

AUTOMATICALLY HARDENING WEB
APPLICATIONS USING PRECISE TAINTING

Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley,
David Evans
Department of Computer Science, University of Virginia, 151 Engineer’s Way,
Charlottesville, VA 22904-4740, USA ⊥

Abstract: Most web applications contain security vulnerabilities. The simple and natural
ways of creating a web application are prone to SQL injection attacks and
cross-site scripting attacks as well as other less common vulnerabilities. In
response, many tools have been developed for detecting or mitigating common
web application vulnerabilities. Existing techniques either require effort from
the site developer or are prone to false positives. This paper presents a fully
automated approach to securely hardening web applications. It is based on
precisely tracking taintedness of data and checking specifically for dangerous
content only in parts of commands and output that came from untrustworthy
sources. Unlike previous work in which everything that is derived from tainted
input is tainted, our approach precisely tracks taintedness within data values.

Key words: web security; web vulnerabilities; SQL injection; PHP; cross-site scripting
attacks; precise tainting; information flow

1. INTRODUCTION

Nearly all web applications are security critical, but only a small fraction
of deployed web applications can afford a detailed security review. Even
when such a review is possible, it is tedious and can overlook subtle security
vulnerabilities. Serious security vulnerabilities are regularly found in the
most prominent commercial web applications including Gmail1, eBay2,

⊥ This work was funded in part by DARPA (SRS FA8750-04-2-0246) and the National

Science Foundation (NSF CAREER CCR-0092945, SCI-0426972).

20th IFIP International Information Security Conference.
May 30 - June 1, 2005, Makuhari-Messe, Chiba, Japan.

2 A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, D. Evans

Yahoo3, Hotmail3 and Microsoft Passport4. Section 2 provides background
on common web application vulnerabilities.

Several tools have been developed to partially automate aspects of a
security review, including static analysis tools that scan code for possible
vulnerabilities5 and automated testing tools that test web sites with inputs
designed to expose vulnerabilities5-7. Taint analysis identifies inputs that
come from untrustworthy sources (including user input) and tracks all data
that is affected by those input values. An error is reported if tainted data is
passed as a security-critical parameter, such as the command passed to an
exec command. Taint analysis can be done statically or dynamically. Section
3 describes previous work on securing web applications, including taint
analysis.

For an approach to be effective for the vast majority of web applications,
it needs to be fully automated. Many people build websites that accept user
input without any understanding of security issues. For example, PHP &
MySQL for Dummies8 provides inexperienced programmers with the
knowledge they need to set up a database-backed web application. Although
the book does include some warnings about security (for example, p. 213
warns readers about malicious input and advises them to check correct
format, and p. 261 warns about <script> tags in user input), many of the
examples in the book that accept user input contain security vulnerabilities
(e.g., Listings 11-3 and 12-2 allow SQL injection, and Listing 12-4 allows
cross-site scripting). This is typical of most introductory books on web site
development.

In Section 4 we propose a completely automated mechanism for
preventing two important classes of web application security vulnerabilities:
command injection (including script and SQL injection) and cross-site
scripting (XSS). Our solution involves replacing the standard PHP
interpreter with a modified interpreter that precisely tracks taintedness and
checks for dangerous content in uses of tainted data. All that is required to
benefit from our approach is that the hosting server uses our modified
version of PHP.

The main contribution of our work is the development of precise tainting
in which taint information is maintained at a fine level of granularity and
checked in a context-sensitive way. This enables us to design and implement
fully-automated defense mechanisms against both command injection
attacks, including SQL injection, and cross-site scripting attacks. Next, we
describe common web application vulnerabilities. Section 3 reviews prior
work on securing web applications. Section 4 describes our design and
implementation, and explains how we prevent exploits of web application
vulnerabilities.

Automatically hardening web applications using precise tainting 3

2. WEB APPLICATION VULNERABILITIES

Figure 1 depicts a typical web application. For clarity, we focus on web
applications implemented using PHP, which is currently one of the most
popular language for implementing web applications (PHP is used at
approximately 1.3M IP addresses, 18M domains, and is installed on 50% of
Apache servers9). Most issues and architectural properties are similar for
other web application languages.

