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Newly coined words pose problems for natural language processing systems because they are not
in a system’s lexicon, and therefore no lexical information is available for such words. A common
way to form new words is lexical blending, as in cosmeceutical, a blend of cosmetic and
pharmaceutical. We propose a statistical model for inferring a blend’s source words drawing on
observed linguistic properties of blends; these properties are largely based on the recognizability
of the source words in a blend. We annotate a set of 1,186 recently coined expressions which
includes 515 blends, and evaluate our methods on a 324-item subset. In this first study of
novel blends we achieve an accuracy of 40% on the task of inferring a blend’s source words,
which corresponds to a reduction in error rate of 39% over an informed baseline. We also
give preliminary results showing that our features for source word identification can be used
to distinguish blends from other kinds of novel words.

1. Lexical Blends

Neologisms—newly coined words or new senses of an existing word—are constantly
being introduced into a language (Algeo 1980; Lehrer 2003), often for the purpose
of naming a new concept. Domains that are culturally prominent or that are rapidly
advancing, such as electronic communication and the Internet, often contain many ne-
ologisms, although novel words arise throughout a language (Ayto 1990, 2006; Knowles
and Elliott 1997). Consequently, any natural language processing (NLP) system operat-
ing on recently produced text will encounter new words. Because lexical resources are
often a key component of an NLP system, performance of the entire system will likely
suffer due to missing lexical information for neologisms. Ideally, an NLP system could
identify neologisms as such, and then infer various aspects of their syntactic or seman-
tic properties necessary for the computational task at hand. Recent approaches to this
kind of lexical acquisition task typically infer the target lexical information from sta-
tistical distributional properties of the terms. However, this technique is generally not
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applicable to neologisms, which are relatively infrequent due to their recent intro-
duction into the language. Fortunately, linguistic observations regarding neologisms—
namely, that they are formed through specific word formation processes—can give
insights for automatically learning their lexical properties.

New words come about through a variety of means, including derivational mor-
phology, compounding, and borrowing from another language (Algeo 1980; Bauer 1983;
Plag 2003). Computational work on neologisms has largely focused on particular word
formation processes, and has exploited information about the formation process to
learn aspects of the semantic properties of words (Means 1988; Nadeau and Turney
2005; Baker and Brew 2008, for example). Subtractive word formations—words formed
from partial orthographic or phonological content from existing words—have received
a fair amount of attention recently in computational linguistics, particularly under the
heading of inferring the long form of acronyms, especially in the bio-medical domain
(e.g., Schwartz and Hearst 2003; Nadeau and Turney 2005; Okazaki and Ananiadou
2006, for example).

Lexical blends—the focus of this study—also known as blends, are another common
type of subtractive word formation. Most blends are formed by combining a prefix
of one source word with a suffix of another source word, as in brunch (breakfast and
lunch). There may be overlap in the contribution of the source words, as in fantabulous
( fantastic and fabulous). It is also possible that one or both source words are entirely
present, for example, gaydar (gay radar) and jetiquette ( jet etiquette). We refer to blends
such as these as simple two-word sequential blends, and focus on this common type
of blend in this article. Blends in which (part of) a word is inserted within another
(e.g., entertoyment, a blend of entertainment and toy) and blends formed from more than
two source words (e.g., nofriendo from no, friend, and Nintendo) are rare. In Algeo’s
(1991) study of new words, approximately 5% were blends. However, in our analysis
of 1,186 words taken from a popular neologisms Web site, approximately 43% were
blends. Clearly, computational techniques are needed that can augment lexicons with
knowledge of novel blends.

The precise nature and intended use of a computational lexicon will determine
the degree of processing required of a novel blend. In some cases it may suffice for
the lexical entry for a blend to simply consist of its source words. For example, a
system that employs a measure of distributional similarity may benefit from replacing
occurrences of a blend—likely a recently coined and hence low frequency item—by its
source words, for which distributional information is likely available. In other cases,
further semantic reasoning about the blend and its source words may be required (e.g.,
determining the semantic relationship between the source words as an approximation
of the meaning of the blend). However, any approach to handling blends will need
to recognize that a novel word is a blend and identify its source words. These two
tasks are the focus of this article. Specifically, we draw on linguistic knowledge of how
blends are formed as the basis for automatically determining the source words of a
blend. Language users create blends that tend to be interpretable by others. Tapping into
properties of blends believed to contribute to the recognizability of their source words—
and hence the interpretability of the resulting blend—we develop statistical measures
that indicate whether a word pair is likely the source words for a given blend. Moreover,
the fact that a novel word is determined to have a “good” source word pair may be
evidence that it is in fact a blend, because we are unlikely to find two words that are a
“good” source word pair for a non-blend. Thus, the statistical measures we develop
for source word identification may also be useful in recognizing a novel word as a
blend.
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To our knowledge, the only computational treatment of blends is our earlier work
that presents preliminary statistical methods and results for the two tasks of recognizing
an unknown word as a blend and identifying its source words (Cook and Stevenson
2007). Here we extend that work in a number of important directions. We expand the
statistical features to better capture co-occurrence patterns of the source words that
can indicate the likelihood of their combination into a blend. We present experimental
results confirming that the extended features provide a substantial improvement over
the earlier work on source word identification. We further propose a means, based on
linguistic factors of the source words, for pruning the number of word pairs that are
considered for a blend. This filtering heuristic greatly reduces the number of candidate
source words processed, while giving modest gains in performance, even though this
method excludes the correct word pair from consideration for a number of blends. We
then consider the use of a much larger lexicon of candidate source words, which could
potentially improve performance greatly as it contains the correct source word pair for
many more blends than a smaller lexicon.

