based language
SyncCharts [59]. Scade has formally defined semantics. All its constructs are
computable, and therefore it is suited to express concrete designs rather than
requirements and high-level system models. The Scade suite provides a model-
based test coverage measurement tool that, from a Scade model and a test
suite, calculates the coverage of different categories of elements in the model
(states, transitions, conditions in transition guards, MC/DC coverage).

To the best of our knowledge, the only research works that address auto-
mated test generation for Scade or Lustre programs is the work proposed in
[60]. This work introduces a set of coverage criteria for Lustre and Scade pro-
grams, defined over the graph of operators in the programs, and an automated
tool that builds test suites that maximize these coverage criteria. The perfor-
mance of the test generator is assessed by measuring the mutation analysis [61].

The above approach, however, differs in aim and scope from ours. Our ap-
proach systematically analyzes the C code that corresponds to the Scade pro-
grams, while the approach of [60] does not consider the generated C code. The
authors of [60] propose dedicated coverage measures, specific for synchronous
dataflow programming languages, while we aim at covering all execution paths
in the programs.

An interesting tool is RT-Tester [62, 63], which is used in industry to perform
V&V activities for avionic, automotive and railway systems: it starts from a
concrete test model describing the expected behaviour of the system under test,
renders the models into a set of expressions in propositional logic, and then
solves the formulas with a SMT solver to generate test cases. Bounded model
checkers, like CBMC, take a similar approach [64]. They represent programs
with boolean formulas, which they then check for satisfiability by using a SAT
solver, to generate test cases as counterexamples of verification properties. In
the future, we aim to compare with these approaches.

6 Conclusions

The development of safety-critical software must ensure with a high degree of
confidence software programs that behave correctly in all operating conditions.
To this end, automated software testing can assist in verifying the programs
more thoroughly, more quickly, and at a lower cost than traditional, manual
testing techniques. In this paper, we studied the viability of an automated test
generation approach based on symbolic execution, specifically tailored on the
characteristics of a programming language for safety-critical software systems.
We instantiated the proposed approach with the tool Tecs, a test generator for
programs written the Scade language. The case study that we reported in this
paper indicates that the proposed approach was able to successfully produce test
suites that achieve a high model coverage and assist in identifying faults for the
considered safety-critical programs in Scade, while keeping the test generation
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effort under control.
We envision many opportunities for future research on the topic. We plan to

extend the experimental assessment by considering further case studies. On one
hand, we aim at assessing the scalability of the proposed approach through the
analysis of components with growing complexity. On the other hand, we would
like to investigate the possibility of extending our approach to safety-critical
software developed in programming languages other than Scade. We also plan
to extend the evaluation of Tecs by assessing the fault detection ability of the
generated test suites, e.g. by exploiting a mutation framework for Scade [61].

Lastly, the test cases generated by Tecs currently contain assertion checks
that are usable for regression testing only, but in the future we would like to
integrate Tecs with a component for generating general oracles. Automatic
oracle generation is an open research problem, and we are currently studying
how to extend techniques to automatically generate oracles from software an-
notations [65] so that the oracles are generated from the software requirements
specification documents.
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[42] M. Pezzè, M. Young, Software testing and analysis: Process, principles and
techniques, Wiley, 2007.

[43] J. Bovet, T. Parr, ANTLRWorks: An ANTLR grammar development en-
vironment, Software: Practice and Experience 38 (12) (2008) 1305–1332.

[44] E. P. Enoiu, A. Cauevic, D. Sundmark, P. Pettersson, A controlled ex-
periment in testing of safety-critical embedded software, in: 2016 IEEE
International Conference on Software Testing, Verification and Validation
(ICST), 2016, pp. 1–11. doi:10.1109/ICST.2016.15.

[45] G. Gay, M. Staats, M. Whalen, M. P. E. Heimdahl, The risks of coverage-
directed test case generation, IEEE Transactions on Software Engineering
41 (8) (2015) 803–819. doi:10.1109/TSE.2015.2421011.

[46] M. Utting, B. Legeard, Practical Model-Based Testing: A tools approach,
Morgan Kaufmann, 2010.

[47] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick,
J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Lüttgen,
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[51] D. Balasubramanian, C. Păsăreanu, M. W. Whalen, G. Karasi, M. Lowry,
Improving symbolic execution for statechart formalisms, in: Proceedings of
the Workshop on Model-Driven Engineering, Verification and Validation,
MoDeVVa ’12, Association for Computing Machinery, New York, NY, USA,
2012, pp. 47–52. doi:10.1145/2427376.2427385.

[52] K. Zurowska, J. Dingel, SAUML: a tool for symbolic analysis of
UML-RT models, in: 2011 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011), 2011, pp. 604–607.
doi:10.1109/ASE.2011.6100136.
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