A client sends input to the web server in the form of an HTTP request
(step 1 in Figure 1). GET and POST are the most common requests. The
request encodes data created by the user in HTTP header fields including file
names and parameters included in the requested URI. If the URI is a PHP
file, the HTTP server will load the requested file from the file system (step
2) and execute the requested file in the PHP interpreter (step 3). The
parameters are visible to the PHP code through predefined global variable
arrays (including $_GET and $_POST).

The PHP code may use these values to construct commands that are sent
to PHP functions such as a SQL query that is sent to the database (steps 4
and 5), or to make calls to PHP API functions that call system APIs to
manipulate system state (steps 6 and 7). The PHP code produces an output
web page based on the returned results and returns it to the client (step 8).

We assume a client can interact with the web server only by sending
HTTP requests to the HTTP server. In particular, the only way an attacker
can interact with system resources, including the database and file system, is
by constructing appropriate web requests. We divide attacks into two general
classes of attacks: injection attacks attempt to construct requests to the web
server that corrupt its state or reveal confidential information; output attacks
(e.g., cross-site scripting) attempt to send requests to the web server that
cause it to generate responses that produce malicious behavior on clients.

HTTP Server

PHP Interpreter

1

8

2 3

4

5

File System

file.php

Database

C
lie

nt

Web Server System APIs

67

Figure 1. Typical web application architecture

4 A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, D. Evans

2.1 Command injection attacks

In a command injection attack an attacker attempts to access confidential
information or corrupt the application state by constructing an input that
allows the attacker to inject malicious control logic into the web application.
With the system architecture shown in Figure 1, an attack could attempt to
inject PHP code that will be executed by the PHP interpreter, SQL
commands that will be executed by the database, or native machine code that
will be executed by the web server host directly. We consider only the first
two cases. Web application vulnerabilities are far more common than
vulnerabilities in the underlying server or operating system since there are
far more different web applications than there are servers and operating
systems, and developers of web applications tend to be far less sophisticated
from a security perspective than developers of operating systems and web
servers.

PHP injection. In a PHP injection attack, the attacker attempts to inject
PHP code that will be interpreter by the server. If an attacker can inject
arbitrary code, the attacker can do everything PHP can and has effectively
complete control over the server. Here is a simple example of a PHP
injection in phpGedView, an online viewing system for genealogy
information10. The attack URL is of the form:
 http://[target]/[...]/editconfig_gedcom.php?gedcom_config=../../../../../../etc/passwd

The vulnerable PHP code uses the gedcom_config value as a filename:
require($gedcom_config);. The semantics of require is to load the file and either
interpret it as PHP code (if the PHP tags are found) or display the content.
Thus this code leaks the content of the password file. Abuse of require and its
related functions is a commonly reported occurrence11,12, despite the fact
that, properly configured, PHP is impervious to this basic attack. However,
additional defenses are needed for more sophisticated injection attacks such
as the recently released Santy Worm13 and the phpMyAdmin attack14.

SQL injection. Attacking web applications by injecting SQL commands
is a common method of attacking web applications15,16. We illustrate a
simple SQL injection that is representative of actual vulnerabilities. Suppose
the following is used to construct an SQL query to authenticate users against
a database:

$cmd="SELECT user FROM users WHERE user = ' " . $user
 . "' AND password = ' " . $pwd . " ' ";
The value of $user comes from $_POST['user'], a value provided by the

client using the login form. A malicious client can enter the value: ' OR 1 = 1 ;
--' (-- begins a comment in SQL which continues to the end of the line). The
resulting SQL query will be: SELECT user FROM users WHERE user = ' ' OR 1
= 1 ; -- ' AND password = 'x'. The injected command closes the quote and

Automatically hardening web applications using precise tainting 5

comments out the AND part of the query. Hence, it will always succeed
regardless of the entered password.

The main problem here is that the single quote provided by the attacker
closes the open quote, and the remainder of the user-provided string is
passed to the database as part of the SQL command. This attack would be
thwarted by PHP installations that use the default magic quotes option.
When enabled, magic quotes automatically sanitize input data by adding a
backslash to all strings submitted via web forms or cookies. However, magic
quotes do not suffice for attacks that do not use quotes17.

One solution to prevent SQL injections is to use prepared statements18. A
prepared statement is a query string with placeholders for variables that are
subsequently bound to the statement and type-checked. However, this
depends on programmers changing development practices and replacing
legacy code. Dynamic generation of queries using regular queries will
continue to be prevalent for the foreseeable future.