We also make improvements to the earlier experimental data set and methods.
In our earlier study, we use a data set consisting of a list of blends extracted from
a dictionary. In the current work, we annotate a set of 324 blends (with their source
words) from a recent database of neologisms, to enable a more legitimate testing of
our method, on truly novel blends. Experiments on this new data set show that the
recent blends differ from established blends in terms of their statistical properties,
and emphasize the need for further resources of neologisms. We also experiment
with a machine learning approach to combine the information from the statistical
features in a more sophisticated manner than in our previous work. Finally, we per-
form more extensive experiments on distinguishing blends from other kinds of novel
words.

2. A Statistical Model of Lexical Blends

We present statistical features that are used to automatically infer the source words of
a word known to be a lexical blend, and show that the same features can be used to
distinguish blends from other types of neologisms. First, given a blend, we generate
all word pairs that could have formed the blend. This set is termed the candidate set,
and the word pairs it contains are referred to as candidate pairs (Section 2.1). Next, we
extract a number of linguistically motivated statistical features for each candidate pair,
as well as filter from the candidate sets those pairs that are unlikely to be source words
due to their linguistic properties (Section 2.2). Later, we explain how we use the features
to rank the candidate pairs according to how likely they are the source words for that
blend. Interestingly, the “goodness” of a candidate pair is also related to how likely the
word is actually a blend.

2.1 Candidate Sets

To create the candidate set for a blend, we first generate each prefix–suffix pair such that
the blend is composed of the prefix followed by the suffix. (In this work, prefix and suffix
refer to the beginning or ending of a string, regardless of whether those portions are
affixes.) We restrict the prefixes and suffixes to be of length two or more. This heuristic
reduces the size of the candidate sets, yet generally does not exclude a blend’s source
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words from its candidate set since it is uncommon for a source word to contribute less
than two letters. For example, for brunch (breakfast+lunch) we consider the following
prefix–suffix pairs: br, unch; bru, nch; brun, ch. For each prefix–suffix pair, we then find in
a lexicon all words beginning with the prefix and all words ending in the suffix, ignoring
hyphens and whitespace, and take the Cartesian product of the prefix words and suffix
words to form a list of candidate word pairs. The candidate set for the blend is the union
of the candidate word pairs for all its prefix–suffix pairs. Note that in this example, the
candidate pair brute crunch would be included twice: once for the prefix–suffix pair br,
unch; and once again for bru, nch. Unlike in our previous study, we remove all such
duplicate pairs from the final candidate set. A candidate set for architourist, a blend of
architecture and tourist, is given in Table 1.

2.2 Statistical Features

Our statistical features are motivated by properties of blends observed in corpus-based
studies, and by cognitive factors in human interpretation of blends, particularly relating
to how easily humans can recognize a blend’s source words. All the features are formu-
lated to give higher values for more likely candidate pairs. We organize the features into
four groups—frequency; length, contribution, and phonology; semantics; and syllable
structure—and describe each feature group in the following subsections.

2.2.1 Frequency. Various frequency properties of the source words influence how easily a
language user recognizes the words that form a blend. Because blends are most usefully
coined when the source words can be readily deduced, we hypothesize that frequency-
based features will be useful in identifying blends and their source words. We propose
ten features that draw on the frequency of candidate source words.

Lehrer (2003) presents a study in which humans are asked to give the source
words for blends. Among her findings are that frequent source words are more
easily recognizable. Our first two features—the frequency of each candidate word,
freq(w1) and freq(w2)—reflect this finding. Lehrer also finds that the recognizability of
a source word is further affected by both the number of words in its neighborhood—
the set of words which begin/end with the prefix/suffix which that source word

Table 1
A candidate set for architourist, a blend of architecture and tourist.

archimandrite tourist
archipelago tourist
architect behaviourist
architect tourist
architectural behaviourist
architectural tourist
architecturally behaviourist
architecturally tourist
architecture behaviourist
architecture tourist
archives tourist
archivist tourist
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contributes—and the frequencies of those words. (Gries [2006] reports a similar finding.)
Our next two features capture this insight:

freq(w1)
freq(prefix)

freq(w2)
freq(suffix)

(1)

where freq(prefix) is the sum of the frequency of all words beginning with prefix, and
similarly for freq(suffix).

These four features were used in our previous study; the following six features are
new in this study.

Because we observe that blends are often formed from two words that co-occur
in language use, our previous study (Cook and Stevenson 2007) included a feature,
the pointwise mutual information of w1 and w2, to reflect this. However, this feature
provides only a weak indication that there is a semantic relation between two words
sufficient to lead to them being blended. Here we propose six new features that capture
various co-occurrence frequencies as follows.

A blend’s source words often correspond to a common sequence of words, for
example, camouflanguage is camouflaged language. We therefore include two features
based on Dice’s co-efficient to capture the frequency with which the source words occur
consecutively:

2 × freq(w1 w2)
freq(w1) + freq(w2)

2 × freq(w2 w1)
freq(w1) + freq(w2)

(2)

Because many blends can be paraphrased by a conjunctive phrase—for example, brocco-
flower is broccoli and cauliflower—we also use a feature that reflects how often the candi-
date words are used in this way:

2 × ( freq(w1 and w2) + freq(w2 and w1))
freq(w1 and) + freq(and w1) + freq(w2 and) + freq(and w2)

(3)

Furthermore, some blends can be paraphrased by a noun modified by a prepositional
phrase, for example, a nicotini is a martini with nicotine. Lauer (1995) suggests eight
prepositional paraphrases for identifying the semantic relationship between the modi-
fier and head in a noun compound. Using the same paraphrases, the following feature
measures how often two candidate source words occur with any of the following
prepositions P between them: about, at, for, from, in, of, on, with:

2 × ( freq(w1 P w2) + freq(w2 P w1))
freq(w1 P) + freq(P w1) + freq(w2 P) + freq(P w2)

(4)

where freq(w P v) is the sum of the frequency of w and v occurring with each of the eight
prepositions between w and v, and freq(w P) is the sum of the frequency of w occurring
with each of the eight prepositions immediately following w.
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Because the previous three features target the source words occurring in very spe-
cific patterns, we also count the candidate source words occurring in any of the patterns
in an effort to avoid data sparseness problems.

