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Summary

Developing fault-tolerant distributed protocols is a difficult task. The difficulty of this
task increases with the severity of the failures to be tolerated. One way to deal with this
difficulty is to develop protocols tolerant of benign failures and then transform these pro-
tocols into ones that are tolerant of more severe failures. This transformation mechanism
is called a translation.

This dissertation considers a variety of processor failures and synchrony models. The
failures studied range from simple stopping failures to arbitrary faulty behavior. The syn-
chrony models range from systems in which processors are fully synchronized (synchronous
systems) to systems in which processors are not synchronized at all (asynchronous sys-
tems).

For all synchrony models, the dissertation gives general definitions of translations and
of measures to evaluate their performance. The two measures considered are communt-
cation complexity and fault-tolerance. Communication complexity is the communication
overhead incurred when using a translation. Fault-tolerance is the maximum proportion
of processors that can be faulty without affecting the correctness of the translations.

For synchronous systems, this dissertation presents a complete study of the relationship
between fault-tolerance and round complexity of translations. It develops new translations
that are optimal and proves that some previously developed translations are optimal. For
asynchronous systems, it proves that some previously developed translations are optimal.
For systems that are only partially synchronous this dissertation discusses some of the
issues involved in designing efficient translations.

vi



Chapter 1

Introduction

A distributed system consists of a number of computers that can communicate with each
other to achieve a common goal. Distributed systems have many advantages over central-
ized systems. These include availability, performance, and fault-tolerance. Availability
refers to the fact that computing elements can be physically close to the user in a dis-
tributed system. Instead of having a central processor for which all users compete, each
user may have his own processor, which is connected to those of other users. This makes
the access to the local machine faster and at the same time allows access to remote ma-
chines. Distributed systems can have higher performance than centralized systems because
multiple processors can work on different parts of a problem concurrently and therefore
solve the problem in less time. Fault-tolerance refers to distributed algorithms that can
tolerate the failure of some of their components; the algorithm executes correctly even if
some components behave in an incorrect way.

Unfortunately, writing applications for distributed systems is difficult. This is espe-
cially true for fault-tolerant applications. Writing applications that tolerate failures is
difficult because of their unpredictability. The more severe the failures are, the more diffi-
cult it is to write fault-tolerant applications. This is due to the fact that the more severe
the failures are, the more unpredictable the faulty processors become. For example, if a
message is lost in a system in which processors may fail by omitting to send messages, the
receiver can tell that the sender must be faulty. If processors are instead subject to more
severe faulty behavior, such as omission to send or receive messages, the receiver cannot
tell whether it omitted to receive or the sender omitted to send. In a system in which
processors may fail by sending arbitrary messages to other processors, the situation can
be even more complicated. A faulty processor can send conflicting messages to different
processors, potentially confusing them.

This dissertation considers the problem of simplifying the design of fault-tolerant ap-
plications in distributed systems. This is accomplished by providing the designers of
distributed applications with translations that automatically increase the fault-tolerance
of distributed algorithms. Such translations convert algorithms tolerant of benign types of
failure into ones that tolerate more severe faulty behavior. They simplify the design task:
an algorithm can be designed with the assumption that the faulty behavior is benign; the
translated algorithm can then be run correctly in a system with more severe failures.

This approach has the added advantage of being modular. Proving applications correct



is the presence of severe failures is more difficult than proving them correct in the presence
of benign failures. When using translations, one only needs to prove algorithms correct in
the presence of benign failures. By the correctness of the translation, it follows that the
translated algorithms are correct in the presence of severe failures.

1.1 Failure Models

A distributed system consists of a set of processors connected by communication links.
In general, the processors and the communications links can be subject to failures. This
dissertation considers only processor failures. It makes the assumption that reliable com-
munication is guaranteed by a transport layer that allows any two processors to commu-
nicate with each other. A processor is faulty if it does not execute its program correctly.
This can be due either to hardware or to software errors. The following failures, which
include the ones most commonly considered, form a hierarchy from benign to severe:

1. Crash Failures. Processors subject to crash failures fail by stopping prematurely [14].
Before they stop, they behave correctly. After they stop, they take no further actions.

2. Send-Omaission Failures: Processors subject to send-omission failures may omit to
send some of the messages that they should [14].

3. General Omission Failures. Processors subject to general omission failures may fail
to send or receive messages that they should [21,25].

4. Arbitrary Failures. Processors subject to arbitrary failures may send arbitrary mes-
sages to other processors or may otherwise fail to follow their algorithm [19]. Such
failures are also called malicious or Byzantine.

In addition to the failures above, there is a type of failures called timing failures. These
failures are relevant in systems where there are bounds on the processors’ execution speeds.
Processors subject to timing failures can run at speeds that are outside these bounds.

The failure model of this dissertation assumes that there is an upper bound on the
number of failures that can occur in any execution of the systems. Most literature in the
field makes this assumption.

1.2 Synchrony Models

Timing can be very important in distributed systems. The more precise the timing infor-
mation that is available to processors, the easier it is to write algorithms. For example, if
processors’ clocks are synchronized and there is known upper bound on message-delivery
times, processors can use timeouts to detect failures. Timing information is represented
in the synchrony model of the system.

Synchrony models capture the assumptions about the relative speeds of the processors
and the bounds on message-delivery times. Traditionally, researchers studied problems



in synchronous and asynchronous systems. In addition to these systems, this dissertation
considers partially synchronous systems, in which there has been recently a growing inter-
est because they more realistically model practical systems. The following are informal
descriptions of these models.

e Synchronous Systems. In these systems, messages take a fixed amount of time to be
delivered and all processors run in lock step.

e Asynchronous Systems. In these systems, communication and local computation can
be arbitrarily slow or fast.

e Partially Synchronous Systems. In these systems, there are upper and lower bounds
on message delivery time and processor speeds.

1.3 Translations

Translations simplify the design task of fault-tolerant applications. One can write an
application tolerant of benign failures and then use a translation to transform it into an
application tolerant of severe failures.

Most translations require simulating one message exchange of the original algorithm
by some number of message exchanges in the new algorithm. Informally, this number is
the round-complexity of the translation.

Some translations require that no more than a certain fraction of processors fail. The
fault-tolerance of a translation is measured by comparing the total number of processors
in the system to the maximum number of failures tolerated. If the requirements on the
existence of a translation (with respect to round-complexity or fault-tolerance) between
two types of failures are necessary, then this indicates that there is a certain “separation”
between these two types of failures. Usually, the higher the fault-tolerance of a translation,
the higher the round-complexity.

Translations are usually implemented by maintaining, for each processor, a simulated
state that represents the state of the processor in the benign failure model. Intuitively,
the correctness of the translation is guaranteed by the fact that the application is run on
the simulated states and that the simulated states of faulty processors are such that those
processors appear to be exhibiting benign failures.

1.4 Previous Work

Many researchers have developed translations for failures within the hierarchy above.!
Coan [7] considered asynchronous systems and developed a “compiler” that converts
algorithms tolerant of crash failures into ones that tolerate arbitrary failures. He gave two

'Technically, these translate algorithms tolerant of one type of failure into ones that tolerate another;
we will abuse terminology slightly and say that a translation translates from one type of failure to another
or is between two types of failures.



translations that differ in their fault-tolerance and round-complexity. Coan’s translations
do not apply to synchronous systems.

Other researchers have considered synchronous systems. Hadzilacos [14] developed
a technique to translate a restricted class of algorithms tolerant of crash failures into
ones that tolerate send-omission failures. Neiger and Toueg [23] gave a translation from
crash failures to send omission failures which translated a more general class of algorithms.
While more general, their translation has higher round complexity than that of Hadzilacos.

Srikanth and Toueg [28] showed how algorithms that use message authentication to
mitigate arbitrary failures can be transformed into ones that do not require message
authentication.

Neiger and Toueg [23] developed a family of translations; some translate from crash
to general omission failures, while others translate from general omission failures to ar-
bitrary failures. They gave one translation from crash to general omission, and two
translations from general omission to arbitrary failures. The translations from general
omission to arbitrary failures differ in their round-complexity and fault-tolerance. Neiger
and Toueg showed that their translations could be composed, yielding two different trans-
lations from crash to arbitrary failures. Because composing translations multiplies their
round-complexities, these have high round-complexity.

1.5 Thesis Results

This dissertation provides a comprehensive study of translations for synchronous systems.
In doing so, it define two types of translations:

e Uniform translations. Such translations apply to a large class of problems.

e Non-uniform translations. These translations do not apply to problems that put
restrictions on the behavior of faulty processors.

Problems that put restrictions on the behavior of faulty processors cannot be solved in
systems with arbitrary failures. This is because processors subject to arbitrary failures
cannot be restricted to behave in any particular way. It follows that there are no uni-
form translations from benign failure models to arbitrary failures, and only non-uniform
translations are possible for these models..

The following summarizes the results and observations regarding translations in syn-
chronous systems. The dissertation first considers problems that have requirements of the
time complexity of their solutions, and proves that algorithms that solve such problems
cannot be translated in general. These impossibility result suggests that the study of
translations be restricted to a subclass of problems; informally, this is the class of prob-
lems that do not have requirements on the time or message complexity of their solutions.
Given the impossibility result, this is a reasonable restriction. For the restricted class of
problems, the following results are proven:



e Translations from crash to send-omission failures. The dissertation proves that the
translation of Neiger and Toueg is optimal with respect to both round-complexity
and fault-tolerance.

e Translations from crash to general omission failures. Neiger and Toueg gave a uni-
form translation that is shown to be optimal with respect to both round-complexity
and fault-tolerance. For non-uniform translations, better fault-tolerance can be ob-
tained. Specifically, the dissertation exhibits a series of non-uniform translations: as
the round-complexity of a translation increases, so does its fault-tolerance. Each of
these is shown to have optimal round complexity for the given fault-tolerance.

e Translations from general omission to arbitrary failures. The translations of Neiger
and Toueg from general omission to arbitrary failures are shown to be optimal with
respect to both round-complexity and fault-tolerance.

e Translations from crash to arbitrary failures. Neiger and Toueg gave two transla-
tions from crash to arbitrary failures with high round complexities. In contrast, the
dissertation gives three translations with lower round-complexity. These are shown
to have optimal round complexity for the given fault-tolerance.

In addition to the results in synchronous systems, this dissertation studies translations
in asynchronous and in partially synchronous systems. It proves that Coan’s translations
are optimal for asynchronous systems with respect to both their round-complexity and
their fault-tolerance. For partially synchronous systems, the dissertation gives a definition
of translations and of their time complexity, and discusses the issues involved in designing
translations in these systems. This is the first attempt of which we are aware to study
translations in these systems.

1.6 Organization

The balance of this dissertation is organized as follows. Chapter 2 presents basic defini-
tions, notation, and terminology, including definitions of correct behavior and the types
of failures that considered in this dissertation. Chapter 3 gives a general definition of
translations between systems with failures and of their complexity measures. It discusses
limitations on translations and presents lower bounds on their round-complexity. Chap-
ter 4 presents two sets of translations for synchronous systems. One is a hierarchy of
translations from crash to general omission failures, and the other consists of three trans-
lations from crash to arbitrary failures. Chapter 5 shows that Coan’s translations are
optimal for asynchronous systems. Chapter 6 discusses some of the issues involved in
designing translations for partially synchronous systems. Chapter 7 contains a discussion
and some concluding remarks on the dissertation results and directions for future work.



Chapter 2

System Model

This dissertation considers synchronous, asynchronous, and partially synchronous dis-
tributed systems. This chapter presents a unified model for these systems. The model
used is an adaptation of the model of synchronous systems used by Neiger and Toueg [23].

2.1 Distributed Systems

A distributed system is a set P of n processors fully connected by bidirectional communi-
cation links. Processors share no memory; they communicate only by sending messages
along the communication links. Each processor has a local state. Let Q be the set of local
states.

A processor execution is a sequence of steps. In each step, a processor first receives
messages and external inputs, then changes its state and outputs a value, then sends
messages. Let M be the set of messages that may be sent in the system and let L ¢ M
be a value that indicates “no message.” Let M’ = M U{L}.! We assume that all
messages include the identifier of the sender. We also assume that the receiver gives a
sequence number to every message it receives. It follows that all messages received in
an execution are unique. Let 7 be the set of external inputs that can be received in the
system and @ be the set of outputs by a processor in the system. We assume that | & 7
and L ¢ O, and we use it to denote the absence of input or output. Let O' = QU {1}
and 7' =T U {L}.

2.2 Protocols

Processors run a protocol 1I, which specifies the state transitions, the output, and the
messages to be sent. A protocol consists of three functions, a state-transition function, an
output function, and a message function. The state-transition function is d, : N X P X
(2M) x T’ s Q, where N is the set of natural numbers. It follows that the first step of

'Thus, if p sends no message to q in a step, we say that p “sends” ? to g, although no message is
actually sent. We will abuse notation and use 7 as a valid message, in the algorithms we develop later, to
indicate that a processor chooses not to communicate with another. It should be clear that this does not
affect the validity of our results.



state = 1nitial state

for r =0 to co do
input = external input
rcvd = ()
foreach q € P
if received some m from ¢ then
rcvd = recvdUm
state = 0. (r,p, rcvd, input)
output = wq(state)
message = pr(r,p, state)
send message to all processors

Figure 1: The code of protocol Il run by processor p

every processor is step 0. If in step r processor p receives the sets of messages M1,..., M,
(M; from processor p;), and external input ¢, then II specifies that it change its state to
Sz(ryp, (Ma,...,M,),1) in step r. The output function is w, : Q@ > O'. If p sets its state
to s in step r, then II specifies that it output wr(s) in that step. If w returns L in a step,
then there is no output in that step. The message function is pur : N X P x Q@ — M.
If processor p sets its state to s in step r, then II specifies that it send pr(r,p,s) to all
processors in that step.

Figure 1 illustrates the code of a protocol II. The body of the loop in Figure 1 is the
code for one step of the processor.

Our definition of protocols may appear restrictive. For instance, every processor is
required to send the same message to all processors in every step, and a protocol’s state-
transition function depends solely on the messages that it just received and not on its
input or previous state. These restrictions are made only to simplify the exposition and
do not restrict the applicability of the results. For instance, the state of a processor can
always be included in the messages it sends to itself (remember that a processor sends the
same message to all other processors, including itself, in every step). Also, any protocol
in a less restricted model can be modified so that processors send the same message to all
processors in every step.

2.3 Histories

Histories describe the executions of a distributed system. This description should include
the states through each processor passes, the messages sent and received in the systems,



the external inputs received, and the outputs produced. Also, a history should include the
protocol being run by the processors. This is needed to identify the incorrect behavior of
processors.

Any description of an execution is incomplete without timing information. Different
models of distributed systems are differentiated by their timing characteristics. So, a
history also includes information about the timing of processors’ steps and of message
deliveries.

Formally, a history consists of a protocol and the following six functions:

e an input sequence function,
e a message-receiving function,
e a state sequence function,

e a message-sending function,

an output function, and
e a timing function.

The input sequence function 1 : N x P + 7’ identifies the inputs that each processor
receives in every step. 1(7,p) is the input that processor p receives in step 7, or L if p receives
no input in step 7. The inputs received by a processor are not necessarily independent of
previous output values. For instance, in a system that provides an interactive service to
a user, a new input is not received until a new output value is produced.

The message-receiving function R : N x P x P +— 2M identifies the sets of messages
received in each step. R(7,p,q) is the set of messages that p receives from g in step i. Note
that two messages sent in different steps by ¢ might be received in the same step by p.
Let R(7,p) denote (R(7,p,p1),---,R(2,P,Pn))-

The state-sequence function Q : N x P +— Q identifies the states of processors at the
beginning of each step. Q(7,p) is the state in which processor p begins step 1.

The message-sending function § : N X P x P — M/’ identifies the messages sent in
each step. $(7,p,q) is the message that p sends to ¢ in step ¢ or L if p sends no message
to ¢ in step 1.

The output sequence function 0 : N X P + (0’ identifies the values that each processor
outputs in every step. O(7,p) is the output that processor p produces in step 7, or L if p
produces no output in step <.

The timing function T : N x P +— RT, where RT is the set of non-negative real
numbers. For each processor, T is an increasing function of the step number: if ¢ > j
then T(z,p) > T(7,7). We assume that T(0,p) = 0 for all processors. This implies that all
processors start executing at the same time.

H= (I, T,Q,1,0,8,R) is a history of protocol Il. Note that the ordering of the history
functions in this definition is different from the ordering of the presentation above. A
system is identified with the set of all histories (of all protocols) in that system. A system



can be defined by giving the properties that its histories must satisfy. If S is a system and
H=(Il,T,Q,1,0,8,R) € S, then H is a history of Il running in S.