2.2 Output attacks

Output attacks send a request to a web application that causes it to
produce an output page designed by the attacker to achieve some malicious
goal. The most dangerous kind of output attack is a cross-site scripting
attack, in which the web server produces an output page containing script
code generated by the attacker. The script code can steal the victim’s cookies
or capture data the victim unsuspectingly enters into the web site. This is
especially effective in phishing attacks in which the attacker sends potential
victims emails convincing them victim to visit a URL. The URL may be a
trusted domain, but because of a cross-site scripting vulnerability the
attacker can construct parameters to the URL that cause the trusted site to
create a page containing a form that sends data back to the attacker. For
example, the attacker constructs a link like this:
<a href='http://bad.com/go.php?val=<script src="http://bad.com/attack.js"></script>'>

If the implementation of go.php uses the val parameter in the generated
web page output (for example, by doing print "Results for: " . $_GET['val'];), the
malicious script will appear on the resulting page. A clever attacker can use
character encodings to make the malicious script appear nonsensical to a
victim who inspects the URL before opening it.

Five years ago, CERT Advisory 2000-02 described the problem of cross-
site scripting and advised users to disable scripting languages and web site
developers to validate web page output19. Nevertheless, cross-site scripting
problems remain a serious problem today. Far too much functionality of the
web depends on scripting languages, so most users are unwilling to disable

6 A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, D. Evans

them. Even security-conscious web developers frequently produce websites
that are vulnerable to cross-site scripting attacks1,4,20-22. As with SQL
injection, ad hoc fixes often fail to solve discovered problems correctly—the
initial filters develop to fix the Hotmail vulnerability could be circumvented
by using alternate character encodings4. Hence, we focus on fully automated
solutions.

3. RELATED WORK

Several approaches have been developed for securing web applications
including filtering input and output that appears dangerous, automated
testing and diversity defenses. The approaches most similar to our proposed
approach involve analyzing information flow.

Input and Output Filtering. Scott and Sharp developed a system for
providing an application-level firewall to prevent malicious input from
reaching vulnerable web servers23. Their approach required a specification of
constraints on different inputs, and compiled those constraints into a
checking program. This requires a programmer to provide a correct security
policy specific to their application, so is ill-suited to protecting typical web
developers. Several commercial web application firewalls provide input and
output filtering to detect possible attacks24,25. However, these tools are prone
to both false positives and negatives26.

Automated Testing. There are several web application security testing
tools designed specifically to find vulnerabilities5,27,28. The problem with
these tools is that they have to guess the exploit data in order to expose the
vulnerability. For well-known generic classes of vulnerabilities, such as SQL
injection, this may be possible. But for novel or complex vulnerabilities, it is
unlikely the scanner will guess the right inputs to expose the vulnerability.

Diversity Defenses. Instruction-Set Randomization is a form of diversity
in which defenders modify the instruction set used to run applications29.
Thus, code-injection attacks that rely on knowledge of the original language
are detected and thwarted easily. This approach has been advocated for
general scripting languages29 and for protection against SQL injections30.
There are two main problems with ISR: (1) it is effective only against code
injection attacks and incomplete by itself (it does not handle cross-site
scripting attacks), and (2), the deployment of ISR is not transparent to
developers and requires the transformation of application code.

Information Flow. All of the web vulnerabilities described in Section 2
stem from insecure information flow: data from untrusted sources is used in
a trusted way. The security community has studied information flow
extensively31. The earliest work focused on confidentiality, in particular in

Automatically hardening web applications using precise tainting 7

preventing flows from trusted to untrusted sources32. In our case, we are
primarily concerned with integrity. Biba showed that information flow can
also be used to provide integrity by considering flows from untrusted to
trusted sources33.

Information flow policies can be enforced statically, dynamically or by a
combination of static and dynamic techniques. Static taint analysis has been
used to detect security vulnerabilities in C programs34,35. Static approaches
have the advantage of increased precision, no run-time overhead and the
ability to detect and correct errors before deployment. However, they require
substantial effort from the programmer. Since we are focused on solutions
that will be practically deployed in typical web development scenarios, we
focus on dynamic techniques.