2 × ( freq(w1 w2) + freq(w2 w1) + freq(w1 and w2)
+freq(w2 and w1) + freq(w1 P w2) + freq(w2 P w1))

freq(w1) + freq(w2)
(5)

Finally, because the above patterns are very specific, and do not capture general co-
occurrence information which may also be useful in identifying a blend’s source words,
we include the following feature which counts the candidate source words co-occurring
within a five-word window.

2 × freq(w1,w2 in a 5 word window)
freq(w1) + freq(w2)

(6)

2.2.2 Length, Contribution, and Phonology. Ten features tap into properties of the ortho-
graphic or phonetic composition of the source words and blend. In our previous work
on blends, we found such features unhelpful in source word identification. Here, we
propose revised versions of our old features, and a few new ones. Note that although we
use information about the phonological and/or syllabic structure of the source words,
we do not assume such knowledge for the blend itself, since it is a neologism for which
such lexical information is typically unavailable.

The first word in a conjunct tends to be shorter than the second, and this also seems
to be the case for the source words in blends (Kelly 1998; Gries 2004). The first three
features therefore capture this tendency based on the graphemic, phonemic, and syllabic
length of w2 relative to w1, respectively:

lengraphemes(w2)
lengraphemes(w1) + lengraphemes(w2)

(7)

lenphonemes(w2)
lenphonemes(w1) + lenphonemes(w2)

(8)

lensyllables(w2)
lensyllables(w1) + lensyllables(w2)

(9)

A blend and its second source word also tend to be similar in length, possibly because,
similar to compounds, the second source word of a blend is often the head; therefore
it is this word that determines the overall phonological structure of the resulting blend
(Kubozono 1990). The following feature captures this property using graphemic length
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as an approximation to phonemic length, because as stated previously, we assume no
phonological information about the blend.

1 −
|lengraphemes(blend) − lengraphemes(w2)|

max(lengraphemes(blend), lengraphemes(w2))
(10)

We hypothesize that a candidate source word is more likely if it contributes more
graphemes to a blend. We use two ways to measure contribution in terms of graph-
emes: contseq(w, b) is the length of the longest prefix/suffix of word w which blend b
begins/ends with, and contlcs(w, b) is the longest common subsequence (LCS) of w and
b. This yields four features:

contseq(w1, b)
lengraphemes(w1)

contseq(w2, b)
lengraphemes(w2)

(11)

contlcs(w1, b)
lengraphemes(w1)

contlcs(w2, b)
lengraphemes(w2)

(12)

Note that for some blends, such as spamdex (spam index), contseq and contlcs will be equal;
however, this is not the case in general, as in the blend tomacco (tomato and tobacco) in
which tomato overlaps with the blend not only in its prefix toma, but also in the final o.

In order to be recognizable in a blend, the shorter source word will tend to con-
tribute more material, relative to its length, than the longer source word (Gries 2004).
We formulate the following feature which is positive only when this is the case:

(
contseq(w1, b)
lengraphemes(w1)

−
contseq(w2, b)
lengraphemes(w2)

)
×

(
lengraphemes(w2) − lengraphemes(w1)
lengraphemes(w1) + lengraphemes(w2)

)
(13)

For this feature we don’t have strong motivation for choosing one measure of contribu-
tion over the other, and therefore use contseq, the simpler version of contribution.

Finally, the source words in a blend are often phonologically similar, as in sheeple
(sheep people); the following feature captures this (Gries 2006):

LCSphonemes(w1,w2) (14)

2.2.3 Semantics. We include two semantic features from our previous study that are
based on Lehrer’s (2003) observation that people can more easily identify the source
words of a blend when there is a semantic relation between them.

As noted, blends are often composed of two semantically similar words, reflecting a
conjunction of their concepts. For example, a pug and a beagle are both a kind of dog, and
can be combined to form the blend puggle. Similarly an exergame is a blend of exercise and
game, both of which are types of activity. Our first semantic feature captures similarity
using an ontological similarity measure, which is calculated over an ontology populated
with word frequencies from a corpus.

The source words of some blends are not semantically similar (in the sense of their
relative positions within an ontology), but are semantically related. For example, the
source words of slanguist—slang and linguist—are related in that slang is a type of lan-
guage and a linguist studies language. Our second semantic feature is a measure of se-
mantic relatedness using distributional similarity between word co-occurrence vectors.
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2.2.4 Syllable Structure. Kubozono (1990) notes that the split of a source word—into the
prefix/suffix it contributes to the blend and the remainder of the word—occurs at a
syllable boundary or immediately after the onset of the syllable. Because this syllable
structure property holds sufficiently often, we use it as a filter over candidate pairs
(rather than as an additional statistical feature) in an effort to reduce the size of the
candidate sets. Candidate sets can be very large, and we expect that our features will
be more successful at selecting the correct source word pair from a smaller candidate
set. In our subsequent results, we analyze the reduction in candidate set size using this
syllable structure heuristic, and its impact on performance.

3. Creating a Data Set of Recent Blends

The data set used in our previous work on blends contains dictionary words whose
etymological entry indicates they were formed from a blend of two words. Using a
dictionary in this way provides an objective method for selecting experimental expres-
sions and indicating their gold standard source words. However, it results in a data set
of blends that are sufficiently established in the language to appear in a dictionary. Truly
novel blends—neologisms which have been recently added to the language—may have
differing properties from fully established forms in a dictionary. In particular, many
of our features are based on properties of the source words, both individually and in
relation to each other, that may not hold for expressions that entered the language some
time ago. For example, although meld is a blend of melt and weld, the current frequency
of the phrase melt and weld may not be as common as the source word co-occurrences
for newly coined expressions. Thus, an important step to support further research
on blends is to develop a data set of recent neologisms that are judged to be lexical
blends.