This dissertation assumes a reliable communication medium with FIFO message deliv-
ery. A communication medium is reliable if it does not create messages. Message delivery
is FIFO if messages are delivered in the order they are sent. These requirements can be
expressed by the following constraints:

e Reliable Communication. For every history: if m € R(z,p, q), there exists j such that
m =5(j,q,p), and T(z,p) > 1(j,q)-

e FIFO message delivery. If m = s(k,p,q) € R(i,q,p) and m' = s(I,p,q) € R(4,9,p)
and 7 > j, then k& > [.

The system model does not require that every message sent is received, but it does require
that every message received is sent by some processor at an earlier time. If a message sent
is not received, then this is due to the failure of processors and not to message loss by the
communication medium. If m is sent in the step ¢ of processor p and received in the step
J of processor ¢, we say that the message delivery time of m is T(j,q) — T(¢,p).

2.4 Synchrony Models

This dissertation considers three synchrony models. The models considered are asyn-
chronous, partially synchronous, and fully synchronous systems (or synchronous).

The three models differ in the restrictions they have on message-delivery times and
the time that elapses between the steps of processors. For all three models, there exist
constants ¢; € R, and ca,d € Rt U {0}, such that:

e VpePVie Nle; <T(:+1,p) — T(7,p) < ca].
e Vm € M[m € R(j,p,q) Am = 5$(i,q,p) = 0 < T(j,q) — T(i,p) < d].

The constants ¢; and ¢2 bound the time that elapses between two consecutive steps of a
processor. The constant d bounds message-delivery times in the system.

The three models differ in the restrictions they put on the values of cl, ¢2, and d.
These are as follows:

e Asynchronous systems: ¢1 =0, co = d = .
e Partially synchronous systems: cp,d € 7.
e Synchronous systems: ¢; = co =d =1.

In an asynchronous system, there are no restrictions on the time that elapses between
two consecutive steps of a processor. Also, there is no upper bound on message-delivery
times in an asynchronous system.



In partially synchronous systems, there are finite bounds on the steps of processors
and on message-delivery times.

Synchronous systems are a special case of partially synchronous systems. In syn-
chronous systems ¢; = co = d = 1. This implies that T(i,p) = 7 because 1 < T(i +
1,p) —1(i,p) < 1 and T(0,p) = 0. It follows from the above that, in synchronous systems,
processors run in lock step. Also, if m is sent in step ¢ of p and received in step j of g,
then j = ¢ + 1. This follows directly from the definition of message delivery time. It also
follows that a processor does not receive more than one message from another processor
in a step. Chapter 3 will present the round model in more details.

2.5 Correctness and Failures

Individual processors may exhibit failures, thereby deviating from correct behavior. They
may do so by failing to send or receive messages correctly or by otherwise not following
their protocol. This section formally defines crash, send-omission, general omission, and
arbitrary failures.

2.5.1 Correctness

A processor executes correctly if its actions are always those specified by its protocol. The
definitions below will distinguish different aspects of correctness. For example, a processor
can receive correctly in one of its steps but send incorrectly in the same step.

Processor p sends correctly in its step @ if

Vq € P[S(iapa Q) = ,uﬂ—(’t',p,Q(’L',p),I(Z',p))].

To define correct receipt of messages, we need to introduce some notation. For every
pair of processors p and g and time ¢, let

Sent(p,q,t) ={m € M | Fi € Z[s(i,p,q) = m AT(i,p) < t]}.
Sent(p,q,t) is the set of messages that p sends to g by time ¢. Similarly, let
Received(p, q,t) = {m € M | Fi(m € R(p,q,7) AT(i,p) < 1)}

Received(p, q,t) is the set of messages that p receives from g by time t.
Processor p receives correctly through its step 1 if

Vg € PVj € Z[T(j,q) + d < 1(¢,p) = $(J,q,p) € Received(p,q,T(i,p))].

Recall that, for asynchronous systems, d = oo so, in such systems, processors receive
correctly through every step. Processor p receives correctly throughout a history if

Vg € PVj € Z[s(J,q,p) E M = Tt € §R+[S(j,q,p) € Received (p, gq,t)]].

10



Processor p makes a correct state transition in its step 1

Q(Z + 1ap) = aﬂ(iapa (R(iapapl)a ce ’R(iapapn)))'

Processor p outputs correctly in its step 17 if

0(i,p) = wx(Q(7,p))-

Processor p is correct through its step © of H if it sends, receives, and outputs correctly,
makes correct state transitions through its step ¢ of H. Let

Correct(H,7) = {p € P | p is correct through its step 7 of H}.

Correct(H,1) is the set of processors that are each correct in its steps O through i. Let
Correct(H) be the set of processors correct throughout history H. Note that Correct(H) =
Ni>o Correct(H, 1) for synchronous and partially synchronous systems, but not for asyn-
chronous systems. In asynchronous systems, if a processor does not receive a message a
finite number of steps after it is sent, then the processor is not necessarily faulty; the mes-
sage could simply be slow. This is not the case in synchronous and partially synchronous
systems.

If a processor is not correct, it is faulty. Formally, Faulty(H,i) = P — Correct(H,1),
and Faulty(H) =P — Correct(H).

2.5.2 Crash Failures

A crash failure [14] is the most benign type of failure that this paper considers. A processor
commits a crash failure by prematurely halting in some step. Formally, p commits a crash
failure in its step 7. of H if 7. is the least ¢ such that p € Faulty(H,7) and if

e In step i., p receives and outputs correctly, and sends to each processor g either
what the protocol specifies, or nothing at all:

Vq € P[S(ic,p,q) = :u’ﬂ'(icap’ Q(anp)) \% S(iC’p’q) = J-]) a'nda

e it outputs no values, sends and receives no messages and makes no state transitions
after step i.:

Vi > ic[Q(i,p) = Q(ic,p) AVg € PlO(i,p) = 8(i,p,q) = R(5,p,q) = L]
The system C(n,t) corresponds to the set of histories in which up to ¢ processors commit
only crash failures and all other processors are correct. That is, H € C(n,t) if and only if

P can be partitioned into sets C' and F' such that C' = Correct(H), |F| < t, and

Vp € F' i, € Z[p commits a crash failure in its step ¢, of HJ.
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2.5.3 Send-Omission Failures

Another type of failure, called a send-omission failure, occurs if a processor omits to send
messages [14]. Processor p may commit such failures in history H if it always makes correct
state transitions, outputs correctly, receives correctly, and sends to each processor what
its protocol specifies or nothing at all:

Vi€ ZVq € P[S(i,p,q) = px(i,p,Q(4,p)) V S(i,p,q) = L].

Processor p omits to send message m to g in its step 7 if

m = pr(i,p,Q(i,p)) AS(i,p,q) = L.

The system O(n,t) corresponds to the set of histories in which up to ¢ processors are
subject to send-omission failures and all other processors are correct.

2.5.4 General Omission Failures

A more complex type of failure, called a general omission failure [25], occurs if a processor
intermittently fails to send and/or receive messages. Processor p may commit such failures
in history H if it always makes correct state transitions, outputs correctly, always sends to
each processor what its protocol specifies or nothing at all, and sometimes omit to receive
messages that are sent to it.

Processor p omits to receive message m from ¢

i € N[m = s(q,p,7)] AVi[m ¢ Received(p,q,t)].

The system G(n,t) corresponds to the set of histories in which up to ¢ processors are
subject to general omission failures and all other processors are correct.

2.5.5 Arbitrary Failures

Crash failures considerably restrict the behavior of faulty processors. Omission failures
place fewer restrictions on this behavior. In the worst case, faulty behavior may be com-
pletely arbitrary [19]; processors may fail by sending incorrect messages, making arbitrary
state transitions, and calculating incorrect output values. Processor p s subject to arbi-
trary failures in history H if it may deviate from II in any way by arbitrarily changing its
state, sending arbitrary messages, or producing incorrect output.

The system A(n,t) corresponds to the set of histories in which up to ¢ processors
commit arbitrary failures and all other processors are correct.

2.6 Problem Specifications

Protocols are run to solve particular problems. Formally, such problems can be specified
by predicates on histories. Such a predicate, called a specification, distinguishes histories
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that satisfy the problem specification from those that do not. Protocol II solves problem
with specification ¥ (or solves ) in system S if ¥ is true for all histories of I running in
S.

The translations defined in this paper are useful when applied to problems with speci-
fications of a certain form. These are called input/output specifications. Informally, these
specifications are primarily predicates on a history’s input and output sequence functions.
A justification for this limitation is that the messages sent within a system in solving a
problem can be considered details of the implementation. For example, this type of spec-
ification is typically used for characterizing different forms of Byzantine Agreement [19].

Being able to refer to the input/output relationships is not sufficient to specify some
problems. For example, the specification of the Byzantine Agreement problem refers to
the inputs and outputs of the correct processors only. For instance, it requires that correct
processors produce outputs exactly once and their outputs are identical. It also requires
that this single output be the first input of some processor if all processors are correct.

Thus, input/output specifications must be able to refer to the identities of the correct
processors. Formally, ¥ is an input/output specification if

VHl,Hg[(E(Hl) A (Tl,Il, 01) = (TQ,IQ, 02) A CO’I"’I"eCt(HQ) C OO’I"I"eCt(Hl)) = E(Hg)],

where T;, I; and 0;, ¢ = 1,2, are timing, input, and output sequence functions of H;. We
require the set of processors correct in Ha to be only a subset of (and not identical to)
those correct in H; primarily for technical reasons. An examination of the specifications of
many problems in distributed computing will show that simply shrinking the set of correct
processors does not, in general, cause a history to fail to satisfy a specification. The timing
function is included in the definition because two input/output sequences are identical if
and only if the same inputs (outputs) occur at the same times in both histories. In
synchronous systems, there is no need to mention the timing function because all histories
in synchronous systems have the same timing.

The specifications of many problems are not concerned with the input/output behavior
of the faulty processors. For example, the Byzantine Generals problem requires only that
all correct processors output identical values and puts no restrictions on the outputs of
faulty processors. The specification of such a problem is failure-insensitive. Formally, a
specification X is failure-insensitive if it is an input/output specification and

VHi,Hs[(2(H1) A Correct(Hy) C Correct(Ha)A
Vi € NVp € Correct(Hs)[(T(7,p),11(¢,p),01(7,p))

= (T(i,p), IZ(iap)a 02(iap))])
= Y (Ha)].

Note that this definition allows processors faulty in Hy to have different input/output
behavior in H; and Hs.

In the case of Byzantine Generals, each correct processor would output identical values
in each of H; and Hs; thus, if the correct processors produced identical outputs in one
(satisfying ), they would produce identical outputs in the other. Many other problems
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considered in fault-tolerant distributed computing have failure-insensitive specifications.
Neiger and Tuttle [24] give a careful analysis of the distinction between these problems
and those that are sensitive to the behavior of faulty processors.

Some problems refer to the inputs and outputs of processors without referring to the
rounds in which they occur. For these problems, we define the following functions. The
inputs function I : Z x P +— 7 specifies the inputs of a processor. If the i¢th input of p
is v then I(i,p) = v. The ¢th input of a processor can be defined in terms of the input
sequence function by the following relation

[1(,p) =10,p) A{k <j |1(k,p) # L| =i - 1}].

We say that the ¢th input of p occurs in step 7 of p. Similarly, the outputs function
O : Z x P — O specifies the outputs of a processor. If the ¢th output of p is v then
O(i,p) = v. The ith output of a processor can be defined in terms of the output sequence
function by the following relation

35[0(i,p) = 0(4,p) A{k < j | o(k,p) # L} =i —1].

The inputs to processor p is denoted I(p). Similarly, the outputs produced by processor
p is denoted O(p). Sometimes we refer to inputs and outputs in a specific history H; in
these cases we write Iy and Oy.
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Chapter 3

Translations for Synchronous Systems:

Definitions and Limitations

This chapter defines translations for synchronous systems. It gives definitions of their
round-complexity and proves fundamental limitations on translations for these systems.
Later chapters will present corresponding definitions for asynchronous and partially syn-
chronous systems.

This chapter is organized as follows. Section 3.1 gives the round model of commu-
nication for synchronous systems. Section 3.2 gives a general definition of translations
for synchronous systems and of their round-complexity. Section 3.3 proves lower bounds
on the round-complexity of translations for some failure models. Section 3.4 proves that
some input/output specifications cannot be translated in general and identifies a subclass
of problems for which translations are always possible.

3.1 Programming Model

This section introduces a programming model for synchronous systems. In Chapter 2, an
execution was described as n sequences of steps, one for each processor. In synchronous
systems, it is more natural to talk about rounds of communication. In every round, pro-
cessors receive inputs, send messages, receive messages, update their states, and produce
outputs in that order. All processors begin and end a round at the same time. Every
round consists of parts of two consecutive steps by all processors. Each message sent in
a round is received in that round or is never received. This makes it easier to describe
failures in the system. The round-based view of communication appears in Figure 2. The
body of the loop in Figure 2 contains the code for one round of communication. Note that
this is not a change in the model of the system, rather it is another way of looking at an
execution of a protocol.

In synchronous systems, processors receive no more than one message from every other
processor in a given round. This simplifies the description of some of the history functions.
For instance, R(7,p,q) is a unique message, and not a set of messages. In what follows, we
assume that all the definitions given in Chapter 2 will be appropriately modified for the
round model.
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state = initial state;

for »r =0 to oo do
message = (7, p, state,input)
send message to all processors
foreach q € P
if received some m from ¢ then
rcvd[q] = m
else
revd[g] = L
state = 8 (r, p, rcvd)
output = wy(state)

Figure 2: The code of protocol II run by processor p

3.2 Definitions

This section defines the concept of a translation from a system B(n,t) with benign failures
to a system S(n,t) with more severe failures.?

A translation is a function 7 that converts a source protocol Il., which solves a problem
with input/output specification ¥ in B(n,t) into an object protocol II, = T (Il;) that
solves ¥ in S(n,t).

This definition of translations is very general because it requires only that the object
protocol be correct; in general, there need be no correspondence between the code of the
source protocol and that of the object protocol.

This dissertation considers the following two types of translations:

1. Uniform Translations. A translation is uniform if it correctly translates all protocols
that solve problems with input/output specifications.

2. Non-uniform Translation. A translation is non-uniform if it correctly translates all
protocols that solve problems with failure-insensitive input/output specifications.

Note that every uniform translation is also non-uniform.

Some translations are correct only if n and ¢ bear a certain relationship. For example,
Neiger and Toueg gave a translation from crash to general omission failures that is correct
only when n > 2t. This required relation is called the fault-tolerance of the translation.

'In this dissertation, B(n,t) will be either C(n,t), O(n,t) or G(n,t), and S(n,t) will be either O(n,t),
G(n,t), or A(n,t).
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Recall that our definition of input/output specifications is very general. For example,
it allows specifications that require that processors output certain values no later than a
given number of rounds after receiving some input.

This chapter proves that protocols that solve problems with such specifications cannot
be translated in general. This will be done by exhibiting, for each B(n,t) and S(n,t), a
problem that has a solution in B(n,t) but no solution in S(n,t). Note that these proofs
are for synchronous systems. Later chapters will present similar proofs in asynchronous
and partially synchronous systems.

The impossibility results rely on the fact that problems can have specifications that
refer to the time-complexity of a solution. To circumvent the impossibility results, we
will restrict the class of problems we consider to those that do not have requirements
on the complexity of a solution. For these problems we present lower-bound proofs on
the round-complezity of translations. Informally, the round-complexity of a translation is
measured as a function of the extra number of rounds that processors require to produce
a particular output in the translated protocol.

In comparing the running times of protocols, researchers have traditionally compared
the running time of protocols in executions that have similar faulty behavior [9,18,21,22,
24]. This is reasonable for comparing two protocols that solve the same problem in the
same failure model. This is not possible when studying translations because the object
protocol tolerates failures that the source protocol is not designed to handle, and there are
thus executions of the object protocol that cannot be compared to any execution of the
source protocol. Therefore, the round-complexity of a translation is defined by comparing
the worst case running time of the object protocol to that of the source protocol.

To define the round-complexity of a translation, we need to introduce some notation.
Let v be an output produced by some processor in an execution H of protocol II. The
response time of v is equal to the number of rounds that elapsed since the last input was
received by some processor. The response time of v is denoted R(II,,H,v). The response
time measures how fast an output is produced after an input is received. For example, if v
was produced in round 6 and some input was received by some processor in round 3, then
the response time of v is 6 — 3+ 1 = 4 if no input was received by any processor in rounds
4, 5, and 6. Note that, in the definition above, the response time of the output of some
processor is function of the inputs received by all processors. This is reasonable because
the system is distributed, and the outputs of a processor can depend on the inputs to
other processors.