Huang et. al developed WebSSARI, a hybrid approach to securing web
applications36. The WebSSARI tool uses a static analysis based on type-
based information flow to identify possible vulnerabilities in PHP web
applications. Their type-based approach operates at a coarse-grain: any data
derived from tainted input is considered fully tainted. WebSSARI can insert
calls to sanitization routines that filter potentially dangerous content from
tainted values before they are passed to security-critical functions. Because
we propose techniques for tracking taintedness at a much finer granularity,
our system can be more automated than WebSSARI: all we require is that
the server uses our modified interpreter PHP to protect all web applications
running on the server.

4. AUTOMATIC WEB HARDENING

Our design is based on maintaining precise information about what data
is tainted through the processing of a request, and checking that user input
sent to an external command or output to a web page contains only safe
content. Our automated solution prevents a large class of common security
vulnerabilities without any direct effort required from web developers.

The only change from the standard web architecture in Figure 1 is that
we replace the standard PHP interpreter with a modified interpreter that
identifies which data comes from untrusted sources and precisely tracks how
that data propagates through PHP code interpretation (Section 4.1), checks
that parameters to commands do not contain dangerous content derived from
user input (Section 4.2), and ensures that generated web pages do not contain
scripting code created from untrusted input (Section 4.3).

8 A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, D. Evans

4.1 Keeping track of precise taint information

We mark an input from untrusted sources including data provided by
client requests as tainted. We modified the PHP interpreter’s implementation
of the string datatype to include tainting information for string values at the
granularity of individual characters. We then propagate taint information
across function calls, assignments and composition at the granularity of a
single character, hence precise tainting. The application of precise tainting
enables the prevention of injection attacks and the ability to easily filter
output for XSS attacks. If a function uses a tainted variable in a dangerous
way, we can reject the call to the function (as is done with SQL queries or
PHP system functions) or sanitize the variable values (as is done for
preventing cross-site scripting attacks).

Web application developers often remember to sanitize inputs from GET
and POSTs, but will omit to check other variables that can be manipulated by
clients. Our approach ensures that all such external variables, e.g. hidden
form variables, cookies and HTTP header information, are marked as
tainted. We also keep track of taint information for session variables and
database results.

4.1.1 Taint strings

For each PHP string, we track tainting information for individual
characters. Consider the following code fragment where part of the string $x
comes from a web form and the other from a cookie:

 $x = "Hello " . $_GET['name1'] . ". I am " . $_COOKIE['name2'];
The values of $_GET['name1'] and $_COOKIE['name2'] are fully tainted (we

assume they are Alice and Bob). After the concatenation, the values of $x
and its taint markings (underlined) are: Hello Alice. I am Bob.

4.1.2 Functions

We keep track of taint information across function calls, in particular
functions that manipulate and return strings. The general algorithm is to
mark strings returned from function as tainted if any of the input arguments
are tainted. Whenever feasible, we exploit the semantics of functions and
keep track of taintedness precisely. For example, consider the substring
function in which taint markings for the result of the substr call depend on
the part of the string they select: substr(“precise taint me”, 2, 10); // ecise tai

Automatically hardening web applications using precise tainting 9

4.1.3 Database values and session variables

Databases provide another potential venue for attackers to insert
malicious values. We treat strings that are returned from database queries as
untrusted and mark them as tainted. While this approach may appear overly
restrictive, in the sense that legitimate uses may be prevented, we show in
Section 4.3 how precise tainting and our approach to checking for cross-site
scripting mitigates this potential problem. Further, if the database is
compromised by some other means, the attacker is still unable to use the
compromised database to construct a cross-site scripting attack.

The stateless nature of HTTP requires developers to keep track of
application state across client requests. However, exposing session variables
to clients would allow attackers to manipulate applications. Well-designed
web applications keep session variables on the server only and use a session
id to communicate with clients. We modified PHP to store taint information
with session variables.

4.2 Preventing command injection

The tainting information is used to determine whether or not calls to
security-critical functions are safe. To prevent command injection attacks,
we check that the tainted information passed to a command is safe. The
actual checking depends on the command, and is designed to be precise
enough to prevent all command injection attacks from succeeding while
allowing typical web applications to function normally when they are not
under attack.

4.2.1 PHP injection

To prevent PHP injection attacks we disallow calls to potentially
dangerous functions if any one of their arguments is tainted. The list of
functions checked is similar to those disallowed by Perl and Ruby’s taint
mode37,38 and consists of functions that treat input strings as PHP code or
manipulate the system state such as system calls, I/O functions, and calls that
are directly evaluated.