To develop a data set of recently coined blends we drew on www.wordspy.com, a
popular Web site documenting English neologisms (and a small number of rare or
specialized terms) that have been recently used in a recordable medium such as a
newspaper or book, and that (typically) are not found in currently available dictionaries.
A (partial) sample entry from Wordspy is given in Table 2. The words on this Web
site satisfy our goal of being new; however, they include many kinds of neologisms,
not just blends. We thus annotated the data set to identify the blends and their source

Table 2
The Wordspy definition, and first citation given, for the blend staycation.

staycation n. A stay-at-home vacation. Also: stay-cation.
—staycationer n.

Example Citation:
Amy and Adam Geurden of Hollandtown, Wis., had planned a long summer of short,
fun getaways with their kids, Eric, 6, Holly, 3, and Jake, 2. In the works were water-park
visits, roller-coaster rides, hiking adventures and a whirlwind weekend in Chicago.
Then Amy did the math: their Chevy Suburban gets 17 miles to the gallon and, with gas
prices topping $4, the family would have spent about $320 on fill-ups alone. They’ve
since scrapped their plans in favor of a “staycation” around the backyard swimming
pool.
—Linda Stern, “Try Freeloading Off Friends!,” Newsweek, May 26, 2008
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words. (In cases where multiple source words were found to be equally acceptable, all
source words judged to be valid were included in the annotation.) Most expressions
in Wordspy include both a definition and an example usage, making the task fairly
straightforward.

As of 17 July 2008 Wordspy contained 1,186 single word entries. One author anno-
tated each of these words as a blend or not a blend, and indicated the source words
for each blend. To ensure validity of the annotation task, the other author similarly
annotated 100 words randomly sampled from the 1,186. On this subset of 100 words, ob-
served agreement on both the blend/non-blend annotation and the component source
word identification was 92%, with an unweighted Kappa score of .84. On four blends,
the judges gave different variants of the same source word; for example, fuzzy buzzword
and fuzz buzzword for the blend fuzzword. These items were counted as agreements, and
all variants were considered correct source words.

Given the high level of agreement between the annotators, only one person anno-
tated all 1,186 items. A total of 515 words were judged to be blends, with 351 being
simple two-word sequential blends whose source words are not proper nouns (this
latter type of blend being the focus of this study). Table 3 shows the variety of blends
encountered in the Wordspy data, organized according to a categorization scheme we
devised. Of the simple two-word sequential blends, we restrict our experimental data
set to the 324 items whose entries included a citation of their usage, as we have evidence
that they have in fact been used; moreover, such blends may be less likely to be nonce
formations—expressions which are used once but do not become part of the language.
The usage data in the citations can also be used in the future for semantic features based
on contextual information. We refer to this new data set of 324 items as WORDSPLEND

(a blend of Wordspy and blend).

4. Materials and Methods

4.1 Experimental Expressions

The data set used in our previous study of blends consisted of expressions from the
Macquarie Dictionary (Delbridge 1981) with an etymology entry indicating that they
are blends. All of our statistical features were devised using the development portion of
this data set, enabling us to use the full WORDSPLEND data set for testing. To compare
our results to those in our earlier study, we also perform experiments on a subset of
the previous data set. We are uncertain as to whether a number of the blends from the
Macquarie Dictionary are in fact blends. For example, it does not match our intuition
that clash is a blend of clap and dash. We created a second data set of confirmed blends,
MAC-CONF, consisting of only those blends from Macquarie that are found in at least
one of two additional dictionaries with an etymology entry indicating that they are
blends. We report results on the 30 expressions in the unseen test portion of MAC-CONF.

4.2 Experimental Resources

We generate candidate sets using two different lexicons: the CELEX lexicon (Baayen,
Piepenbrock, and Gulikers 1995),1 and a wordlist created from the Web 1T 5-gram

1 From CELEX, we use lemmas as potential source words, as it is uncommon for a source word to be an
inflected form—there are no such examples in our development data.
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Table 3
Types of blends and their frequency in Wordspy data.

Blend type Freq. Example

Simple two-word sequential blends 351 digifeiter
(digital counterfeiter)

Proper nouns 50 Japanimation
( Japanese animation)

Affixes 61 prevenge
(pre-revenge)

Common one-letter prefix 10 e-business
(electronic business)

Non-source word material 7 aireoke
(air guitar karaoke)

w2 contributes a prefix 10 theocon
(theological conservative)

Foreign word 4 sousveillance
(French sous, meaning under, and English

surveillance)
Non-sequential blends 6 entertoyment

(entertainment blended with toy)
w1 contributes a suffix 5 caponomics

(salary cap economics)
Multiple source words 6 MoSoSo

(mobile social software)
Other 5 CUV

(car blended with initialism SUV)

Corpus (Brants and Franz 2006). These are discussed further herein. The frequency
information needed to calculate the frequency features is extracted from the Web 1T 5-
gram Corpus. The length, contribution, and phonology features, as well as the syllable
structure filter, are calculated on the basis of the source words themselves, or are derived
from information in CELEX (when CELEX is the lexicon in use).2 We compute semantic
similarity between the source words using Jiang and Conrath’s (1997) measure in the
WordNet::Similarity package (Pedersen, Patwardhan, and Michelizzi 2004), and we
compute semantic relatedness of the pair using the cosine between word co-occurrence
vectors using software provided by Mohammad and Hirst (2006).