We define the round of a translation by comparing the response times of output v
in executions in which the source protocol and the object protocol have the same in-
put/output behavior up to that output; i.e. in executions in which the same inputs are
received and the same outputs are produced in the same order before v is produced. For
a given v and two two such executions H}, and hists of II}, and IIy = T (II), the delay
of translation 7 for v is R(Ils, Hs,v)/R(Il, Hy,v) the ratio of the response times of v
in Hy and H.2 Note that the delay of outputs is only defined for outputs that appear

2We define the delay as being the ratio because, as we will show in the proofs below, it is the relevant
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in histories of the source protocol for which the are histories of the object protocol with
the same input/output behavior up to the round in which v is produced. The delay of a
translation T for protocol 11 is the largest delay of any output of II for which the delay is
defined. The round-complexity of a translation is the maximum of the set of delays. That
is, it is the largest delay incurred by any protocol from the translation.

The remainder of this chapter presents the impossibility and lower-bound proofs. The
proofs are presented in the reverse order to that suggested above. Lower-bound results
are first established, then the problems used for the lower-bounds proof are restricted to
get impossibility results. This is achieved by adding to those problems the additional
requirement that they execute faster than the lower-bound results would allow.

3.3 Lower Bounds

Sections 3.3.1, 3.3.2, and 3.3.3 prove lower-bounds on the worst-case round-complexity of
some translations between some failure models. This section presents elements that are
common to all the lower-bound proofs.

The lower-bound proofs are all by contradiction. First, a translation T from B(n,t)
to S(n,t) with round-complexity z and a given fault-tolerance is assumed to exist (z will
be different for the different failure models). Then a problem with specification ¥ is
considered. In most cases, specification ¥ is a predicate on the first input of a particular
processor b and the first and second outputs of correct processors. In each case, a protocol
IT that solves ¥ in B(n,t) is given. Correct processors running II produce their first and
second inputs in the first two rounds in B(n,t). Then, we show that, for any protocol that
solves ¥ in S(n,t), processors cannot produce any output before the end of round z + 1
in some executions. This is done by considering full-information protocols.

Full-information protocols are protocols that require processors to exchange in every
round all the messages and inputs they received in previous rounds. Full-information
protocols have the same message and state-transition functions but not necessarily the
same output function. Results by Coan [5] can be used to show that, for any protocol
that solves a problem in a given system, there exists a full-information protocol that solves
the same problem in the system and that has the same time-complexity of the original
solution (that is, outputs are produced at the same times by both protocols). It follows
from the above that it is enough to show that there is no full-information protocol that
solves ¥ in S(n,t) such that all correct processors produce an output before round z + 1
in all executions.

To recapitulate, each lower-bound proof will consider a problem with input/output
specification ¥. It will show that ¥ has a solution in B(n,t) such that processors produce
their first output in the first round. Then, it shows that there is no full-information
protocol such that correct processors produce their first input before round z+1 in S(n, t).
Since the response time of the first output of any protocol that solves ¥ in B(n,t) is 1 and

parameter.

18



the response time of the first output of any protocol that solves ¥ in S(n, t) is at least z+1,
it follows that the delay of the translation for any protocol is at least (z +1)/1 = z + 1,
which is the delay of the first output.

3.3.1 Lower Bounds for Crash-to-General-Omission Translations

This section proves lower bounds on the round-complexity of non-uniform translations
from crash to general omission failures. Specifically, there can be no z-round translation
from C(n,t) to G(n,t) if z < [t/(n —1t)| + [t/(n —1)].

The proof considers a problem with failure-insensitive specification . It shows that %
has a solution in C(n,t) such that correct processors produce their first output in the first
round. Then, it shows that there is no full-information protocol that solves ¥ in G(n,t)
such that correct processors produce their first output before round z in every execution.
By the discussion above, this is enough to establish the lower-bound result.

We assume that Z = {0,1} and O = {0,1, f}. Informally, the specification ¥ of the
problem is the following. Let b be a specific processor (the broadcaster). The output
sequence of every correct processor should satisfy the following conditions:

1. If b is correct, then, O(j,p) = I(1,b) for all correct processors p, and all j > 1.

2. If O(j,p) = f for some correct processor p and some j > 1 then O(k,q) = f for all
k > j and correct processors q.

3. If p and g are correct processors and O(j,p) # O(J,q), then O(j,p) = f or O(j,q) =
f.

Informally, the specification requires that correct processors output b’s first input, unless
b is faulty; if b is faulty and the jth outputs of two correct processors are different, one
the two outputs should be f. The specification is failure-insensitive because it refers only
to the behavior of correct processors and puts no restrictions on the behavior of faulty
processors.

There is a simple protocol II that solves ¥ in the presence of crash failures. The
protocol operates as follows. Let @ = M ={0,1, f}. In the first round, b sends its initial
input to all processors. At the end of that round, every processor that receives a message
from b sets its state to the value received. All other processors set their states to f. In
each of the following rounds, each processor sends its state to all others. If a processor
receives f from any processor, it sets its own state to f; otherwise, it does not change
its state. At the end of every round, processors output their states. More formally, II is
specified as follows:

1 ifr=1landp=25b

pr, (7D, 8,1) = s ifr>1
f otherwise
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revd[b] if r =1 and rcvd[b] # L
_ ifi=1 and rcvd[b] = L or
Ox(r,pyrevd) = / if r > 1 and revd[g] = f for some q
revd[p] otherwise.

we(s) = s

It is not difficult to see that all executions of II satisfy the problem specification in the
crash failure model. Now we show that there is no full-information protocol that solves X
in the presence of general omission failures such that every correct processor produces an
output by round z.

Let k = |t/(n —t)]. Note that z = 2k + a, where a is 0 if ¢ is a multiple of n — ¢ and
is 1 otherwise. Let p; = b. Define the sets Lo, L1,..., L,+1 as follows:

Lo = {p},
Ll = {P%"'ap'fb—t}a

Loi = {Pitn-t)+1}>
L2'é+1 = {pi(n—t)+27 R ’p(’i+l)(n—t)}a

Lo = {Prn-t)+1}, and
Lokt1 = A{Pk(n—t)425- - P(k+1)(n—t) }

if a = 1, we define Lojio = {P(h41)(n—t)+1s--->Pn}- It is easy to see that none of the
defined sets is empty. (Remember that £ = [t/(n—1t)]|, so k+ 1 = |[n/(n—1t)] and
n < (k+1)(n — t); this is a strict inequality if @ = 1.) Furthermore, the last set is always
L, 41, regardless of the value of a. Note that L; N L; = 0 if i # j and |[L; U L;y1| > n — ¢
forallz,0<? < 2.

Consider the following execution of a full information protocol in the general omission
model. No communication takes place between processors in L; and thosein Lj, j > 1+1
in any round i + 1 or afterward. (Note that this implies that processors outside Lo U L1
never receive any message from b.) All processors behave correctly otherwise. Although
we have not identified the faulty processors, it should be clear that this can be a run in
system G(n,t). For example, Ly U L; might be the set of correct processors because it
contains n — t processors and there is no communication failure among its members. All
missing messages can be accounted for by assuming that the remaining processors are
faulty and fail either to send or to receive (or both). In fact, any set L; U L;4+1, 0 <1 < z,
could be correct for the same reason. Thus, what we have described is actually a set
of histories, all of which are indistinguishable to the processors in the system. It is the
processors’ inability to determine the identity of the correct processors that leads to the
impossibility result.
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It is clear that processors in L; first learn of the first input of b at the end of round z. In
particular, processors in L,;1 do not know the first input of p until the end of round z +1
and thus do not know the first input of b at the end of round 2. This fact will be critical
to the proof because it will contradict the following lemma:

Lemma 1: If the first output of each correct processor occurs by round z, then the outputs
of all processors are equal to the first input of b.

Proof:  Let I(1,b) be b’s first input. We will prove by induction on 7 (0 <7 < z + 1)
that all the outputs of each processor in L; is equal to I(1,b).

For the basis step, the only processor in L is b. Because b can never tell that it is
faulty (it might be that Ly U L; is the set of correct processors), none of its outputs can
be different from I(1,b) or else condition 1 might be violated. Thus, all its outputs are
equal to I(1,b).

For the induction step, assume that all the outputs of each processorin L;, 0 <1 < z+1
are equal to I(1,b). By condition 3, all processors in L;;1 must always output I(1,b) or f.
Suppose for a contradiction that some processor in L;;; has some output = f. Because it
is possible that the processors in L;UL;41 are all correct, the next output of the processors
in L; must be f or else condition 2 might be violated. But this contradicts the inductive
hypothesis. Thus, the output of each processor in L;4+1 must be I(1,b). O

Remember that we want to prove that the first outputs of the correct processors cannot
occur by round z in all executions, and that the proof assumed, for a contradiction, that
outputs of correct processors occur by round z. Lemma 1 implies that the first outputs
of processors in L,4+1, which are assumed to occur by round z, must be I(1,b) and thus
not f. But, as noted above, these processors do not know b’s first input until round
z+ 1. Thus, they must produce their outputs in the absence of this information. Assume
without loss of generality that the full-information protocol specifies that they output O.
Then the third condition is violated in histories in which b’s first input is 1. Thus, correct
processors in L,y1 cannot produce an output before round z + 1, giving us the following
theorem:

Theorem 2: There is no z-round translation from C(n,t) to G(n,t) if

z< [t/(n =) +t/(n-1)].

This theorem shows that the round-complexity of a translation from crash to arbitrary
failures increases with its fault-tolerance. In general, this is also true for other failure
models. In particular, the theorem shows that there is no 1-round translation if ¢ > 0;
in fact, z > [t/(n—1t)] > 1if t > 0. Note that this implies that the 2-round uniform
translation translation of Neiger and Toueg [23] from crash to general omission failure
is optimal with respect to both round-complexity and fault-tolerance for non-uniform
translations. In other words, there is no 2-round non-uniform translation that has better
fault-tolerance than their uniform translation.
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3.3.2 Lower Bounds for Crash-to-Arbitrary Translations

This section shows that, for certain fault-tolerances, no translation of a specified round-
complexity exists from C(n,t) to A(n,t). We begin by noting a result that follows from
considering the classical problem of Byzantine Agreement [19]. Hadzilacos [14] solved this
problem in systems with crash failures for any n > ¢, but Lamport et al. [19] showed
that it cannot be solved in a system with arbitrary failures if n < 3t; thus, the minimum
fault-tolerance of a translation from C(n,t) to A(n,t) is n > 3t.

The balance of this section deals with systems for which translations are possible (i.e.,
when n > 3t) and explores their round-complexity. It shows lower-bound results for 1-, 2-,
and 3-round translations. In particular, we show the following lower-bound results: there
can be no 1-round translation if ¢ > 0; there can be no 2-round translation if n < 6t — 3;
and there can be no 3-round translation if n < 4t — 2.

3.3.2.1 1-Round Translations

To see that there can be no 1-round translation from C(n,t) to A(n,t) if ¢ > 0, consider
the following simple problem.

Let b be a specific processor. The specification of the problem requires that, if b is
correct, the first output of every correct processor be equal to the first input of b. It
also requires that, if the first outputs of two correct processors are different, then one of
the two outputs is equal to f. A protocol that solves this problem in the crash failure
model requires p; to send its first input to all processors and that, at the end of the first
round, every processor that receives p;’s message outputs the value received; otherwise, it
outputs f. We will prove by contradiction that there is no full-information protocol that
solves the same problem in the presence of arbitrary failures such that the first output
of the correct processors is at the end of the first round. This is enough to establish the
lower-bound.

Suppose that b is faulty (this is possible because ¢ > 0). In the first round of a full-
information protocol, b sends mj to p1 and ma (mo # m1) to p2 (p1 and pa are correct).
For the remainder of the argument, we will prove that there are two histories H; and Hs
such that, in H; (z € {1,2}), b is correct and p; receives m; from b in the first round. Since
the state of p; in the execution we are considering is identical to its state in H;, it should
behave the same way it behaves in H;. Each p; outputs m; in H;. It follows that in the
execution we are considering, each p; outputs m;. But since q; and g¢o receive different
messages from p, they output different values, which violates the problem specification.
Now we specify b’s behavior H;. In H;, b is correct and sends m; to all processors. In
the execution we are considering, the state of p; is the same as its state in H; because it
receives the same messages and inputs in both H; and the execution we are considering.
This completes the proof.
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3.3.2.2 Multi-Round Translations

Section 3.3.2.3 shows that a 2-round translation is impossible if 3t < n < 6t — 3 and
Section 3.3.2.4 shows that a 3-round translation is impossible if 3t < n < 4¢f — 2. Both
proofs consider a very simple problem that can be solved in the presence of crash failures
and then show that there is no protocol that solves the problem within the specified
number of rounds in the presence of arbitrary failures.

We assume that 7 = {0,1} and O = {0,1, f} U ({0,1, f})™. The specification ¥; of
the problem is the following. Let b be a distinguished processor (the broadcaster).

1. If bis correct and its first input is I(b, 1), then the first output of all correct processors
must be equal to I(1,b).

2. If the first outputs of two correct processors are different, then one of the two outputs
is equal to f.

3. The second output of every correct processor q, O(2,q), is a vector of size n. If p and
g are correct and two corresponding entries O(2,p)[r] and O(2,q)[r] are different,
then one of the two entries is equal to f.

4. If the first output of correct processor p is equal to v , then second the output of
every correct processor g is such that such that O(2,p)[p] = v.

5. If the first output of some correct processor is f, then the second output of each
correct processor q is such that is O(2,q)[b] = f.

The problem specification requires that the first outputs of correct processors be equal
to b’s first input if b is correct; if b is not correct, then the problem specification puts some
restrictions on the outputs of correct processors. A simple protocol that solves Y7 in the
presence of crash failures such that correct processors produce their first output in the
first round is the following: In the first round, b sends its initial input (either 0 or 1) to
all other processors. At the end of the first round, every processor outputs the value it
receives from b, or f if it receives no message from b. In the second round, all processors
send their first output to all other processors. At the end of the second round, every
correct processor p outputs a vector such that O(p,2)[q] is equal to the message received
from g, or f if it received no message from ¢ in the second round. In subsequent rounds,
processors do not output any values.

Most of the results proven below exploit the fact that, in many cases, the correct pro-
cessors are uncertain as to which processors are faulty. To maintain as much uncertainty
for as long as possible, the construction of all histories given below assume that all pro-
cessors (even faulty ones) behave correctly unless otherwise noted. Also, we will assume
that b receives its first input in round 1.

23



3.3.2.3 2-Round Translations

This section shows that there can be no 2-round translation from C(n,t) to A(n,t) if
3t < n < 6t — 3. Because we have already observed that there can be no translation if
n < 3t, this means that there can be no 2-round translation if n < max{6¢ — 3,3t}. Note
that 3¢t < 6t — 3 implies ¢ > 1.

We will prove that there is no protocol that solves X1 in the presence of ¢ arbitrary
failures, with 3t < n < 6t — 3, such that correct processors produce their first output
before round 3.

Consider any execution of a full-information protocol Il;. Since Il is a full-information
protocol, every processor (including b) should send its initial state and its first input to all
processors in the first round of the execution. In the second round, each correct processor
echoes the messages it received to all other processors. Since the inputs of processors other
than b are irrelevant in X1, we will only refer to message exchanges that relate to the first
input of b. Let v, be the vector of echoed messages that p receives in the second round,
where vpq] is the one received from processor q. vp[g] = v only if ¢ sends a message to p
claiming the receipt of v from b in the first round.

Before proceeding with the proof, we prove two lemmas for any execution of Il;. These
lemmas will be used in the proof below.

Lemma 3: Consider any set of processors G such that b € G and |G| > n—t. Ifa
processor p € G recetves m € {0,1} from b in the first round and then has v,[q] = m for
all g € G at the end of the second round, then p must output m in the second round.

Proof:  As far as p can tell, all processors in G (including b) are correct and b sent m as
its first input in the first round (any faulty processors would be in G = P — () and, by
condition 1 above, p must output m. O

Lemma 4: Consider any set G' such that b ¢ G' and |G'| > n — 2t. Suppose that, for
some correct processor p € G, vp[q] = m for all ¢ € G'; then p must output m at the end
of the second round.

Proof:  Consider a partition of P into sets {b}, F', C, and G', where p € C, |F| =t — 1,
|C| < t, and |G'| > n — 2t (note that |G'| > ¢ > 2, as n > 3t and ¢ > 1). Without loss of
generality, let m = 0.

Now consider the following history H;. In Hj, the set {b} U F' contains the faulty
processors and G' UC contains the correct ones. In the first round, b sends 1 to processors
in C' and 0 to processors in G'. In the second round, all processors in F' echo 0 to all of
G'UC except p, to whom they echo 1; b echoes to each processor the same message it sent
that processor in the first round. In subsequent rounds, all processors behave correctly,
with the faulty processors acting exactly like those that received 0 in the first round. Note
that all correct processors in G’ (other than p) receive 0 at least n—¢ processors (including
b) in the second round and so, by Lemma 3 must output 0. Note, however, that p received
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b Ao Al Co 01
|0| 0O --- 0 | 1 --- 1 | 0 --- 0 | 1 .-~ 1 |
1 t—1 t—1 [(n—2t+1)/2] [(n—2t+1)/2]

Figure 3: Vector received by processor p in round 2

0 from only |G'| > n — 2t processors other than b. At this point, p must output either 0 or
f (by condition 2). If p outputs 0, we are done. Assume for a contradiction that, instead,
it outputs f. By condition 5, the second output of every correct processor ¢ must be must
be vector v such that v[b] = f.