4.2.2 SQL injection

Preventing SQL injections requires taking advantage of precise taint
information. Before sending commands to the database, e.g. mysql_query, we
run the following algorithm to check for injections:

10 A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, D. Evans

1. Tokenize the query string; preserve taint markings with tokens.
2. Scan each token for identifiers and operator symbols (ignore

literals, i.e., strings, numbers, boolean values).
3. Detect an injection if an operator symbol is marked as tainted.

Operator symbols are ,()[].;:+-*/\%^<>=~!?@#&|`
4. Detect an injection if an identifier is tainted and a keyword.

Example keywords include UNION, DROP, WHERE, OR, AND.
Using the example from Section 2.1:
$cmd="SELECT user FROM users WHERE user = ' " . $user

 . "' AND password = ' " . $password . " ' ";
The resulting query string (with $user set to ' OR 1 = 1 ; -- ') is tainted as

follows: SELECT user FROM users WHERE user = ' ' OR 1 = 1 ; -- ' AND password
= 'x'. We detect an injection since OR is both tainted and a keyword.

4.3 Preventing cross-site scripting

Our approach to preventing cross-site scripting relies on checking
generated output. Any potentially dangerous content in generated HTML
pages must contain only untainted data. We modify the PHP output
functions (print, echo, printf and other printing functions) with functions that
check for tainted output containing dangerous content. The replacement
functions output untainted text normally, but keep track of the state of the
output stream as necessary for checking. For a contrived example, consider
an application that opens a script and then prints tainted output: print
"<script>document.write ($user)</script>";

An attacker can inject JavaScript code by setting the value of $user to a
value that closes the parenthesis and executes arbitrary code: " me");alert("yo".
Note that the opening script tag could be divided across multiple print
commands. Hence, our modified output functions need to keep track of open
and partially open tags in the output. We do not need to parse the output
HTML completely (and it would be unadvisable to do so, since many web
applications generate ungrammatical HTML).

Checking output instead of input avoids many of the common problems
with ad hoc filtering approaches. Since we are looking at the generated
output any tricks involving separating attacks into multiple input variables or
using character encodings can be handled systematically. Our checking
involves whitelisting safe content whereas blacklisting attempts to prevent
cross-site scripting attacks by identifying known dangerous tags, such as
<script> and <object>. The latter fails to prevent script injection involving
other tags. For example, a script can be injected into the apparently harmless
 (bold) tag using parameters such as onmouseover.

Automatically hardening web applications using precise tainting 11

Our defense takes advantage of precise tainting information to identify
web page output generated from untrusted sources. Any tainted text that
could be dangerous is either removed from the output or altered to prevent it
being interpreted (for example, replacing < in unknown tags with <). Our
conservative assumptions mean that some safe content may be inadvertently
suppressed; however, because of the precise tainting information, this is
limited to content that is generated from untrusted sources.

5. CONCLUSION

We have described a fully automated, end-to-end approach for hardening
web applications. By exploiting precise tainting in a way that takes
advantage of program language semantics and performing context-dependent
checking, we are able to prevent a large class of web application exploits
without requiring any effort from the web developer. Initial measurements
indicate that the performance overhead incurred by using our modified
intepreter is less than 10%.

Effective solutions for protecting web applications need to balance the
need for precision with the limited time and effort most web developers will
spend on security. Fully automated solutions, such as the one described in
this paper, provide an important point in this design space.

6. REFERENCES

1. N. Weidenfeld, Security Hole Found in Gmail, (27 October 2004);
http://net.nana.co.il/Article/?ArticleID=155025&sid=10.