We conduct separate experiments with the two different lexicons for candidate set
creation. We began by using CELEX, because it contains rich phonological information
that some of our features draw on. However, in our analysis of the results, we noted
that for many expressions the correct candidate pair is not in the candidate set. Many
of the blends in WORDSPLEND are formed from words which are themselves new
words, often coined for concepts related to the Internet, such as download, for example;
such words are not listed in CELEX. This motivated us to create a lexicon from a

2 Note that it would be possible to automatically infer the phonological and syllabic information required
for our features using automatic approaches for text-to-phoneme conversion and syllabification (Bartlett,
Kondrak, and Cherry 2008, for example). Although such techniques currently provide noisy information,
phonological and syllabic information for the blend itself could also be inferred, allowing the
development of features that exploit this information. We leave exploring such possibilities for future
work.
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recent data set (the Web 1T 5-gram Corpus) that would be expected to contain many
of these new coinages. To form a lexicon from this corpus, we extract the 100K most
frequent words, restricted to lowercase and all-alphabetic forms. Using this lexicon we
expect the correct source word pair to be in the candidate set for more expressions.
However, this comes at the expense of potentially larger candidate sets, due to the
larger lexicon size. Furthermore, since this lexicon does not contain phonological or
syllabic representations of each word, we cannot extract three features: the feature for
the syllable heuristic, and the two features that capture the tendency for the second
source word to be longer than the first in terms of phonemes and syllables. (We do cal-
culate the phonological similarity between the two candidate source words, in terms of
graphemes.)

4.3 Experimental Methods

Because each of our features is designed to have a high value for a correct source
word pair and a low value otherwise, we can simply sum the features for each candi-
date pair to get a score for each pair indicating its degree of goodness as a source word
pair for the blend under consideration. However, because our various features have
values falling on differing ranges, we first normalize the feature values by subtracting
the mean of that feature within that candidate set and dividing by the corresponding
standard deviation. We also take the arctan of each resulting feature value to reduce the
influence of outliers. We then sum the feature values for each candidate pair, and order
the pairs within each candidate set according to this sum. This ranks the pairs in terms
of decreasing degree of goodness as a source word pair. We refer to this method as the
feature ranking approach.

We also use a machine learning approach applied to the features in a training
regimen. Our task can be viewed as a classification problem in which each candidate
pair is either a positive instance (the correct source word pair) or a negative instance
(an incorrect source word pair). However, a standard machine learning algorithm does
not directly apply because of the structure of the problem space. In classification,
we typically look for a hyperplane that separates the positive and negative training
examples. In the context of our problem, this corresponds to separating all the correct
candidate pairs (for all blends in our data set) from all the incorrect candidate pairs.
However, such an approach is undesirable as it ignores the structure of the candidate
sets; it is only necessary to separate the correct source word pair for a given blend from
the corresponding incorrect candidate pairs (i.e., for the same blend). This is also in
line with the formulation of our features, which are designed to give relatively higher
values to correct candidate pairs than incorrect candidate pairs within the candidate set
for a given blend; it is not necessarily the case that the feature values for the correct
candidate pair for a given blend will be higher than those for an incorrect candidate
pair for another blend. In other words, the features are designed to give values that are
relative to the candidates for a particular blend.

To address this issue, we use a version of the perceptron algorithm similar to
that proposed by Shen and Joshi (2005). In this approach, the classifier is trained
by only adjusting the perceptron weight vector when the correct candidate pair is
not scored higher than the incorrect pairs for the target blend (not across all the can-
didate pairs for all blends). Furthermore, to accommodate for the large variation in
candidate set size we use an uneven margin—in this case the distance between the
weighted sum of the feature vector for a correct and incorrect candidate pair—of
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1
#correct cand. pairs × #incorrect cand. pairs . We therefore learn a single weight vector such that,
within each candidate set, the correct candidate pairs are scored higher than the in-
correct candidate pairs by a factor of this margin. When updating the weight vector,
we multiply the update that we add to the weight vector by a factor of this margin
to prevent the classifier from being overly influenced by large candidate sets. During
testing, each candidate pair is ranked according to the weighted sum of its feature
vector. To evaluate this approach, on each of WORDSPLEND and MAC-CONF we per-
form 10-fold cross-validation with 10 random restarts. In these experiments, we use our
syllable heuristic as a feature, rather than as a filter, to allow the learner to weight it
appropriately.

4.4 Evaluation Metrics

We evaluate our methods according to two measures: accuracy and mean reciprocal
rank (MRR). Under the accuracy measure, the system is scored as correct if it ranks one
of the correct source word pairs for a given blend first, and as incorrect otherwise. The
MRR gives the mean of the rank of the highest ranked correct source word pair for each
blend. Although accuracy is more stringent than MRR, we are interested in MRR to see
where the system ranks the correct source word pair in the case that it is not ranked
first. We compare the accuracy of our system against a chance (random) baseline, and
an informed baseline in which the feature ranking approach is applied using just two of
our features, the frequency of each candidate source word.

5. Experimental Results

5.1 Candidate Sets

We begin by examining some properties of the candidate sets created using CELEX as
the lexicon, also referred to as the CELEX candidate set, in rows 2–4 of Table 4. First,
in the second row of this table, we observe that only 78–83% of expressions have both
source words in CELEX. For the other 17–22% of expressions, our system is always
incorrect, because the CELEX candidate set cannot contain the correct source words.

Table 4
Percent of expressions (% exps) with their source words in each lexical resource and candidate
set (CS), and after applying the syllable heuristic filter on the CELEX CS, as well as median CS
size, for both the WORDSPLEND and MAC-CONF data sets.

Lexical resource or CS WORDSPLEND MAC-CONF
% exps Med. CS size % exps Med. CS size

CELEX 78 - 83 -
CELEX CS 76 117 83 121
CELEX CS after syllable filter 71 71 77 92

Web 1T lexicon 92 - - -
Web 1T CS 89 442 - -
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The percentages reported in this row thus serve as an upper bound on the task for each
data set.

The third row of Table 4 shows the percentage of expressions for which the CELEX
candidate set contains the correct source words. Note that in most cases, if the source
words are in CELEX, they are also in the CELEX candidate set. The only expressions
in WORDSPLEND for which that is not the case are those in which a source word
contributes a single letter to the blend. We could remove our restriction that each source
word contribute at least two letters; however, this would cause the candidate sets to be
much larger and likely reduce accuracy.