Consider now another history Ho in which the set of faulty processors is C'; the pro-
cessors in {b} U F'UG" are all correct. In the first round, b sends 0 to all processors. The
processors in C' echo 1 to all processors in the second round. By Lemma 3, each correct
processor (including b) must output O at the end second round. In subsequent rounds,
all faulty processors behave just as they did in H;. By condition 4, the second output of
every correct processor ¢ must be O(2,q) such that O(2,¢)[b] = 0 in Ha. But processors
correct in both histories (i.e., those in G’) cannot distinguish the two histories, giving
a contradiction: in one history the second output of every processor g € G’ must be V
with v[b] = f, while in the other it must be v with v[b] = 0. Thus, the first output of
p must be 0 at the end of the second round of Hy. This concludes the proof of the lemma. O

Now, we can use the two lemmas to prove that there is no full-information protocol
that solves Y1 such that correct processors produce their first outputs by round 2.

Consider now the following scenario. Let A, A1, Cy, and C; be a partition of P — {b}
such that |4g| = 41| =t —1, |Cy| = [(n — 2t +1)/2], and |C1| = |(n — 2t + 1)/2]. Note
that, since ¢t > 1, n > 3¢, and n < 6t — 3, it must be that 2 < |C;| < 2¢, |4;| > 1,
and |4; UC;| > t, for i € {0,1}. Suppose that, at the end of the second round, some
correct processor p € Cy U C] receives messages composing the array shown in Figure 3.
It is clear to p that b is faulty: in the second round, too many processors (|Ag U Cy| > t)
give too much support to 0 for it to have correctly sent 1, and too many (|41 U C1| > ¢)
give too much support to 1 for it to have correctly sent 0. We will show that p cannot
produce a second output that satisfy the conditions of ;. Suppose that, in the third
round, all processors but two behave correctly, each indicating that it too had this array
after round 1. The two remaining processors, ¢ € Ag and r € A; send different messages.
Processor ¢ claims that it had the array in Figure 4, and that, by Lemma 4, it had to
output O in the second round. Processor q is believable, because the ¢ — 1 processors in A
might be faulty and because it claims to have received 0 from at least n — 2t processors.
Processor r claims that it received the array in Figure 5, and that, by Lemma 4, it had
to output 1. Processor r is believable, because the ¢ — 1 processors in Ay might be faulty
and because it claims to have received 0 from at least n — 2¢ processors. Thus, one of ¢
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b AO A1 Co C’1
|0| 0O --- 0 | 0 --- 0 | 0 --- 0 | 1 .-~ 1 |
1 t—1 t—1 [(n—2t+1)/2] [(n—2t+1)/2]

Figure 4: Vector received by processor ¢ € Ay, forcing it to receive 0

b AO A1 Co C’1
|0| 1 --- 1 | 1 --- 1 | 0 --- 0 | 1 --- 1 |
1 t-1 t—1 [(n—2t+1)/2] [(n—2t+1)/2]

Figure 5: Vector received by processor r € Aj, forcing it to receive 1

and r must be correct and the other must be faulty, but there is no way for p to know
which. Thus, when correct processor p is ready to set its second output to v, it will set
v[g] and v[r] regardless of which is faulty and which is correct. But, p must set v[g] =0
and v[r] # 1 if g is correct and v[g] # 0 and v[r] = 1 if r is. In either case condition 4
might be violated. This gives a contradiction, proving that there is no protocol such that
solves X1 such that correct processors produce their first by round 2.

This gives us the following theorem:;

Theorem 5: If n < max{6t — 3,3t}, there can be no 2-round translation from C(n,t) to
A(n,t).

3.3.2.4 3-Round Translations

This section shows that there can be no 3-round translation from C(n,t) to A(n,t) if
3t < n < 4t — 2. Because we have already observed that there can be no translation if
n < 3t, this means that there can be no 3-round translation if n < max{4¢t — 2,3t}. Note
that 3¢t < 4t — 2 implies ¢ > 2.

As was mentioned above, it is enough prove that there is no full-information protocol
that solves ¥; in the presence of ¢ arbitrary failures, with 3t < n < 4t — 2, such that
correct processors produce their first output by round 3. In what follows we will assume,
for a contradiction, that processors output their first value in round 3 (arguments similar
to the ones above can be used to prove that they cannot output a value before round 3).

Consider any execution of a full-information protocol II¢. Since Il is a full-information
protocol, every processor (including b) should send its initial state and its first input to all
processors in the first round of the execution. In the second round, each correct processor
echoes the messages it received to all other processors. Since the inputs of processors other
than b are irrelevant in X1, we will only refer to message exchanges that relate to the first
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input of b. Let v, be the vector of echoed messages that p receives in the second round,
where v,[q] is the message received from processor q. vp[g] = v only if ¢ sends a message to
p claiming the receipt of v from b in the first round. In the third round, every processor p
sends its vector v, to every other processor, Every processor receives a vector of messages
from every other processor in round three. Let V,[g] be the vector that p receives from g;
let V,,[g][r] be the component of this vector corresponding to processor r.

Before proceeding with the proof, we prove two lemmas for any execution of II;. These
lemmas will be used in the proof below.

Lemma 6: Consider any set of processors G such that b € G and |G| > n—t. If a correct
processor p € G has Vy[ql[r] = m for all (q,7) € G x G, then p must output m in the
second round.

Proof:  As far as p can tell, all processors in G (including b) are correct and b sent m as
its first input in the first round (any faulty processors would be in G = P — G) and, by
condition 1 above, p must output m. O

Lemma 7: Consider a set G defined as in Lemma 6, and let G' C G be such that b ¢ G’
and |G'| > n—2t. If a correct correct processor p € G' has V,[q][r] = m for allq € G' and
r € G, then p must output m n round 3.

Proof: For all p knows, the ¢ processors in G—G' are faulty and might have sent different
messages to other correct processors. In particular, they might have sent another every
other correct processor p’ the same vector sent to p by processors in G'. It follows that
the first output of every other correct processor‘p’ must be m (by the argument above)
and, by condition 2, the first output of p must be either m or f. As in the proof 3 we can
argue that p must actually output m, because it might not be able to “convince” another
correct processors p’ to produce a second output v such that v[b] = f (see the similar argu-
ment in the proof of Lemma 7 above). Thus, p must output m at the end of third round. O

Consider now the following scenario. Let Ag, A1, Cp, and C; be a partition of P — {b}
such that |4g| = 41| =t —1, |Co| = [(n — 2t +1)/2], and |C1| = |(n — 2t + 1)/2]. Note
that, since t > 2, n > 3¢, and n < 4¢ — 2, it must be that 2 < |C;] < ¢, |4;| > 1, and
|A; UC;| > t, for © € {0,1}. Suppose that, at the end of the third round, some correct
processor p € Cy U C1 receives vectors composing the matrix My shown in Figure 6.3 It is
clear to p that b is faulty: in the second round, too many processors (|49 U Cy| > t) give
too much support to 0 for it to have correctly sent 1, and too many (|A; U Cq| > t) give
too much support to 1 for it to have correctly sent O.

Suppose that, in the fourth round, all processors but two behave correctly, each indi-
cating that it too had this matrix after round 1. The two remaining processors, g € Ag and
r € A1 send different messages. Processor ¢ claims that it had the matrix My in Figure 7

3In Figures 6, 7, and 8, each row corresponds to a message received in the third round.
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b 0 1 1 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1

Ao| : | A : : : : : t—1
0 0 0 0 0 0 0 1 1
1 1 1 1 1 0 0 1 1

A t—1
1 1 1 1 1 0 0 1 1
010 ---011 -1 0 --- 0 1 - 1

Gl : | A : : : : ES
0 0 0 1 1 0 0 1 1
110 -~ 011 -~ 1 0 --- 0 1 ... 1

ci| i | L] S : : LS
110 .- 011 ... 1 0 --- 0 1 ... 1
] =1 (=2 1/2] [(n=2t+1)/2]

Figure 6: Matrix My received by processor p

in the third round. It claims that it had to output O in the third round because the matrix
is such that for every a € AgUA; and every o’ € AgUA;UC), Myla][a’] = 0. By Lemma 7,
g should output O in this case because |Ag U A1| > n — 2t and [AgU A1 UCy| > n —t.
The claim of ¢ of receiving My is believable, because the processors in A; might be faulty.
Similarly, processor r claims that its first output is 1 because it had the matrix M7 in
Figure 8. By Lemma 7, r should output 1 in this case because |Ag U Ai| > n — 2¢ and
|Ag U A3 UC| > t. The claim of r of receiving M is believable, because the processors in
A might be faulty. Thus, one of ¢ and r must be correct and the other must be faulty, but
there is no way for p to know which. Thus, when correct processor p is ready to produce
its second output v, it will set v[g] and v[r| regardless of which is faulty and which is
correct. But, p must set O[g] = 0 and O[r] # 1 if ¢ is correct and O[g] # 0 and O[r] =1
if r is correct. So, p cannot avoid violating condition 3. This is a contradiction, giving us
the following theorem:

Theorem 8: If n < max{4t — 2,3t}, there can be no 3-round translation from C(n,t) to
A(n,t).

3.3.3 Lower Bounds for General-Omission to Arbitrary Translations
This section shows that, for certain fault-tolerances, no translation of a specified round-

complexity exists from G(n,t) to A(n,t). We begin by noting a result that follows from
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b Ao Al CO Cl
b | 0 1 1 o --- 0 0 0 1 --- 1 1
0 0 0 0 0 0 0 1 1
Ag : : : : t—1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1
4 s : I t—1
0 0 0 0 0 0 0 1 1
0 0 0 1 1 0 0 1 1
Co : : | =
0 0 0 1 1 0 0 1 1
1 0 0 1 1 0 0 1 1
. . n—2t+1
C1 : : : : : : : : : [T+J
110 --- 0 1 ... 1 0 --- 0 1 ... 1
1 t—1 t—1 [(n—2t+1)/2] [(n—2t+1)/2]
Figure 7: Matrix M received by processor g € Ay, forcing it to receive 0
b AO Al Co C'1
blol1 --- 110 ---0 0 --- 0 1 ... 1 1
1 1 1 1 1 0 0 1 1
Ay s : S t—1
1 1 1 1 1 0 0 1 1
1 1 1 1 1 0 0 1 1
Ay s : L t—1
1 1 1 1 1 0 0 1 1
0 0 0 1 1 0 0 1 1
Co : : P | =
0 0 0 1 1 0 0 1 1
1 0 0 1 1 0 0 1 1
Ci| @] S : : : : : ln_zzﬁj
1lo -0l 1 -1 0 --- 0 1 ... 1
1 t—1 t—1 [(n—=2t4+1)/2] [(n—2t+1)/2]

Figure 8: Matrix Mjreceived by processor r € Aj, forcing it to receive 1
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considering the classical problem of Byzantine Agreement. Hadzilacos [14] solved this
problem in systems with general omission failures for any n > ¢. As mentioned in Sec-
tion 3.3.2, Lamport et al. [19] showed that it cannot be solved in a system with arbitrary
failures if n < 3¢; thus, the minimum fault-tolerance of a translation from G(n,t) to A(n,t)
is n > 3t.

The balance of this section deals with systems for which translations are possible (i.e.,
when n > 3t) and explores their round-complexity. It shows lower-bound results for 1- and
2-round translations. In particular, it shows the following lower-bound results: there can
be no 1-round translation if ¢ > 0, and there can be no 2-round translation if 3t < n < 4¢;

The proof that there can be no 1-round translation from G(n,t) to A(n,t) is similar to
the proof that there can be no 1-round translation from C(n,t) to A(n,t) in Section 3.3.2.1
and is omitted.

The following proves that there can be no 2-round translation from G(n,t) to A(n,t)
if 3t < n < 4t. As in Section 3.3.1, the proof considers a problem that can be solved in the
presence of general omission failures such that correct processor produce their first output
in the first round. It then shows that there is no full-information protocol that solves the
problem such that correct processors produce their first output by the second round.

We assume that Z = {0,1} and O = {0,1,f} U ({0,1, f})". The problem has the
following specification Y. Let b be a distinguished processor (the broadcaster).

1. If b is correct and its first input is v, then the first output of all correct processors
must be equal to v.

2. If the first outputs of two correct processors are different, then one of the two outputs
is equal to f.

3. The second output of every correct processor g is a vector of size n. If the first
output of correct processor p is equal to v, then second the output of every correct
processor ¢ is such that such that O(2,q)[p] = v.

The problem requires that the first outputs of correct processors be equal to b’s first
input if b is correct. It also requires correct processors to relay their first output to every
other processor. Note that specification Yo puts fewer restrictions than specification 1
on the behavior of correct processors. Intuitively, Yo requires that the outputs of correct
processors represent of the general-omission behavior of faulty processor. On the other
hand, ¥ requires that the outputs of correct processors represent the crash behavior of
faulty processor. This explains why a 2- or 3-round translation from crash to arbitrary
failures can have lower fault-tolerance than a translation with the same round-complexity
from general omission to arbitrary failures.

A simple protocol that solves Yo in the presence of general omission failures is the
following: In the first round, b sends its initial input (either 0 or 1) to all other processors.
At the end of the first round, every processor outputs the value it received from b, or f if
it received no message from b. In the second round, all processors send their first output
to all other processors. At the end of the second round, every correct processor p outputs
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b Ao Al Co 01
|0| 0O --- 0 | 1 --- 1 | 0 --- 0 | 1 .-~ 1 |
1 t—1 t—1 [(n—2t+1)/2] [(n—2t+1)/2]

Figure 9: Vector received by processor p in round 2

a vector v such that v[g] is equal to the message received from g, or f if it received no
message from ¢ in the second round. In subsequent rounds, processor do not produce any
output. Note that, in this solution, processors produce their first output in round 1 and
their second output in round 2.

The results proven below exploit the fact that, in many cases, the correct processors
are uncertain as to which processors are faulty. To maintain as much uncertainty for as
long as possible, the construction of all histories given below assume that all processors
(even faulty ones) behave correctly unless otherwise noted.

We will prove that there is no full-information protocol that solves Yo in the presence
of t arbitrary failures, with 3t < n < 4¢, such that correct processors produce their first
output before round 3. The proof is by contradiction.

Consider any execution of a full-information protocol II;. We will only concentrate
on the message exchanges relating to the first input of b. Since II; is a full-information
protocol, b sends its initial state and its first input to all processors in the first round of
the execution. In the second round, each correct processor echoes the messages it received
to all others. Let v, be the vector of echoed messages that p receives in the second round,
where vp[g] is the one received from processor q.

Before proceeding with the proof, we prove a lemmas for any execution of II;. The
lemma will be used in the proof below.

Lemma 9: Consider any set of processors G such that b € G and |G| > n—t. Ifa
processor p € G receives m € {0,1} from b in the first round and then has vy[q] = m for
all g € G at the end of the second round, then p must output m at the end of the second
round.

Proof:  This is because, as far as p can tell, all processors in G (including b) are correct
and b sent m in the first round (any faulty processors would be in G = P — G) and, by
condition 1 above, p must output m. In other words, there exists a history H such that
b is correct in H, and p’s state in the second round of the execution is the same as its
state in the second round of H, so p’s output in the second round should be identical to
its output in the second round of H. O

Now, we can use Lemma 9 to prove that there is no full-information protocol that
solves Yo such that correct processors produce their first outputs by round 2.
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b AO A1 Co C’1
|0| 0O --- 0 | 0 --- 0 | 0 --- 0 | 1 .-~ 1 |
1 t—1 t—1 [(n—2t+1)/2] [(n—2t+1)/2]

Figure 10: Vector received by processors in Ag

b AO Al C() Cvl
|0| 1 ... 1 | 1 ... 1 | 0O --- 0 | 1 ... 1
1 t-1 t—1  [(n—2t+1)/2] [(n—2t+1)/2]

Figure 11: Vector received by processors in A

Consider now the following execution of the system. Let Cy,C1, Ag, A1 be a parti-
tion of P — {b} such that |Ag| = |A1] = ¢t — 1, |Co| = [(n— (2t +1))/2], and |Cy| =
[(n — (2t +1))/2].

Let p be a processor in A;. Assume that at the end of the second round, vp[g] = 0 for
all ¢ € {b} U A9 UC) and vplq] =1 for all ¢ € A; U C1. In the third round, processors in
Ag claim to have received the vector shown in Figure 10 at the end of the second round,
and processors in A claim to have received the vector shown in Figure 11 at the end of
the second round.