2. Report of Ebay Cross-Site Scripting Attack; http://securityfocus.com/archive/82/246275.
3. Remotely Exploitable Cross-Site Scripting in Hotmail and Yahoo, (March 2004);

http://www.greymagic.com/security/advisories/gm005-mc/.
4. EyeonSecurity, Microsoft Passport Account Hijack Attack: Hacking Hotmail and More,

Hacker’s Digest.
5. Y.-W. Huang et al., Web Application Security Assessment by Fault Injection and Behavior

Monitoring, Proc. of the World Wide Web Conference (WWW 2003), (May 2003).
6. M. Benedikt et al., Veriweb: Automatically Testing Dynamic Web Sites, Proc. of the

World Wide Web Conference, (May 2002).
7. F. Ricca, and P. Tonella, Analysis and Testing of Web Applications, Proc. of the IEEE

International Conference on Software Engineering, (May 2001).
8. J. Valade, Php & Mysql for Dummies, (Wiley Publishing, 2002).
9. Netcraft Survey, (January 2005); http://news.netcraft.com/.
10. JeiAr, Phpgedview Php Injection, (Jan 2004); http://xforce.iss.net/xforce/xfdb/14205.
11. Gentoo, Gallery Php Injection, (February 2004);

http://www.linuxsecurity.com/advisories/gentoo_advisory-4015.html.

12 A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, D. Evans

12. K. Więsek, Gonicus System Administrator Php Injection, (February 2003).
13. Santy Worm Used Google to Spread, (23 December 2004);

http://newsfromrussia.com/world/2004/12/23/57537.html.
14. N. Symbolon, Phpmyadmin Critical Bug; http://xforce.iss.net/xforce/xfdb/16542.
15. D. Litchfield, Sql Server Security, (McGraw-Hill Osborne Media, 2003).
16. K. Spett, “Sql Injection: Are Your Web Applications Vulnerable?” (SPI Labs White

Paper, 2002).
17. L. Armstrong, Phpnuke Sql Injection, (20 February 2003).
18. Improved Mysql Extensions; http://www.php.net/manual/en/ref.mysqli.php.
19. Malicious Html Tags Embedded in Client Web Requests, (February 2, 2000);

http://www.cert.org/advisories/CA-2000-02.html.
20. G. Hoglund, and G. McGraw, Exploiting Software: How to Break Code, (Addison-

Wesley, 2004).
21. R. Ivgi, Cross-Site-Scripting Vulnerability in Microsoft.Com, (4 October 2004).
22. J. Ley, Simple Google Cross Site Scripting Exploit, (17 October 2004).
23. D. Scott, and R. Sharp, Abstraction Application-Level Web Security, Proc. of the WWW,

(May 2002).
24. Interdo Web Application Firewall; http://www.kavado.com/products/interdo.asp.
25. Teros, Inc., Teros-100 Application Protection System, (2004);

http://www.teros.com/products/aps100/aps.shtml.
26. T. Dyck, Review: Appshield and Review: Teros-100 Aps 2.1.1, (May 2003);

http://www.eweek.com/article2/0,3959,1110435,00.asp.
27. Tenable Network Security, Nessus Open Source Vulnerability Scanner Project, (2005);

http://www.nessus.org.
28. J. Offutt et al., Bypass Testing of Web Applications., Proc. of the IEEE International

Symposium on Software Reliability Engineering, (November 2004).
29. G. S. Kc et al., Countering Code-Injection Attacks with Instruction-Set Randomization.,

Proc. of the ACM Computer and Communication Security (CCS), (October 2003).
30. S. W. Boyd, and A. D. Keromytis, Sqlrand: Preventing Sql Injection Attacks, Proc. of the

2nd Applied Cryptography and Network Security (ACNS) Conference, (June 2004).
31. A. Sabelfeld, and A. C. Myers, Language-Based Information-Flow Security, IEEE Journal

on Selected Areas in Communications (January 2003).
32. D. E. Bell, and L. J. LaPadula, Secure Computer Systems: Mathematical Foundations Mtr-

2547, (MITRE Corporation, 1973).
33. K. J. Biba, Integrity Considerations for Secure Computer Systems Esd-Tr-76-372, (USAF

Electronic Systems Division, 1977).
34. U. Shankar et al., Detecting Format-String Vulnerabilities with Type Qualifiers, Proc. of

the USENIX Security Symposium.
35. D. Evans, and D. Larochelle, Improving Security Using Extensible Lightweight Static

Analysis, IEEE Software (January/February 2002).
36. Y.-W. Huang et al., Securing Web Application Code by Static Analysis and Runtime

Protection, Proc. of the World Wide Web Conference, (May 2004).
37. Perl 5.6 Documentation: Perl Security; http://www.perldoc.com/perl5.6/pod/perlsec.html.
38. D. Thomas et al., Programming Ruby: The Pragmatic Programmer’s Guide, (Pragmatic

Programmers, ed. Second, 2004).