We now look at the effect of filtering the CELEX candidate sets to include only those
candidate pairs that are valid according to our syllable heuristic. This process results in
a 24–39% reduction in median candidate set size, but only excludes the source words
from the candidate set for a relatively small number of expressions (5–6%), as shown in
the fourth row of Table 4. We will further examine the effectiveness of this heuristic in
the following subsection.

Now we examine the candidate sets created using the lexicon derived from the
Web 1T 5-gram Corpus.3 In the final two rows of Table 4 we see that, as expected, many
more expressions have their source words in the Web 1T lexicon than in CELEX, and
furthermore, more expressions have their source words in the candidate sets created
using the Web 1T lexicon than in the candidate sets formed from CELEX. This means
that the upper bound for our task is much higher when using the Web 1T lexicon than
when using CELEX. However, this comes at the cost of creating much larger candidate
sets; we examine this trade-off more thoroughly herein.

5.2 Source Word Identification

In the following subsections we present results using the feature ranking approach
(Section 5.2.1), and analyze some of the errors the system makes in these experiments
(Section 5.2.2). We then consider results using the modified perceptron algorithm (Sec-
tion 5.2.3), and finally we compare our results to our previous study and human
performance (Section 5.2.4).

5.2.1 Feature Ranking. Table 5 gives the accuracy using the feature ranking approach for
both the random and informed baselines, each feature group, and the combination of
all features, on each data set, using both the CELEX and Web 1T lexicons in the case of
WORDSPLEND. Feature groups and combinations marked with an asterisk are signifi-
cantly better than the informed baseline at the 0.05 confidence level using McNemar’s
Test.4

We first note that the informed baseline is an improvement over the random base-
line in all cases, which points to the importance of word frequency in blend formation.
We also see that the informed baseline is quite a bit higher on WORDSPLEND than MAC-
CONF. Inspection of candidate sets—created from the CELEX lexicon—that include the
correct source words reveals that the average source word frequency for WORDSPLEND

3 Syllable structure information is not available for all words in the Web 1T lexicon; therefore, we do not
apply the syllable heuristic filter to the pairs in these candidate sets (see Section 4.2). We do not create
candidate sets for MAC-CONF using the Web 1T lexicon since this lexicon was constructed specifically in
response to the kinds of new words found in WORDSPLEND.

4 McNemar’s Test is a non-parametric test that can be applied to correlated, nominal data.
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Table 5
Percent accuracy on blends in WORDSPLEND and MAC-CONF using the feature ranking
approach. The size of each data set is given in parentheses. The lexicon employed (CELEX or
WEB 1T) is indicated. The best accuracy obtained using this approach for each data set and
lexicon is shown in boldface. * = results that are significantly better than the informed baseline.

Features WORDSPLEND MAC-CONF
(324) (30)

CELEX WEB 1T CELEX

Random Baseline 6 3 1
Informed Baseline 27 27 7

Frequency 32* 32* 30*
Len./Cont./Phono. 20 20 7
Semantic 15 13 20

All 38* 42* 37*
All+Syllable 40* - 37*

is much higher than for MAC-CONF (118M vs. 34M). On the other hand, the average for
non-source words in the candidate sets is similar across these data sets (11M vs. 9M).
Thus, although source words are more frequent than non-source words for both data
sets, frequency is a much more reliable indicator of being a source word for truly novel
blends than for established blends. This finding emphasizes the need for a data set such
as WORDSPLEND to evaluate methods for processing neologisms.

All of the individual feature groups outperform the random baseline. We also see
that our frequency features are better than the informed baseline. Although source
word frequency (the informed baseline) clearly plays an important role in forming inter-
pretable blends, this finding confirms that additional aspects of source word frequency
beyond their unigram counts also play an important role in blend formation. Also note
that the semantic features are substantially better than the informed baseline—although
not significantly so—on MAC-CONF, but not on WORDSPLEND. This result demon-
strates the importance of testing on true neologisms to have an accurate assessment
of a method. It also supports our future plan to explore alternative semantic features,
such as those that draw on the context of usage of a blend (as provided in our new
data set).

We expect using all the features to provide an improvement in performance over
any individual feature group, because they tap into very different types of information
about blends. Indeed, the combination of all features (All) does perform better than
the frequency features, supporting our hypothesis that the information provided by the
different feature groups is complementary.5

Looking at the results on WORDSPLEND using the Web 1T lexicon, we see that as
expected, due to the larger candidate sets, the random baseline is lower than when
using the CELEX lexicon. However, the informed baseline, and each feature group
used on its own, give very similar results, with only a small difference observed for
the semantic features. The combination of all features gives slightly higher performance

5 This difference is significant (p < 0.01) according to McNemar’s test for the WORDSPLEND data set using
both the CELEX and Web 1T lexicons. The difference was not significant for MAC-CONF.
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using the Web 1T lexicon than the CELEX lexicon, although again this difference is
rather small.

Recall that we wanted to see if the use of our syllable heuristic filter to reduce
candidate set size would have a negative impact on performance. Table 5 shows that
the accuracy on all features when we apply our syllable heuristic filter (All+Syllable) is
at least as good as when we do not apply the filter (All). This is the case even though
the syllable heuristic filter removes the correct source word pairs for 5–6% of the blends
(see Table 4). It seems that the words this heuristic excludes from consideration are
not those that the features rank highly, indicating that it is a reasonable method for
pruning candidate sets. Moreover, reducing candidate set size will enable future work
to explore features that are more expensive to extract than those currently used. Given
the promising results using the Web1T lexicon, we also intend to examine ways to
automatically estimate the syllable filtering heuristic for words for which we do not
have syllable structure information.