Now we will consider two histories Hy and H;y of the system such that p’s state in the
two histories is the same as in the execution described above. Also, Hy and H; are chosen
so that there are two processors rg and 71 such that for each 7 € {0,1}, the second output
of p in H; should be such that O(2,p)[r;] = 7. In other words, the vector that p outputs
in the second round of Hy is such that O(2,p)[rg] = 0 and the vector that p outputs in
the second round of Hj is such that O(2,p)[ri] = 1. Since the states of p are the same in
the execution describe above and in Hy and Hj, it follows that in the execution described
above p’s second output should be such O(2,ry) = 0 and O(2,71) = 1. This will be a
violation of the condition 3.

In Hy, b and A; are faulty. In the first round of Hy, b sends O to all processors in
{b}UAyUC) and 1 to processors in A; UC;. In the second round, all processors correctly
relay to p the message they received from b. Thus, the vector of messages that p receives
is shown in Figure 9. In the second round, processors in {b} U A; incorrectly relay to
processors in Ag the value they received from b in the first round; they claim that they
received O from b in the first round. This is shown in Figure 10. Since processors in Ag
are correct and receive n — t messages with value O at the end of the second round, they
should output 0 at that time (by Lemma 9). By the problem’s specification, p’s second
output should be such that O(2,ry) = 0 for any processor ry € Ay.
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In Hj, b and Ay are faulty. In the first round of Hj, b sends O to all processors in
{b}UAyUC), and 1 to processors in A; UC1. In the second round, all processors correctly
relay to p the message they received from b. The vector of messages that p receives is shown
in Figure 9. In the second round, processors in {b} U Ay incorrectly relay to processors in
Aj the value they received from b in the first round; they claim that they received 1 from
b in the first round. This is shown in Figure 11. Since processors in A; are correct and
receive n — t messages with value 1 at the end of the second round, they should output 1
at that time (by Lemma 9). By the problem’s specification, p’s second output should be
such that O(2,r1) = 1 for any processor r; € Aj.

So, in the execution we are considering, p’s second output should be such that O(2, p)[r¢]
0 for every processor rg € Ag and O(2,p)[r1] = 1 for every processor in 71 € A;. Thisis a
clear violation of the problem specification.

Theorem 10: If n < max{4t — 1,3t}, there can be no 2-round translation from C(n,t)
to A(n,t).

This theorem shows that the 2-round translation of Neiger and Toueg [23] from general
omission to arbitrary failures is optimal. To be accurate, their translation is correct if
n > 4t; it can be easily modified to work for n > 4¢.

3.4 Limitations

This section shows that the definitions of input/output specifications are too strong. For
a particular choice of B(n,t) and S(n,t), we show that there are problems that have
solutions in B(n,t) but admit no solutions in S(n,t). It follows that no solution of these
problems in B(n,t) can be translated into a solution in S(n,t).

The impossibility results rely on the fact that input/output specifications can specify
problems that refer to the time-complexity of a solution. For each of the problems 3; used
in the lower-bound proofs of the previous section, let z; be the lower bound on the round-
complexity of a translation from B(n,t) to S(n,t) that correctly translates a protocol that
solves ¥;. Let X! be a problem obtained from ¥; by adding the constraint that the first
output be produced before round z;. It follows from the impossibility proofs that ¥ does
not have any solution in S(n,t). Note that ¥ is an input/output specification.

To circumvent the impossibility results, we will restrict the class of specifications we
consider to input/output specifications that do not have requirements on the time com-
plexity of the solution. We do this by modifying the definitions of Section 2.6 to account
only for input/output relations. Consider history H = (II,Q,1,0,5,R).

A input/output specification requires that the output be a function of the inputs and
puts no restrictions on when these outputs are produced.

VH, H[(S(H)AVp € P[(I(p),O(p)) = (I'(p), O'(p))]A
Correct(H') C Correct(H)) = X(H')].
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Informally, this says that a problem specification can specify the relation between inputs
and outputs but cannot specify when outputs are produced.

We also define failure-insensitive specifications similarly. These are input/output spec-
ifications ¥ that do not depend on the behavior of the faulty processors:

VH, H[(R(H) A Vp € Correct(H')[(1(p),O0(p)) = (I'(p), 0'(p))]) = S(H)].

These definitions guarantee that a problem specification does not depend on how fast an
output is produced because they only refer to relation between inputs and outputs without
putting any restrictions on the rounds in which they occur.

In the remainder of the dissertation, input/output specifications will refer to specifica-
tions as defined in this section.
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Chapter 4

Translations for Synchronous Systems: Upper

Bounds

Chapter 3 gave a general definition of translations and proved lower-bounds on the round-
complexity of such translations in synchronous systems. This chapter presents upper-
bound results by exhibiting specific translations in some failure models. To that end,
it presents a restricted definition of translations in synchronous systems. The restricted
definition is used elsewhere in the literature [2,3,23]; it is modified for our system model.
This definition is then used to develop the specific translations between various failure
models. These translations have round-complexities that match some of the lower-bounds
proved in Chapter 3.

4.1 Phase-Based Translations

The translations developed in this chapter are for synchronous systems. Recall that com-
munication proceeds in a sequence of rounds in these systems. In each round, processors
receive inputs, send messages, receive messages, update states and produce outputs in
that order. Phase-based translations replace every round of the source protocol by a fixed
number of rounds in the object protocol, called a phase.

Phase-based translations translate a protocol I}, that solves specification ¥ in B(n,t)
into a protocol Il that solves ¥ in a system S(n,t) with more severe failures. Each round of
I, is simulated by z rounds in Il;, then round 7 is simulated by rounds z(i—1)+1 through
z1 of II;. The state s of a processor executing a translated protocol IIy = 7 (II},) has two
components, s = (ss,cs), called the simulated state and the control state, respectively.
The simulated state ss corresponds to the state of a processor running II},. If a processor
running Il is in state s = (ss, cs), then let S(s) denote the simulated state ss. II5 updates
the simulated state only at the end of the z rounds that make up each phase.

All the translations developed in this chapter require that processors running Il update
the simulated state using the state transition function of II. Also, the first round of
each phase, processors running I, use message function of II;. So, there is a direct
correspondence between the source and object protocols. The code of the object protocol
will contain calls to the state transition function and the output function of the source

35



protocol. For each translation defined, we will specify what part of a processor’s state is
the simulated state.

Translation function T translates from B(n,t) to S(n,t) in z rounds (or is a z-round
translation from B(n,t) to S(n,t)) if there is a corresponding history simulation function
‘H with the following property: given any protocol Il and any history Hs of IIy = 7 (II},)
running in S(n,t), H maps H; into a corresponding simulated history Hy, = H(Hs) of IIy,
running in B(n,t), where z rounds in Hy simulate each round of Hy. It is not difficult to
prove that z is the round-complexity of the phase-based translation. Formally, H is such
that, for any protocol II}, and any history Hy = (Ils, Ts, Qs, Is, Os, Ss, Rs) of Iy = T (II},)
running in S(n,t), the following hold:

(a) Vp € P[(Ig, (p), Oy, (P)) = (Iyy, (P), Og, (P))],

(b) Hy, = H(H;) = (I, Tc, Qe, I, Oc, Se, Re) is a history of 1Ty, running in B(n, ),
(c) Correct(Hy) C Correct(Hy),

(d) Vi € ZVp € P[S(Qn(2(i — 1) + 1,p)) = Qc(i, p)]-

Condition (a) states that all processors have the same inputs and outputs in H;, and Hs.
Condition (c) states that the translation preserves the correctness of processors. That
is, any processor correct in Hg is also correct in the simulated history Hy. However,
processors faulty in Hg may be correct in Hy,. In fact, most translation techniques mask
minor failures, typically by using redundant communication. Condition (d) states that
the states of all processors at the beginning of round ¢ of Hy, are correctly simulated at the
beginning of corresponding phase of Hy. The definition above is for a uniform translation.!
If conditions (a)—(d) hold, then Hy strongly simulates Hy,.

Translation 7 is a non-uniform translation if conditions (a) and (d) above are replaced

with the following conditions:

(b') Vp € Correct(Hy)[(Ix, (p), O, (p)) = (I, (p), Ogy, (P))]-
(e') Vi € ZVp € Correct(H;)[S(Qp(z(: — 1) + 1,p)) = Q.(4,p)]-

These new conditions state that the states, inputs, and outputs of the correct processors
at the beginning of round ¢ of Hy, are correctly simulated at the beginning of corresponding
phase of Hy. If T is a non-uniform translation, then Hy simulates Hy,.

We can describe how translations can be used to generate solutions to problems that
tolerate severe failures. Let 7 be a translation from B(n,t) to S(n,t) and let Il be
a protocol that solves some input/output specification ¥. We would like to prove that
Iy = T (I1},) also solves X.

This is guaranteed by the following two theorems. The proof of the two theorems is
almost identical, so we prove only the second.

Tt will be shown that this definition and the one for non-uniform translations correspond to the
definitions given in Section 3.2.
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Theorem 11: Let II, be a protocol that solves input/output specification ¥ in system
B(n,t). If T is a uniform translation from system B(n,t) to system S(n,t), then protocol
Iy = T(IIy,) solves ¥ in system S(n,t).

Theorem 12: Let II, be a protocol that solves failure-insensitive input/output specifica-
tion X in system B(n,t). If T is a non-uniform translation from system B(n,t) to system
S(n,t), then protocol IIy = T (Il) solves ¥ in system S(n,t).

Proof: Let Hy be a history of Il running in S(n,t). It is necessary to show that Hy satis-
fies ¥. Consider now Hy, = H (Hs) = (I}, Ty, Qp, Ip, Ob, Sb,y Rb), where H is the history simu-
lation function for 7. By condition (b) above, Hy, is a history of II}, running in B(n,t). Be-
cause IIy, solves X, Hy, satisfies ¥. By condition (b'), Vp € Correct(Hy)[(In, (p), On, () =
(In,(p), On,(p))]. Furthermore, Correct(Hs) C Correct(Hy) by condition (c) above. To-
gether with the fact that ¥ is a failure-insensitive input/output specification, these facts
imply that Hg satisfies Y, as desired. O

In the translations developed in this chapter, the inputs and outputs will not be mod-
eled. This is done to simplify the exposition. Since there is no mention of inputs and
outputs, the inputs and outputs will not be part of the description of histories. A history
will have the form H = (II,Q,S,R). Therefore, the proof obligation for the correctness of
non-uniform translations reduces to:

1. Hy = H(Hs) = (I, Qp, Sty Rp) is a history of II}, running in B(n,t),
2. Correct(Hs) C Correct(Hy), and
3. Vi € ZVp € Correct(Hs)[S(Qs(z(i — 1) + 1,p)) = Qp(¢,p)]-

All translations can be modified to handle inputs and outputs. For instance, object proto-
cols can be modified so that processors calculate their outputs using the output function
of the source protocol with the simulated state as the appropriate parameter. Similarly,
the object protocols can be modified to handle inputs by encoding inputs in the states.
It would be simple, but tedious, to make the necessary modifications for that. Note that
since states are correctly simulated, input/output specifications will be satisfied by the
object protocol if the necessary modifications are done.

4.2 Translations from Crash to Send Omissions

Neiger and Toueg [23] showed there can be no uniform 1-round translation from crash
to send-omission failures. They then gave a uniform 2-round translation from crash to
send-omission failures that required only n > ¢. Thus, this translation is optimal with
respect to both fault-tolerance and round-complexity.

Their arguments are readily applicable to show that there can be no non-uniform 1-
round translation from crash to send-omission failures. Since every uniform translation
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is also a non-uniform translation, their translation is also optimal (with respect to fault-
tolerance and round-complexity) for non-uniform translations as well.

4.3 Translations from Crash to General Omissions

Neiger and Toueg [23] gave a uniform 2-round translation from crash to general omission
failures that requires n > 2¢. They also showed that any uniform translation from crash to
general omission failures requires n > 2¢t. Because they had shown that there could be no
1-round translation from crash to send-omission failures, there can obviously be no 1-round
translation to the more severe general omission failures. Thus, their translation is optimal
for uniform translations with respect to both round-complexity and fault-tolerance. This
section explores non-uniform translations from crash to general omission failures.

Section 4.3.1 below presents a hierarchy of non-uniform translations, only the first
of which requires n > 2¢. These vary with respect to their fault-tolerance and round-
complexity. The results of Section 3.3.1 show that each translation in the hierarchy is
optimal in the sense that it uses the minimum number of rounds necessary for a given
fault-tolerance. Together these results show a tight trade-off between the two measures.

The translations are parameterized by n and ¢; specifically, each translation requires
z(n,t) rounds to simulate one round, where z(n,t) = [t/(n —t)| + [t/(n — t)] + 1. Note
that there can be no translation from crash to general omission failures with round-
complexity equal to z(n,t) — 1. In the cases where n > 2¢, z(n,t) = [¢t/(n—1t)] +
[t/(n —t)]+1=0+4+1+1 = 2. This gives a translation with exactly the round-complexity
of that of Neiger and Toueg: 2 rounds. Note that the larger the ratio t/(n — t) (i.e., the
more failures), the higher the round-complexity.

4.3.1 Specification of the Translations

A canonical translation (with z as parameter) is given in Figure 12. Given a protcol II.
with message-function u. and state-function §., the figure shows the code for protocol
I, = T(IL;). Protocol II, tolerates general omission failures. Note that protocol II, is
not in the standard form. Processors do not send messages to all other processors in II.
This is done to simplify the exposition and does not affect the applicability of the results.

In each phase, each processor maintains in msgs the array of messages for that phase
of which it is aware; initially, it is aware only of its own message. During the z rounds of
a phase, processors exchange these arrays and other information; they use these arrays to
decide on the messages whose receipt they simulate at the end of a phase (see below for
more details). This redundant communication is needed to mask the more severe general
omission failures and to make it appear as if only crash failures occur. In addition to the
array msgs, processors maintain auxiliary variables to keep track of the failures in the
system. These include the accuse array and the set faulty set. The set faulty contains all
processors that a processor believe to be faulty. For a processor g, element accuse[q] of
the accuse array of processor p contains the processors that sent messages to p accusing ¢

38



/* g is tolerant of general omission failures */

state = initial state;

faulty = 0;

foreach g € P
accuse[q] = 0;

for : =1 to oo do
foreach ¢ € P — {p} /* begin phase ¢ */
msgs[q] = L;
msgs [P] = Hmc (i,p, State);

for j=1to z do
send [msgs, faulty] to P — faulty; /* begin round 5 */
receive [msgs,, faulty | from each q € P;

foreach q € P
if did not receive from ¢ then

Add q to faulty;
/* middle of round 7 */
foreach q € P — faulty

accuse[q] = accuse[q] U {r € P — faulty | q € faulty,};

foreach q € P — faulty
if (Jaccuselq] U faulty, U faulty| > t) then
Add q to faulty;

foreach q € P — faulty and r € P /* get relayed messages */
if msgs[r] = L and msgs [r] # L then

msgs[r] = msgsq[r];

rcvd = msgs;
state = (1, p, rcvd)

Figure 12: Protocol Il = T (Il;) as executed by processor p
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of being faulty.

Consider a message to be sent by processor p to processor ¢ in phase i. In a system
with general omission failures, if ¢ does not receive this message in phase ¢, then either p
omitted to send or g omitted to receive. To make general omission failures appear as crash
failures, the faulty processor must appear to crash by the end of phase . The translation
enforces the following informal properties:

1. [FAULTY-RECIPIENT| If ¢ does not receive p’s message in phase ¢ and p is a correct
processor, then no correct processor will receive a message from g after phase .

2. [FAULTY-SENDER] If ¢ does not receive p’s message in phase ¢ and q is correct, then
no correct processor will receive a message from p after phase 1.

In either case, the faulty processor appears to crash in phase 7 because no correct processor
will receive from it after that phase. Note that if p and ¢ are faulty and g does not receive
p’s a message from p at the end of a phase, then it will appear to the correct processors
that (at least) one of them crashed.

Each processor keeps track of the set of processors it considers to be faulty in the
variable faulty, which is initially empty. (Lemma 13 will show that all processors in the
faulty set of a correct processor are indeed faulty.) A processor appends its set faulty to
every message that it sends; it disregards messages received directly from processors in
faulty and does not send messages to those processors. However, a processor may simulate
(at the end of a phase) the receipt of messages from processors in faulty if these messages
are relayed to it by other processors.

Each processor p maintains its set faulty as follows. It adds to it any other processor
from which it fails to receive a message. In addition, it maintains for each processor ¢ a set
accuse|q|, which is initially empty. This contains the set of other processors that “accuse”
q of being faulty (i.e., that sent p a faulty set containing g¢). If this set gets sufficiently
large, then p adds ¢ to faulty. Also, p will add q to faulty if it believes that ¢ is “accusing”
too many other processors. Specifically, if the union of the set p already believes to be
faulty, the set g claims is faulty, and the set accusing ¢ of being faulty has size greater
than ¢, then p and ¢ cannot both be correct and p places g in its set faulty. Note that, if ¢
is in p’s faulty set at the end of some phase, then p will be in ¢’s faulty set by the middle
of the next phase; this is because a processor refuses to send to members of its faulty set,
which is initially empty.

At the beginning of each phase, the array msgs of a processor is initially all L (except
for its own entry). Whenever a processor receives such an array from a processor not in
its set faulty, it combines the two arrays, removing | entries when possible. At the end
of round 2z, it sets rcvd to msgs and thus simulates the receipt of messages in the array at
that time.
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4.3.2 The History Simulation Function

Recall that any non-uniform translation 7 from C(n,t) to G(n,t) must have a corre-
sponding history simulation function H. # must map any history Hg to a history H
that satisfies conditions 1-3 of Section 4.1. This section describes a canonical history
simulation function that is required to prove that the canonical translation given above is
correct. As above, we use z to refer to the translation’s round-complexity.

In all cases, define S(s), the simulated state of a processor that is in state s, to be its
value of state. Together with the definition of H below, this will ensure the satisfaction of
conditions 1-3 of the definition of non-uniform translations in Section 4.1.

Given history Hy = (Il,,Qo, S0, Ro), we construct He = H(H;) so that any processor
p € Faulty(H.) fails by crashing. Specifically, it crashes in round ¢, of H., where i, is
defined as follows. At any point in H, consider the following directed graph G = (V, E).
The set V' of vertices is the set P of processors. There is a directed edge (p,q) € E if q has
p ¢ faulty. If (p,q) € E, we write p — q. Let 5 be the transitive and reflexive closure of
—. Now, let i,, be the first phase 7 such that, at the end of the first round of phase 7 + 1,
p = ¢ holds for no ¢q € Correct(Hg). If there is no such phase, let i, = co and, as we will
show, p € Correct(H.). Note that, if p = g does not hold in a given round, then g cannot
receive a message from ¢, directly or indirectly, in any subsequent round.

We define H, = (I, Q., S¢, Rc) as follows. Consider first the case where i < 4,:

e set Q.(7,p) to be p’s value of state at the beginning of phase i;

e for each ¢ € P, set S¢(i,p,q) to be the message sent by p in phase i (note that
Sc(i,p,Q) = Hm. (iapa QC(Z,p))bszgure 12)7

e for each q € P, set R¢(¢,p,q) to be p’s value for rcvd[q] at the end of phase 1.

Note that, for all rounds before i), the behavior of p in H. corresponds exactly to the
simulation being performed in Hg. Beginning in round 1,, its behavior is instead specified
as follows. Set Q.(ip,p) to be p’s value of state at the beginning of phase i,. For each ¢ € P,
set Sc(ip, P, q) = Re(ip,q,p) and Re(ip,p,q) = L. If i > iy, then set Q.(¢,p) = Q.(ip,p) and,
for each ¢ € P, S.(¢,p,q9) = Rc(i,p,q) = L.

The following section uses this history simulation function to show that 7 correctly
translates from C(n,t) to G(n,t).

4.3.3 Proof of Correctness

This section proves various properties about translation 7 and history simulation function
H, ending with a proof of correctness of the translation. We begin by showing that no
correct processor ever considers another correct processor to be faulty:

Lemma 13: In the erecutions of I, no correct processor ever belongs to the faulty set
of another correct processor.
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Proof:  The proof is by induction on the number ¢ of rounds executed. The base case
(i = 0) is trivial because all processors have empty faulty sets initially. Now assume that
the lemma holds through round . Suppose that some correct processor p adds another
processor g to its faulty set in round ¢ + 1. This can happen for one of two reasons:

e p does not receive a message from g. In this case, ¢ must have omitted to send a
message and is thus faulty.

e p found |accuse[q] U faulty, U faulty| > t. Since there are only ¢ faulty processors
and, by induction, all elements of p’s set faulty are faulty, there must be at least one
correct processor 7 € accuselq] U faulty,. If r € accuse|q], then g was in r’s faulty
at the end of round i, so g is faulty by induction. If r € faulty,, then r was in ¢’s
faulty at the end of round ¢ and, again by induction, ¢ is faulty.

In all cases, g is faulty, so the lemma holds. O

The following is a corollary to Lemma 13
Corollary 14: Ifp € Correct(Hg), then i, = co.

Proof: By Lemma 13, no correct processor g ever has p € faulty. By the definition
of —, this means that p — ¢ is always true for all ¢ € Correct(Hg). This implies that
1p = 0O. O

Corollary 14 implies that a correct processor’s behavior in H. always corresponds to
the simulation being performed in H, (see above). The behavior of faulty processors need
not do so because the translation is non-uniform.

The following lemma is the core of the correctness of proof of the translation. It shows
that, if there are failures sufficient to prevent two processors from communicating in a
given phase, then the faulty sets of all processors will cause a “partition” to occur in the
next phase. At least one of the two processors is faulty and will be separated from the
correct processors; to them, it will appear to crash. As we will see, this is sufficient to
simulate crash failures.

Lemma 15 (Partition Lemma): For any two processors p and q, if q¢ does not stimulate
the receipt of p’s message at the end of phase i, then there is a partition of P into two

sets C and F such that
e all correct processors are in C,
e p and q are not both in C,
e cveryr € C has F C faulty, by the end of the first round of phase i + 1, and

o ecvery s € F' has C C faulty, by the end of the first round of phase 1 + 1.
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Proof: For the remainder of this proof, round numbers will be measured from the
beginning of phase i; when we talk about a round k we mean the kth round of phase 1.
Thus, the first round of phase <+ 1 is numbered z+1. Let M; be the set of processors that
have msgs[p] # L at the end of round j; conventionally define M_1 = @ and My = {p}.
Note that, by the definition of M;, ¢ ¢ M,. Let N; = P — M;. Note that, for all j > 0,
each processor in N; has M;_; C faulty at the end of round j (if it received a message
from a processor in M;_; in round j, then it would have msgs[p] # L and be in M;
and not in N;). Consequently, each processor in M;_1 has N; C faulty by the middle of
round j + 1 (recall that processors refuse to send to processors in their faulty sets). For all
7,1 <5<z, let Lj = M; — M;_>. Informally, L; is the set of processors that learn of p’s
message for the first time in round j or round 7 — 1 of phase i. We consider the following
two cases:

e |Lj| >n—tforall j,1<j<z Recall that z= [t/(n—1t)] +[t/(n—t)]+ 1. If¢
is a multiple of n — ¢, then z = 2¢/(n — t) + 1 is odd, and we have

|MZ| = |L1|+|L3|+"'+|Lz—2|+|LZ|
> ((z+1)/2)(n 1) (|Lil 2n—1)
= (/(n-t)+1)(n—1)

This means that all processors, and in particular ¢, belong to M,; this is a contra-
diction.

If ¢ is not a multiple of n — ¢, z = 2 [t/(n — )| + 2 is even, and we have

|M—1| = [La|+ |L3|+ -+ [L.-1]
> (2/2)(n—1t)
= ([t/(n=t)| +1)(n—1)
= [n/(n=1t)] (n—1)
>t (l(e+b)/a] -a>bifa>0).

Since g does not simulate the receipt of p’s message at the end of first phase, it does
not receive any messages from any processor in M,_; in round z. Thus, ¢ will add
more than ¢ processors (all of M,_1) to faulty, at the end of phase :. At least one of
these is correct, so, by Lemma 13, ¢ is faulty. In the first round of phase ¢ 4+ 1, each
processor 7 will either receive nothing from g or will receive faulty,, which contains
more than t elements. In either case, ¢ will be added to faulty,. Also, ¢ will add
to faulty, by round z because it will find |accuse[r]U faulty, U faulty| > |faulty| > t.
Thus, the desired partition can be (C, F) = (P — {q},{q})-

e |[Lj| < n—tfor some j, 1 < j < z. Recall that, at the end of round j — 1,
every processor in Nj_; has M;_o C faulty. Similarly, all processors in N; have
M;_1 C faulty at the end of round j. Thus, at the end of round j+1, each processor
P € Nj_1 will have every processor p € N; either in faulty; (if p receives no message
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from p in round j+1) or in accusey[r| for every processor r € M;_; (if it does). This
means that, at that time, processors in N;_; will have |accuse[r]U faulty, U faulty| >
|accuse[r| U faulty| > |N; U Mj_o| = |P — Lj| > n — (n —t) =t for every processor
r € M;_1. Thus, all processors in N;j_; will have M;_1 C faulty by the end of
round j + 1.

Now consider a processor » € M;_1. As noted earlier, it has N; C faulty, by the
middle of round j + 1. Consider now some processor s € M; — M;_1 C N;_1.
Because it is in Nj_1, s will have M;_o C faulty, by the end of round 7 — 1. Thus, in
round j+1, r finds |accuse[s|U faulty , U faulty| > |faulty U faulty| > |M;—_2 UN;| >t
(as above) and thus adds s to faulty by that time. This means that, by the end
of round j + 1, all processors in M;_; have N; U (M; — M;_1) = Nj_1 C faulty.
By Lemma 13, all correct processors are either in M;_; or Nj_1. Let C be the one
of them containing the correct processors and let F' be the other (its complement).
Note that since p € M;_; and ¢ € N;_1, p and q are in the two different sides of the
partition. Then (C, F') is desired partition.

The desired partition exists in either case, completing the proof. O

The two desired properties are corollaries to the Partition Lemma:

Corollary 16 (Faulty-Recipient): Ifq does not receive p’s message in phase i and p is
a correct processor, then mo correct processor will receive a message from q after phase 1.

Proof:  Suppose that ¢ does not receive p’s message in phase 7 and that p is a correct
processor. Since p is correct, the partition lemma implies that there is a partition of P
into (C, F') such that p € C, g € F, all the correct processors are in C, and each processor
in C has F' C faulty by the end of the first round of phase 7+ + 1. This means that, in
phase ¢+ 1 and thereafter, all correct processors will refuse messages from g and from any
processor that might relay a message from gq. O

Corollary 17 (Faulty-Sender): If g does not receive p’s message in phase ¢ and q is
correct, then no correct processor will receive a message from p after phase 1.

Proof:  Similar to the proof of Corollary 16. O

We can use the Partition Lemma to show that, in Hg, communication always proceeds
correctly between any two processors that have not yet “crashed”.

Lemma 18: Ifi < min{iy,i,} and p sends m at the beginning of phase i, then q simulates
the receipt of m from p at the end of that phase.

Proof:  Suppose for a contradiction that ¢ does not simulate the receipt of m at the end
of phase ¢. Then, by the Partition Lemma, there is a partition of P into C' and F' such
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that Correct(Hg) C C, p and g are not both in C, every » € C has F' C faulty, by the end
of the first round of phase 7 + 1, and every s € F has C C faulty, by the end of the first
round of phase 7 + 1. Without loss of generality, suppose that p € F. It is clear that, if
p = 7 at the end of the first round of phase i + 1, then r € F'. Since Correct (Hg) C C and
since C' and F are disjoint, this means that p — r for no r € Correct(Hg). Thus, i, < 1,
giving a contradiction. O

We can now show that any processor p behaves correctly in H. until round ¢:
Lemma 19: Ifi < iy, in He, then p € Correct(H,1).

Proof:  The proof is by induction on :. The base case is straightforward. By definition,
Correct(H.,0) = P. Assume that, for all &k < i, p € Correct(H.,k). It remains only to
show that p behaves correctly in round ¢ itself.

We first show that p sends correctly in round ¢ of H.. Let g be any processor in P. By
the definition of S, S¢(z,p, ¢) is the message m that p sent in the first round of phase 7. By
the definition of Q., Q.(7,p) is p’s value of state at the beginning of phase :. By Figure 12,
it is clear that m = p._(1,p, state), so S¢(z,p,q) = pr.(%,p,Qc(2,p)), as desired.

We next see that p receives correctly in round ¢ of H.. Let ¢ be any processor in P.
By the definition of R¢, Rc(,p,q) is p’s value of rcvd|g| at the end of phase i. Consider
now three cases:

e i < iy. By the definition of S¢, Sc(%,¢,p) is the message m that g sent in the first
round of phase 7. By Lemma 18, this is indeed the message that p received in that
round, so R¢(%,p,q) = Sc(¢,q,p), as desired.

e i =1i,. In this case, S¢(¢,¢,p) = Re(4,p,q) by definition.

e i > i,. By the definition of S¢, Sc(7,9,p) = L. We must verify that R.(7,p,q) is
also L. Suppose not. Then ¢’s phase ¢ message was somehow forwarded to p. By
Figure 12, this means that ¢ = p at the end of the first round of phase 7. Since
i < ip, there is some r € Correct(Hg) such that p % 7 at this time. This implies that

g7, giving i < iq, a contradiction. We conclude that R¢(Z,p,q) = L, as desired.

Finally, we see that p makes a correct state transition in round ¢ of H.. We must verify
that Q.(¢ + 1,p) = éx.(¢,p,Re(?,p)). Since i < iy, i+ 1 < i,. By the definition of Q,
Q.(7 + 1,p) is p’s value of state at the beginning of phase 7 + 1. By the definition of R,
Re(Z,p) is p’s value of rcvd at the end of phase 7. From Figure 12, state = é,_(1, p, rcvd),
so Q(1+ 1,p) = 0x.(z,p,R(z,p)), as desired. a

We can now show the following corollary:

Corollary 20: Correct(Hg) C Correct(H,).
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Proof: Consider some processor p in Correct(Hg). By Corollary 14, i, = co. By
Lemma 19, p € Correct(H,1) for all ¢ < 4,. This implies that p is in Correct(H), as
desired. O

We can now show that any processor in Faulty(H,) suffers a crash failure:
Lemma 21: If p € Faulty(H.), then p commits a crash failure in round i, of He.

Proof:  Lemma 19 above implies that, if p € Faulty(H.), then i, < oo and that p €
Correct(Hg,1) for all ¢ < i,. Thus, if p € Faulty(Hc,i,), then 4, is the least ¢ such that
p € Faulty(H¢,7). We will see that p crashes in round i, of H.. Let ¢ be some processor
in P. By the definition of Sc, Sc(ip,p,q) is Re(ip, q,p). By the definition of Re, Re(ip, ¢, p)
is either L or ¢’s value of rcvd[p] at the end of phase i,. If the latter is not L, then an
inspection of Figure 12 shows that it must be the value sent by p in phase 7,, which is
pr, (ip, p, state). By the definition of Q., Q.(ip,p) is p’s value of state at the beginning of
phase i,. Thus, Sc(ip,p, q) is either L or pr, (ip,p, Qc(ip,p)). Thus, p’s sending behavior is
consistent with failure by crashing. By the definition of R¢, Re(ip,p,q) = L for all ¢ € P.

After round i, p takes no further actions. By the definitions of S and Re, Sc(Z,p,q) =
Re(%,p,q) = L for all i > i),. By the definition of Q¢, Q¢(%,p) = Q¢(ip,p) for all i > ¢,. This
conclude the proof that p commits a crash failure in round 1, of H,. O

We can now conclude that the translation is correct:

Theorem 22: Translation T is a non-uniform z-round translation from C(n,t) to G(n,t),
where z = [t/(n —t)| + [t/(n — t)] + 1. That is, the following hold for the history simu-
lation function H given above:

1. He = H(Hg) = (IL, Qc, Sc, Re) ts a history of Il running in C(n,t),
2. Correct(Hg) C Correct(H.), and
3. Vi € ZVp € Correct(Hy)[S(Qqg(2(7 — 1) + 1,p)) = Qc(%,p)].

Proof: By definition, H, is a history of II,. To prove that it is a history running in
C(n,t), it suffices to show that there are at most ¢ faulty processors and that they are
subject only to crash failures. Since there are at most ¢ faulty processors in Hg, Corol-
lary 20 implies that there are most ¢ faulty processors in H.. Lemma 21 shows that these
fail by crashing. Corollary 20 shows that Correct(Hg) C Correct(H.). Corollary 14 shows
that, if p € Correct(Hy), i, = co. Thus, the functions S and Q. are both chosen in such a
way that, if p € Correct(Hg), both S(Qg(z(i — 1) + 1,p)) and Q.(i,p) are p’s value of the
variable state at the beginning of round z(¢ — 1) + 1. This shows that conditions 1- 3 are

satisfied by H. and Hy. O
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Table 1: Summary of translations

Condition | Rounds
n > 2t 2
n > 2t 3

n > 3t/2 4

n > 3t/2 5

n > 4t/3 6

n > 4t/3 7

n>t+2 | t+1

4.3.4 Discussion

The preceding section presented a hierarchy of translations from crash to general omission
failures. These translations do not contradict an earlier impossibility result of Neiger and
Toueg [23], which held that no such translation was possible if n < 2¢ (i.e., if as many as half
the processors may fail), because that result applied to the stronger uniform translations.
A primary contribution is that non-uniform translations are possible if n < 2t.