5.2.2 Error Analysis. We now examine some cases where the system ranks an incorrect
candidate pair first, to try to determine why the system makes the errors it does. We
focus on the expressions in WORDSPLEND using the CELEX lexicon, as we are able to
extract all of our features for this experimental setup. First, we observe that when con-
sidering feature groups individually, the frequency features perform best; however, in
many cases, they also contribute to errors. This seems to be primarily due to (incorrect)
candidate pairs that occur very frequently together. For example, in the case of mathlete
(math athlete), the candidate pair male and athlete co-occurs much more frequently than
the correct source word pair, causing the system to rank the incorrect source word
pair first. We observe a similar situation for cutensil (cute utensil), where the candidate
pair cup and utensil often co-occur. In both these cases, phonological information for
the blend itself could help as, for example, cute ([kjut]) contributes more phonemes to
cutensil ([kjutEnsl

"
]) than cup ([k2p]).

Turning to the length, contribution, and phonology features, we see that although
many blends exhibit the properties on which these features are based, there are also
many blends which do not. For example, our first feature in this group captures the
property that the second source word tends to be longer than the first; however, this
is not the case for some blends, such as testilie (testify and lie). Furthermore, even for
blends for which the second source word is longer than the first, there may exist a
candidate pair that has a higher value for this feature than the correct source word
pair. In the case of banalysis—banal analysis—banal electrolysis is a better source word
pair according to this feature. These observations, and similar issues with other length,
contribution, and phonology features, likely contribute to the poor performance of
this feature group. Moreover, such findings motivate approaches such as our modified
perceptron algorithm—discussed in the following subsection—that learn a weighting
for the features.

Finally, for the semantic features, we find cases where a blend’s source words are
similar and related, but there is another (incorrect) candidate pair which is more similar
and related according to these features. For example, puggle, a blend of pug and beagle,
has the candidate source words push and struggle which are more semantically similar
and related than the correct source word pair. In this case, the part-of-speech of the
candidate source words, along with contextual knowledge indicating the part-of-speech
of the blend, may be useful; blending pug and beagle would result in a noun, while a
blend of push and struggle would likely be a verb. Another example is camikini, a blend
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of camisole and bikini. Both of these source words are women’s garments, so we would
expect them to have a moderately high similarity. However, the semantic similarity
feature assigns this candidate pair the lowest possible score, since these words do not
occur in the corpus from which this feature is estimated.

5.2.3 Modified Perceptron. Table 6 shows the average accuracy of the modified perceptron
algorithm for the informed baseline and the combination of all features plus the feature
corresponding to the syllable heuristic, on each data set, using both the CELEX and Web
1T lexicons in the case of WORDSPLEND. We don’t compare this method directly against
the results using the feature ranking approach because our perceptron experiments are
conducted using cross-validation, rather than a held-out test set methodology. Examin-
ing the results using the combination of All+Syllable, we see that for each data set and
lexicon the mean accuracy over the 10-fold cross-validation is significantly higher than
that obtained using the informed baseline, according to an unpaired t-test (p < 0.0001
in each case).

Interestingly, on WORDSPLEND using the combination of all features, we see higher
performance using the CELEX lexicon than the Web 1T lexicon. We hypothesize that
this is due to the training data in the latter case containing many more negative ex-
amples (incorrect candidate pairs—due to the larger candidate sets). It is worth noting
that, despite the differing experimental methodologies, the results are in fact not very
different from those obtained in the feature ranking approach. One limitation of this
perceptron algorithm is that it assumes that the training data is linearly separable.
In future work, we will try other machine learning techniques that do not make this
assumption.

5.2.4 Discussion. We now compare the feature ranking results on MAC-CONF here of
37% accuracy, to our previous best results on this data set of 27% accuracy, also using
feature ranking (Cook and Stevenson 2007). To make this comparison, we should con-
sider the differing baselines and upper bounds across the experiments. The informed
baseline in our previous study on MAC-CONF is 13%, substantially higher than the
7% in the current study. Recall that the first row of Table 4 shows the upper bound
using the CELEX lexicon on this data set to be 83%. By contrast, in our previous
work we only use blends whose source words appear in the lexicon we used there
(Macquarie), so the upper bound for that study is 100%. Taking these factors into
account, the best results in our previous study correspond to a reduction in error rate
(RER) over the informed baseline of 16%, while the feature ranking method here using

Table 6
Percent accuracy on blends in WORDSPLEND and MAC-CONF using the modified perceptron
algorithm. The size of each data set is given in parentheses. The lexicon employed (CELEX or
WEB 1T) is indicated. * = results that are significantly better than the informed baseline.

Features WORDSPLEND MAC-CONF
(324) (30)

CELEX WEB 1T CELEX

Informed Baseline 23 24 7
All+Syllable 40* 37* 35*
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the combination of all features and the syllable heuristic filter achieves a much higher
RER of 39%.6

Lehrer (2003) finds human performance for determining the source words of blends
to be 34% to 79%—depending on the blends considered—which indicates the difficulty
of this task.7 Our best accuracy on each data set of 37%–42% is quite respectable
in comparison. These accuracies correspond to mean reciprocal ranks of 0.47–0.51,
and the random baseline on WORDSPLEND and MAC-CONF in terms of this mea-
sure is 0.03–0.07. This indicates that even when our system is incorrect, the correct
source word pair is still ranked fairly high. Such information about the best inter-
pretations of a blend could be useful in semi-automated methods, such as computer-
aided translation, where a human may not be familiar with a novel blend in the source
text.

6. Blend Identification

The statistical features we have developed may also be informative about whether
or not a word is in fact a blend—that is, we expect that if a novel word has “good”
candidate source words, then the word is more likely to be a blend than the result of
another word formation process. Because our features are designed to be high for a
blend’s source words and low for other word pairs, we hypothesize that the highest
scoring candidate pairs for blends will be higher than those of non-blends.