The round-complexities of these translations are all optimal. This was shown by the
matching hierarchy of lower-bound results in Section 3.3.1. For any n and ¢, if one is
given one round fewer than the number required by the corresponding translation, then
no translation is possible. Thus, the results give a precise characterization of translations
from crash to general omission failures. Table 1 summarizes this hierarchy of translations.
The first column gives progressively weaker conditions on n and ¢; the second gives a
number of rounds that are adequate to perform the desired translation (fewer rounds may
be necessary if a stronger condition holds). In the weakest case, n = ¢+ 2, ¢ + 1 rounds
are required. Note that ¢ + 1 rounds are always sufficient, because fail-stop failures [27]
can always be simulated in ¢ + 1 rounds, and they are a more restrictive type of failure
than crash failures.

All the translations are efficient in that they generate protocols that do not require
substantially more local computation than the original protocols. In all cases, if the largest
message sent in original protocol is of size b, then the largest message sent in the translated
protocol has size O(bn).

4.4 Translations from Crash to Arbitrary Failures

Section 3.3.2 presented lower bounds on the fault-tolerance of translations from crash to
arbitrary failures. In this section, we complement those results by presenting a set of
translations from crash to arbitrary failures. Each translation in the set has a different
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round-complexity and fault-tolerance. We achieve the following results:
e We provide a 2-round translation for systems with n > max{6t — 3, 3t¢}.
e We provide a 3-round translation for systems with n > max{4t — 2, 3t¢}.

e We provide a 2-round translation for systems with n > 3t. 4-round translation. We
provide a translation if n > 3t.

By the results of Section 3.3.2, each translation has optimal round-complexity for its fault-
tolerance. We already noted in Section 3.3.2 that there is no translation if n < 3¢. Thus,
the results of this section, together with those of Section 3.3.2, completely characterize the
class of optimal translations from crash to arbitrary failures for synchronous systems.

4.4.1 A Set of Translations

All translations in the set have the same structure. After calculating its message, a
processor sends it in the first round of the phase. In subsequent rounds, all processors
echo messages on behalf of others. In addition to the message of a phase, processors
exchange some control information during a phase. A high-level overview is given in
Figure 13. Processors initialize their state and two auxiliary variables called faulty and
crashed. These are used to maintain information about the processors known to be faulty
and those considered to have crashed. Also, processor relay information about messages
they received. If p and g are two correct processors, and p receives a message m that ¢
does not receive, there must be a way for q to believe that p received m. Variable relay is
used for this.

For each round to be simulated, a processor first computes the message that it should
send (using the function pr_ ). It then sends this message, the variables faulty, crashed
and relay (described below) to all other processors. Next, it updates its variable faulty
and decides on what messages to relay. After receiving messages in the first round of a
phase, processors determine which messages can be echoed in the next round. This is done
by the function Valid (shown in Figure 15 and described below), which returns either the
message originally sent (if it it is valid to be echoed) or L (if it is not). After this,
processors execute procedure Echo (see Figure 14). Procedure Echo contains the code
for the remaining rounds of the phase and simulates the receipt of messages sent at the
beginning of a phase. The translations in the set differ in the number of echo messages
processors send in the procedure Echo. before deciding on a value. This number determines
the round-complexity of the individual translations. Recall that, with the exception of
Echo, all the translations in the set are identical. Procedure Echo acts as a filter that
constrain the behavior of the faulty processors. The following is a description of FEcho.

Depending on the desired fault-tolerance, processors decide on the number of echo
messages they send. For example, in a 4-round translation, processors send echo messages
for three rounds in Echo; these three messages and the message sent in the first round of
a phase add up to four rounds. An echo message is forwarded by a processor if it receives
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/* 11, is tolerant of arbitrary failures */

state = initial state;
faulty = 0;
crashed = (J;
relay = [L,...,1]
for : =1 to oo do
message = ir_(1,p, state); /* begin phase 7 */

send [message, crashed, faulty, relay] to all processors

/* begin round z(i — 1) +1 */
receive messages from all processors

foreach ¢ € P do
if received relay with relay[q] =m
from at least (n — 1) — ¢ processors other than g then
believe[q] = m
else
believe[g] = L

foreach ¢ € P do
if received faulty with g € faulty from at least ¢ 4+ 1 processors then
Add q to faulty;
if received faulty with q € faulty from at least n — ¢t processors then
Add q to crashed

foreach g € P
echo(q| = Valid(i,q);

Echo; /* Simulate the remainder of phase i, setting array rcvd */

state = 8x_(1,p, rcvd)

Figure 13: Protocol II, = T (Il;) as executed by processor p
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procedure FEcho
send echo to all processors

if n < 6t — 2 then
foreach ¢ € P
if |{r | r # q and received echo, with echo.[q] = m}| > (n — 1) — t then
echolg] =m
else
echolq] = L

send echo to all processors;

if n <4t — 1 then
foreach q € P
if |{r | 7 # q and received echo, with echo,[q] = m}| > (n — 1) — ¢t then
echolg] =m
tentative _relay[q] = m
else
echolq] = L
tentative _relay[q] = L
send echo to all processors

foreach q € P

if |{r | » # q and received echo, with echo,[q] = m}| > n — 2t then
revd[q] = m;
if |{r | r # q and received echo, with echo.[q] = m}| < (n — 1) — ¢ then

Add q to faulty

else
revd[q] = L;
Add g to crashed;
Add q to faulty;

if |{r | » # q and received echo, with echo,[q] = m}| > n — 3t+ 1 then
relay[qg] = m

else
relay[q] = L

if n < 4t — 1 and tentative_relay[q| # relay[q] then
relaylqg] = L

Figure 14: Echoing procedure for the translations
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function Valid(i,q) : M';

if ¢ € faulty then
return(.l)
else if : =1 then
if received m from ¢ and m = ur_(1,q,s) for some s € Q then
return(m)
else
return(l)
else if received [m, crashedy| from g and
crashedq C crashed and
Vr ¢ crashedg[believe[r] # L] then
foreach r € P do
if r € crashed, then
v[r] =1
else
v[r] = believe[r];
s = 57Tc(i - 1,q,’U);
if m = pr, (i,q,s) then
return(m)
else
return(l)
else
return(l)

Figure 15: The function Valid
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the same echo value from sufficiently many processors. At the end of a phase, a processor
changes its state (using the function &, ) based on the messages it received.

As noted above, each processor maintains certain auxiliary information: in addition
to the sets faulty and crashed mentioned above, it also maintains in the array believe the
messages from the previous phase that it considers to be “believable.” Remember that at
the end of each phase, processors simulate the receipt of a message for the phase. These
messages should look as though they were sent by processors that are subject to crash
failures. In crash behavior, a processor might send a message to some of the processors
and not to others when it crashes. This could happen for the simulated messages. If
processor p does not receive a simulated a message from processor ¢ for a phase ¢, it could
still receive a message in phase 7+ 1 claiming the receipt of message m from ¢ in phase 1.
Processor p will not believe all such claims. It would only believe r if believe[q] = m.

In every phase, processors update the sets faulty and crashed. If t + 1 processors send
a processor a set faulty with g € faulty, it adds ¢ to its own set faulty. If n — ¢t processors
send it such a set, then the processor also adds g to its set crashed.

At the end of each phase , each processor sets the array relay to contain the messages
that it can “relay” in the next phase. These include those that the processor has “received”
as well as those for which it received a sufficient number of echoes. If a message is relayed
by at least (n — 1) — ¢ processors other than its original sender, then it is considered
believable. Note that for the 4-round translation (for 3t < n < 4¢ — 1), processors set
an additional variable called tentative_relay. Remember that relay is used to set the
believe array. For the 4-round translation, an additional variable is needed. This variable
is tentative_relay. If a processor receives sufficiently many identical echoes for a given
processor it sets tentative_relay to that value. This insures the uniqueness of the values
relayed. If some correct processor receives a value from r in Echo, then no correct processor
relays a different value for r.

Processors use the function Valid (Figure 15) to determine whether or not a message
should be echoed. The function returns either the message originally sent (if the message
should be echoed) or L (if it should not) and operates as follows. Suppose that p is trying
to validate a message from g. Processor p first checks to see if g is in p’s faulty set and
returns L if it is. Otherwise, it continues. If i = 1, p checks if there is some state that
would generate the message using the message function g, . If there is no such state, the
message is not validated. If ¢+ > 1, p checks the set crashed, that it received with the
message and checks that crashed, is a subset of p’s crashed set. If crashed, is not a subset
of crashed, then the message is not validated. For any processor r ¢ crashed,, p must
have believe[r] # L (this will be proven below). At this point, p can use its believe array
to determine all the messages that ¢ should have received in phase ¢ — 1. It then uses the
state transition function §,. to determine the state in which ¢ must have begun phase «.
Finally, it checks if that state would indeed generate the message sent using the message
function pir. . If the state does not generate the message, the message is not validated.

All three translations have the following properties:

P1. Correctness. If a correct processor sends a message at the beginning of a phase, then
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all correct processors receive that message by the end of the phase. That is, if p
and q are correct and p sets message to m at the beginning of phase ¢, then ¢ has
rcvd[p] = m at the end of phase 7; furthermore, g has p ¢ faulty and p ¢ crashed at
the end of the first round of phase 7 + 1.

P2. Relay. If a correct processor receives a message at the end of a phase, then all correct
processors consider that message believable by the end of the first round of the next
phase. That is, if p and g are correct and p has rcvd[r] = m # L at the end of
phase 7 (for some r € P), then g has believe[r] = m at the end of the first round of
phase 7 + 1.

P3. Relayed Crashing. If a correct processor does not receive a message from processor
p at the end of a phase, then all correct processors consider p faulty at that time
and consider p crashed by the end of the first round of the next phase. That is, if
p and ¢ are correct and p has rcvd[r] = L at the end of phase ¢ (for some r € P),
then g has r € faulty at end of phase 7 and r € crashed at the end of the first round
of phase 7 + 1.

P4. Consistency. If a correct processor considers a message from processor p believable
(for a given phase), then no correct processor considers a different message from p
believable for that phase. That is, if ¢ and r are correct and g has believe[p] = m # L
at the end of the first round of phase ¢ 4+ 1, then, at that time, r has believe[p] €
{L,m}. Furthermore, some correct processor validated m for p in phase i; i.e. had

Valid(z,p) = m.

Next, we will prove that these properties are enough to prove the correctness of the
translations. Then, we prove that these properties hold for all three translations.

4.4.2 The History Simulation Function

Recall that any translation 7 from C(n,t) to A(n,t) must have a corresponding history
simulation function H. H must map any history H, to a history H. that satisfies condi-
tions 1-3 of Section 4.1. This section describes the history simulation functions that are
required to prove that the translations. Because this is a canonical function, we use z to
refer to the round-complexity of the translation, which can be any one of 2, 3, or 4.

In all cases, define S(s), the simulated state of a processor that is in state s, to be its
value of state. Together with the definition of H below, this will ensure the satisfaction
of condition (e’) of the definition of translation (only the states of correct processors are
important).

Given history H, = (Ila,Q., Sa,Ra), we construct H. = H(H,) so that any processor
p € Faulty(H,) fails by crashing. Specifically, it crashes in round i, of H., where phase i,
is the last phase of H, in which some correct processor sets believe[p] # L (i, = 1 if all
correct processors always have believe[p| = L). If, in each phase, some correct processor
has believe[p] # L, then set i), = co and, as we will show, p € Correct(H,).
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We define H, = (I, Q.,Sc, Rc) as follows. Consider first a processor p € Correct(H,).
Set Q.(7,p) to p’s value of state at the beginning of round z(7 — 1) + 1. For each q € P,
set S¢(7,p,q) = pr.(2,p,Qc(2,p)) and set R¢(z,p,q) to be p’s value of rcvd[q] at the end of
round zz.

Consider now a processor p € Faulty(H,). We begin by defining Q.. If i, = 1 and no
correct processor ever set believe[p| # L, then set Q.(1,p) to some state s (s can be any
legal initial state). Otherwise, if ¢ < 4, let r;;, be some correct processor that validated
m # L in phase 7 such that some correct processor had believe[p] = m for phase 7 (such a
processor must exist by Consistency and the definition of i,). In that case, set Q.(z,p) to
be the state s computed by 7;,, in validating that message (see Figure 15). If i > i, then
set Qc(i,p) = Qc(ip,p)-

Next, we define Re. If 7 > 4, then set Rc(¢,p,q) = L. If ¢ < i, and ¢ € Correct(H,),
then set R¢(?,p,q) = Sc(i,¢,p). If i < iy and ¢ € Faulty(H,), then consider the proces-
sor ri+1p (defined above) that validated a phase 7 + 1 message from p. In this case, set
Rc(%,p,q) to the value v[g| that ;11 , used to validate that message (see Figure 15).

Finally, we define S.. If ¢ € Correct(H,) or i = i,, then set S.(i,p,q) = Rec(i,q,p). If
i > iy, and q € Faulty(H,), then set S.(i,p,q) = L. If i < i, and ¢ € Faulty(H,), then let
S¢(?,p,q) = m, where m is such that some correct processor has believe[p] = m # L for
phase i (this value is unique by Consistency).

The following section uses this history simulation function to show that 7 correctly
translates from C(n,t) to A(n,t).

4.4.3 Proof of Correctness

The following lemma shows that the constructed H, satisfies condition (c) of the definition
of translation.

Lemma 23: Correct(H,) C Correct(H,.).

Proof:  Suppose that p € Correct(H,). The proof must show that p sends and receives
correctly and makes correct state transitions in every round of H,.

First, note that p sends correctly in round ¢ of H.. Since p is correct in H,, it correctly
computes m = pr_ (1, p, state; p) = pr (2,p,Qc(%,p)) = Sc(4,p,q) for all ¢ € P. Next, con-
sider R (7, p,q) for some g € P. If ¢ € Faulty(H,), then S.(7,q,p) = R¢(7,p,q) by definition.
If ¢ € Correct(H,), then, by Correctness, p has rcvd[g] = m at the end of phase 7, where
m is the message that g sent in that phase. By definition, this is S.(,q,p). In either case,
p receives correctly in round ¢ of H.. Finally, note that Q.(i + 1,p) is p’s value of state at
the end of phase . An inspection of Figure 13 shows that this is §_ (¢, p, rcvd); given the
definition of Re, this is &, (7, p,Rc(7,p)), meaning that p makes a correct state transition
in round 7 of H¢, completing the proof. O

We next show that any faulty processor p behaves correctly in H until round i,:

Lemma 24: Ifp € Faulty(H,) and i < 1,, then p € Correct(H,,1).
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Proof:  The proof is by induction on :. The base case is straightforward. By definition,
Correct(H.,0) = P. Assume that, for all £k < 7, p € Correct(H., k). It remains only to
show that p behaves correctly in round ¢ itself.

We first show that p sends correctly in round i of H.. For any q € Correct(H,),
S¢(?,p,q9) = Rc(i,q,p). We first show that this message cannot be L. If it were, then
Relayed Crashing would imply that all correct processors had p € faulty at the end
of the first round of phase ¢ + 1. This would mean that no correct processor would
validate a message from p in phase ¢ 4+ 1 and, by Consistency, all correct processors would
set believe[p] = L for that phase. This would imply that i, < ¢+ 1 (i.e., i) < 1), a
contradiction. Thus, Re¢(7,q,p) # L. If ¢ € Faulty(H,), then S.(7,p,q) = m, where some
correct processor had believe[p] = m # L for phase 7. In either case, let r;, be the
processor (given in the definition of Q.(7,p)) that validated this message. By definition,
s = Q.(i,p) is the state used by this processor in validating m. The procedure validate
ensures that m = 8,_(7,p, s), as desired.

We next see that p receives correctly in round i of H.. If ¢ € Correct(H,), then
Rc(%,p,q) = Sc(i,q,p) by definition. Otherwise, let r;41, be the processor specified (in the
definition of R.) that validated some phase ¢ + 1 message from p. In this case, R.(,p,q)
is set to be either L or r;41,’s non-L value of believe[q] for phase i. Let us consider each
case in turn:

® R.(i,p,q) = L. This means that p sets rcvd[g] = L in round ¢, and, therefore, adds
q to crashed,,. It follows that ¢ must have been in the set crashed, received by 711,
in round ¢+ 1. Since r;y1, validated p’s phase 7 + 1 message, it must have found
g in its own set crashed at that time. By Relayed Crashing, it is easy to see that
this means that no processor will validate (or, by Consistency, believe) a phase 7+ 1
message for ¢; this implies that i, < ¢. If ¢ = iy, then S.(¢,q,p) = Re(7,p, q) and we
are done. If i > ig, then S.(4,q,p) = L, and we are done.

® R.(7,p,q) # L is riy1,’s value of believe[q] for phase i. This means that i, > 4. If ¢ =
iq, then S¢(7,q,p) = Re(7,p,q) and we are done. If i < 14, then S¢(7,q,p) = believe[q]
and we are done.

Thus, in either case, p receives correctly in round 1.