To test this hypothesis, we first create a data set of non-blends from our earlier
annotation, which found 671 non-blends out of the 1,186 Wordspy expressions (see
Section 3). From these words, we eliminate all those beginning with a capital letter
(to exclude words formed from proper nouns) or containing a non-letter character (to
exclude acronyms and initialisms). This results in 663 non-blends.

We create candidate sets for the non-blends using the CELEX lexicon. Using the
CELEX lexicon allows us to extract—and consider the contribution of—all of our length,
contribution, and phonology features, some of which are not available when using the
Web 1T lexicon. The candidate sets resulting from using the CELEX lexicon were also
much smaller than when using the Web 1T lexicon. We calculate the features for the non-
blends as we did for the blends, and then order all expressions (both blends and non-
blends) according to the sum of the features for their highest-scoring candidate source
word pair. We use the same feature groups and combinations presented in Table 5.
Rather than set an arbitrary cut-off to distinguish blends from non-blends, we instead
give receiver operating characteristic (ROC) curves for some of these experiments.
ROC curves plot true positive rate versus false positive rate as the cut-off is varied
(see Figure 1). The top-left corner represents perfect classification, with points further
towards the top-left from the diagonal (a random classifier) being “better.” We see that
the informed baseline is a substantial improvement over a random classifier, and the
combination All+Syllable is a further improvement over the informed baseline. The in-
dividual feature groups (not shown in Figure 1) do not perform as well as All+Syllable.

6 Reduction in error rate = accuracy−baseline
upper bound−baseline .

7 Note that the high level of interannotator agreement achieved in our annotation task (Section 3) may
seem surprising in the context of Lehrer’s results. However, our task is much easier, because our
annotators were given a definition of the blend, whereas Lehrer’s subjects were not.
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Figure 1
ROC curves for blend identification.

In future work, we plan to re-examine this task and develop methods specifically for
identifying blends and other types of neologism.

7. Related Work

As discussed in Section 1, techniques generally used in the automatic acquisition of
syntactic and semantic properties of words are not applicable here, because they use
corpus statistics that cannot be accurately estimated for low frequency items, such as
the novel lexical blends considered in this study (Hindle 1990; Lapata and Brew 2004;
Joanis, Stevenson, and James 2008, for example). Other work has used the context
in which an unknown word occurs, along with domain-specific knowledge, to infer
aspects of its meaning and syntax (Granger 1977; Cardie 1993; Hastings and Lytinen
1994, for example). These studies have been able to learn properties of an unknown
word from just one usage, or a small number of usages; however, the domain-specific
resources that these studies rely on limit their applicability to general text.

Techniques for inferring lexical properties of neologisms can make use of infor-
mation that is typically not available in other lexical acquisition tasks—specifically,
knowledge of the processes through which neologisms are formed. Computational
work on neologisms has tended to focus on tasks pertaining to a specific type of
neologism, such as identifying and inferring the long form of acronyms (Schwartz and
Hearst 2003; Nadeau and Turney 2005; Okazaki and Ananiadou 2006, for example),
recognizing loanwords (Baker and Brew 2008; Alex 2008, for example), and identifying
and expanding clippings (Means 1988, for example). This study focuses on the tasks
of identifying, and inferring the source words of, lexical blends, a common type of
neologism, which have been previously unaddressed except for our preliminary work
in Cook and Stevenson (2007).

In addition to knowledge about a word’s formation process, for many types of
neologism, information about its phonological and orthographic content can be used to
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infer aspects of its syntactic and semantic properties. This is the case for neologisms that
are composed of existing words or affixes (e.g., compounds and derivations) or partial
orthographic or phonological material from existing words or affixes (e.g., acronyms,
clippings, and blends). For example, in the case of part-of-speech tagging, information
about the suffix of an unknown word can be used to determine its part-of-speech
(Brill 1994; Ratnaparkhi 1996; Mikheev 1997, for example). For the task of inferring the
long form of an acronym, the letters which compose a given acronym can be used to
determine the most likely long form (Schwartz and Hearst 2003; Nadeau and Turney
2005; Okazaki and Ananiadou 2006, for example).

The latter approach to acronyms is somewhat similar to the way in which we use
knowledge of the letters that make up a blend to form candidate sets and determine
the most likely source words. However, in the case of acronyms, each word in a long
form typically contributes only one letter to the acronym, while for blends, a source
word usually contributes more than one letter. At first glance, it may appear that this
makes the task of source word identification easier for blends, since there is more source
word material available to work with. However, acronyms have two properties that
help in their identification. First, there is less uncertainty in the “split” of an acronym,
because each letter is usually contributed by a separate word. By contrast, due to the
large variation in the amount of material contributed by the source words in blends,
one of the challenges in blend identification is to determine which material in the blend
belongs to each source word. Second, and more importantly, acronyms are typically
introduced in regular patterns (e.g., the long form followed by the acronym capitalized
and in parentheses) which can be exploited in acronym identification and long form
inference; in the case of blends there is no counterpart for this information.

8. Conclusions

We propose a statistical model for inferring the source words of lexical blends—a very
frequent class of new words—based largely on properties related to the recognizability
of their source words. We also introduce a method based on syllable structure for re-
ducing the number of words that are considered as possible source words. We evaluate
our methods on two data sets, one consisting of novel blends, the other containing
established blends; in both cases our features significantly outperform an informed
baseline. Moreover, the results in this study are substantially better than those reported
previously (Cook and Stevenson 2007). We further show that our methods for source
word identification can also be used to distinguish blends from other word types. In
addition, we annotate a data set of newly coined expressions which will support future
research not only on lexical blends, but on neologisms in general.

Our future plans include expanding our techniques for identifying blends to ad-
dress the more general problem of determining the formation process of a novel word.
We further intend to apply our source word identification methods to other types of
neologisms formed from material from existing words, such as clippings (e.g., lab for
laboratory).
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