Finally, we see that p makes a correct state transition in round ¢ of H,. We must verify
that Q.(¢ + 1,p) = éx.(7,p,Rc(4,p)). By definition, Q.(¢ + 1,p) is the state s computed by
the correct processor 7;41,p that validated some phase 7 4+ 1 message for p. The procedure
Valid (Figure 15) ensures that s = 0 (4, p,v), where v is the array computed by r;41,. If
q € Faulty(H,), then v[g] = R¢(7,p,q), as desired. It suffices to show that the same is true
for all ¢ € Correct(H,). Correctness, Relay, and Relayed Crashing imply that 7,41, never
has ¢ € crashed. Thus, since 7,11, validated p’s phase i message, ¢ was not in the set
crashed that p sent in the first round of that phase. This means that 7,41, set v[g] to be
its own value of believe|q| for phase i. By Correctness and Relay, this is the message that
p sent in phase 7. But R.(7,p,q) = Sc(,q,p) by the definition of R.. By the definition of s,
Se(2,4,p) = pr.(7,4,Qc(7,q)). As observed in the proof of Lemma 23, this is the message
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that ¢ sent in the first round of phase i. Thus, v[gq] = Rc(¢,p,q), as desired, completing
the proof. O

We can now show that any processor in Faulty(H,) suffers a crash failure:
Lemma 25: If p € Faulty(H.), then p commits a crash failure in round i, of He.

Proof:  Lemma 24 above implies that, if p € Faulty(H,), then ¢, < oo and that p €
Correct(He,7) for all ¢ < i,. Thus, if p € Faulty(H,ip), then i, is the least 7 such
that p € Faulty(H¢,7). We will see that p crashes in round 7, of H.. By the definition
of i, some correct processor had believe[p] = m # L at the end of the first round of
phase i, + 1. By Consistency, some correct processor validated m and, by the definition
of Qc, m = pg (ip,p,Qc(ip,p)). By Relay and Consistency, all correct processors had
rcvd[p] € {m, L} at the end of phase i,. By the definition of R¢, R¢(ip,q,p) € {m, L}
for all ¢ € P. By the definition of S¢, Sc¢(ip,p,q) € {m, L} for all ¢ € P, so p’s sending
behavior is consistent with failure by crashing.

After crashing, p takes no further actions. If ¢ € Correct(H,), S¢(%,p,q) = Rc(2,q,p)
for all i. However, if ¢ > i), then no correct processor had believe[p] # L for phase i.
Relay implies that no correct processor ¢ had rcvd[p| # L for phase 7, so R¢(Z,q,p) = L.
If g € Faulty(H,), then S.(7,p,q) = L by definition. By the definition of R, Re(Z,p,q) = L
for all i > i,. By the definition of Q., Q.(,p) = Q.(ip,p) for all ¢ > iy, a

We can now prove that T correctly translates from C(n,t) to A(n,t) in z rounds:

Theorem 26: Translation T correctly translates from C(n,t) to A(n,t) in z rounds. That
18, the following hold for the history simulation function H given above:

1. H. = H(H,) = (Il¢,Qc, Sc, Re) s a history of I, running in C(n,t),
2. Correct(H,) C Correct(H;), and
3. Vi€ ZVp € Correct(H,)[S(Qa(2( — 1) + 1,p)) = Q.(¢,p)]-

Proof: By definition, H. is a history of II.. To prove that it is a history running in
C(n,t), it suffices to show that there are at most ¢ faulty processors and that they are
subject only to crash failures. Since there are at most ¢ faulty processors in H,, Lemma 23
implies that there are most ¢ faulty processors in H.. Lemma 25 shows that these fail by
crashing. Lemma 23 shows that Correct(H,) C Correct(H.). Finally, the functions S and
Q. are both chosen in such a way that, if p € Correct(H,), both §(Q.(2(: —1) +1,p)) and
Q.(7,p) are p’s value of the variable state at the beginning of round z(: — 1) + 1. Thus, T
satisfies conditions 1-3 above. |
Now we can show that all translations in the set satisfy the common properties described
above. As we mentioned, this is sufficient to prove the correctness of the translations.

Theorem 27: All translations in the set satisfy properties P1-PJj of Section 4.4.1 for all
1> 0.
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Proof:  The proof is by induction on 7. Consider first the case where ¢ = 1.

P1.

P2.

Suppose that p is correct and sets message to m at the beginning of phase 1; it
then sends m to all in round 1. Because p is correct, m = d._(1,p, s), where s is p’s
initial state. This implies that all correct processors validate this message because
no correct processor has p € faulty at the beginning of this round and all correct
processors can verify that m = é,_(1,p, s’) for some initial state s’. Thus, all correct
processors send echo with echo[p] = m in round 2. Because of this, g receives echo
with echo[p] = m from at least (n — 1) — ¢ processors other than p. Now we want to
prove that g sets rcvd[g] = m by the end of the phase. For the remaining rounds of
the phase (if any) there are three cases to consider depending on the fault-tolerance
of the translation.

e n > 6t — 2. At this point ¢, will set rcvd[p] = m.

e 6t —2 > n > 4t — 1. All correct processors will set echo[p] = m at the end
of round 2. In round 3, ¢ will receive echo with echo[p] = m from at least
(n — 1) — ¢ > n — 2t processors other than p. Since n > 3¢, t < n — 2¢. Since ¢
will not receive echo[p] = m' # m from more than ¢ processors, it follows that
m is the only such message and g will thus set rcvd[p] = m.

e 4t —1 > n > 3t. All correct processors will set echo[p] = m at the end of
round 2. In round 3, each correct processor will receive echo with echo[p] = m
from at least (n — 1) — ¢ processors and will thus will thus set echo[p] to m
again. In round 4, q will receive echo with echo[p] = m from at least n — 2t
processors and will set rcvd[p] = m.

Furthermore no correct processor adds p to faulty or crashed when setting the rcvd
array because all correct processors receive (n — t) — 1 echoes of the message of p.
Since no correct processor will have p € faulty at the end of phase 1, none will add
p to faulty or crashed when updating these sets in the first round of phase 2.

Suppose that p is correct and has rcvd[r] = m # L at the end of phase 1. Let z be
the last round of phase 1. Consider two cases:

e r is correct. By arguments similar to those above, every correct processor
receives echo[r] = m from (n—1)—¢ > n—3t+1 processors in round . Correct
processors receive at most ¢ < (n — 1) — ¢ messages with echo[r] = m/ # m in
that round. This shows that m is the only possible value for relay[r]. We want
to prove that all processor set relay[q] = m in round z. There are two cases to
consider depending on the fault-tolerance of the translation:

—n > 4t — 1. It follows from the code of Fcho that all correct processors
have relay[r] = m in round z.

— 3t < n < 4t — 1. By arguments similar to the one above every correct
processor receives echo with echo[r] = m from (n — 1) — ¢ processors other
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P3.

than r and set tentative_relay[r] = m in round 3 of phase 1. At the end of
round 4 processor set relay[r] = m because tentative _relay[r] = m.

These two cases are needed because, as we mentioned earlier, tentative_relay is
needed to assure the uniqueness of relay if 3t < n < 4t — 1.

r is faulty. Thus, there are at most ¢t — 1 faulty processors other than r. By
Figure 14, p received echo with echo[r] = m from at least n — 2t processors
other than 7 in round z. This means that all correct processors received echo
with echo[r] = m from at least n — 2t — (¢ — 1) = n — 3t 4+ 1 correct processors
other than r in round z. Let s be one of those n — 3¢ + 1 correct processors.
We want to prove that all processors set relay[q] = m. There are three cases to
consider, depending on the fault-tolerance of the translation.

—n > 6t — 2. In this case, z = 2. No correct processor receives echo

with echo[r] # m from more n — 3t + 1 processors in round 2 because
2(n—3t+1) = 2n—(6t—2) > n; thus, all correct processors have relay[r] =
m.

4t — 1 < n < 6t — 2. In this case, z = 3. Thus, s received echo with
echo[r] = m from at least (n — 1) — ¢ processors other than r in round 2.
This means that no correct processor received echo with echo[r] # m from
more than ¢t + (¢ — 1) = 2¢ — 1 processors other than 7 in round 2 Since
n > 3t, 2t — 1 < (n — 1) — ¢, so no correct processor sends echo with
echo[r] ¢ {m, L} in round 3. Thus, a correct processor can receive echo
with echo[r] ¢ {m, L} only from faulty processors; there are only ¢t — 1
faulty processors other than r. Since n > 4t —2,t—1<n—3t+1, so
again all correct processors have relay[r] = m at the end of round 3.

3t < n < 4¢t—1. In this case, z = 4. Thus, s received echo with echo[r] =m
from at least (n — 1) — ¢ processors other than r in round 3. This means
that every correct processor receives echo with echo[r] = m from n — 2t
processors other than r in round 3 and, therefore, set tentative_relay[r] =
m. Also, no correct processor received echo with echo[r| # m from more
than ¢+ (¢t — 1) = 2t — 1 processors other than r in round 3. Since n > 3t,
2t—1 < (n—1)—t, so no correct processor sends echo with echo[r] ¢ {m, L}
in round 3. Since correct processors set tentative_relay[r] = m at the end
of round 3, they set relay[r] = m at the end of round 3 because they have
tentative _relay([r] = relay[r], and they do not reset relay[r] to L in the last
if statement in Figure 14.

If g is correct, then, when setting the believe array in the first round of the second
phase, it will receive relay with relay[r] = m from all correct processors, that is,
from at least (n — 1) — ¢ processors other than r. Thus, ¢ will set believe[r] = m in
the first round of phase 2.

Suppose that p is correct and has rcvd[r] = L at the end of phase 1. This means
that, for all m € M, p received echo with echo[r] = m from fewer than n — 2t¢

58



processors other than r in the last round of phase 1. By P1 above, r is faulty and
there are thus at most ¢ — 1 other faulty processors. If ¢ is correct, then g received
echo with echo[r] = m from fewer than n —2¢t+ (t —1) = (n — 1) — ¢ processors other
than r in round z. By Figure 14, g adds to r to faulty at this time. This is true for
all correct processors. When updating the sets crashed and faulty in the first round
of the second phase, g will receive sets faulty with r € faulty from at least n — ¢
processors. Thus, g will add r to crashed at this time.

P4. Suppose that g is correct and has believe[p] = m # L at the end of the first round
of the second phase. We only consider the case where p is faulty, otherwise it should
be clear that all processors have believe[p] = m. Since q has believe[q] = m, g must
have received relay with relay[p] = m from at least (n — 1) — ¢ processors other than
p in that round. For any other value m’ € M, q received relay with relay[p] = m/
from at most ¢ processors other than p in the first round of the second phase. If
r is another correct processor, then it received relay with relay[p] = m’ from at
most ¢t + (t —1) < (n — 1) — t processors. So, 7 cannot set believe[p] = m' for any
other message m’ because it does* not receive enough relays for that. Thus r must
have believe[p] € {L,m} at that time. Finally, note that, if ¢ received those relay
messages, at least (n — 1) — 2t > 0 were from correct processors. This means that
some correct processor received echo with echo[p] = m from more than n — 3t + 1
processors other than p in the last round of the first phase. Now, we want to prove
that at least some correct processors validated m for p in phase 1. Depending on
the fault-tolerance, there are three cases to consider:

e n>6t—2. Atleast n —4t+ 1> 0 of the n — 3t + 1 echoes were from correct
processors. All these correct processor must have validated m in phase 1.

e 4t—1<n<6t—2 Atleast n—3t+1—(t—1) =n— (4t —2) > 0 of the
n — 3t + 1 echoes were from correct processors. This means that some correct
processor received echo with echo[p] = m from at least (n — 1) — ¢ processors
other than p in round 2. At least (n — 1) — 2t > 0 of those were from correct
processors. Thus, at least one correct processor validated m for p.

e 3t <n < 4t—1. As mentioned above, at least (n—1)—2t > 0 correct processors
sent relay with relay[p] = m. This means that some correct processor s sets
tentative relay[p] = m in round 3. Thus, s received (n — 1) — t echoes with
echo[p] = m in sent in round 3. At least one of these echoes is from a correct
processor s' that send echo with echo[p] = m in round 2. Processor s’ must
have validated m for p in round 1.

So, in all cases, some correct processor validates m for p in round 1.

Now suppose that the theorem holds for some ¢ > 1; we will prove that it holds for
t+ 1. The arguments for all cases other than P1 are essentially the same as for the base
case and are not repeated. For P1, suppose that p is correct and sets message to m at the
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beginning of phase i + 1. It then sends a message containing m and crashed,, to all in the
first round of phase ¢ 4 1, where crashed,, is its value of crashed at the beginning of that
round. To simplify the proof, we prove the following claim:

Claim: If correct processor p has r € crashed at the beginning of phase 7 + 1, then p
had revd[r] = L at the end of phase 3.

Proof: First note that r must be faulty because it belongs to the crashed set of a
correct processor. There are three ways that p could have r € crashed at the beginning of
phase 7 + 1:

e p had r € crashed at the beginning of phase . Then ¢ > 2 and, by the inductive
hypothesis for the claim, p had rcvd[r] = L at the end of phase ¢ — 1. Then, by the
inductive hypothesis for P3, all processors have r € crashed (and in faulty) at the
end of the first round of phase ¢« and thus no correct processor validates a phase ¢
message for r. In this case, p will receive echo with echo[r] # L from at most
t—1 < (n— 1) — 2t processors other than r in the last round of phase ¢, and will
thus have rcvd[r] = L at the end of phase 1.

e p added r to crashed while updating the crashed set at the end of the first round
of phase 7. This means that p received faulty with r € faulty from at least n — ¢
processors. Thus, all correct processors receive faulty with r € faulty from at least
n — 2t > t+ 1 processors at the end of the first round of phase ¢ and add r to faulty
at that time. The remainder of the argument proceeds as above.

e p added r to crashed at the end of phase :. An inspection of Figure 14 shows that
this implies that p had rcvd[r] = L at this time.

O

We can now show that all correct processors will validate p’s message m. Because p
is correct, they all receive the message containing m and crashed, in the first round of
phase ¢ + 1. By the inductive hypothesis for P1, no correct processor will have p € faulty.
If some processor r is in crashed,, then the claim implies that p had rcvd[r] = L at
the end of phase ¢. By the inductive hypothesis for P3, each correct processor has
r € crashed at the end of the first round of phase ¢ + 1. Thus, each correct processor
verifies that crashed, C crashed. If some correct processor r is not in crashed,,, then p had
rcvd[r] = m # L at the end of phase i (see Figure 14). By the inductive hypothesis for P2,
all correct processors have believe[r] = m at the end of the first round of phase 4+ 1. This
implies that, upon receiving the message containing m and crashed, from p in the first
round of phase i + 1 and while executing Valid all correct processors set v to the array
rcvd that p had at the end of phase 7. This means that they all set s to (7, p, rcvd) (as
p did) and verify that m = p,_(i+ 1,p,s) (as p did). Thus, all correct processors validate
m and send echo with echo[p] = m in the second round of phase i + 1. The remainder of
the argument (including the fact that no correct processor places p in faulty or crashed)
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follows as in the base case. O

This concludes the proof that all three translations satisfy properties above and, there-
fore, they all translate correctly from C(n,t) to A(n,t).

4.5 Adaptive Translations

All the translation presented in this chapter have round-complexities that depend on
the number of failures in the system. We saw that processors maintain a set crashed that
contains faulty processors whose failures could not be masked. If the crashed set of a correct
processor becomes large enough, it might be possible to change the round-complexity of
a translation dynamically because the number of undetected faulty processors become
smaller, while the number of correct processors is fixed. For example, assume that 3t <
n < 4t — 2. This means that processors can only run a 4-round translation. Let p be a
correct processor, and crashed, be the set of processors that p crashed in the translation. If
|crashed,| = ¢, then there are n—t' faulty processors not in crashed,. If n—t' > 4(t—t')—2,
and for every correct processor g, crashed, = crashed,, then correct processors can run a
3-round translation by ignoring processors in crashed,.

Unfortunately, the crashed sets of correct processors are not always identical. One
way to compensate for this is to let processor agree simultaneously on a crashed set that
they can use to change the round-complexity of a translation. If correct processors know
simultaneously that the crashed set of some correct processors is large enough, they would
be able to change the round-complexity of the translation. Agreeing simultaneously on a
crashed can be done using a simultaneous agreement protocol [19]. Many such protocols
are developed in the literature.

Simultaneous agreement can be specified as follows. Let crashed(i,p) be the crashed
set of processor p in round 7. In some round j, j > 1, every correct processor p decides on
a vector Vp[l...n] such that:

e If a processor q is correct, then Vp[q] = crashed(i,p).
e For any two correct processors p and g and for any processor r, V,[r] = Vq[r].

Changing the round-complexity of a translation can be achieved as follows. In every
round, processor start a simultaneous agreement protocol on the crashed sets for that
round. When a correct processor decides on a vector, it checks if there are ¢ + 1 sets in
the vector that are large enough. If this is the case, then, by the agreement protocol,
every vector of every other correct processor contains t + 1 sets that are large enough.
Since at least one of the ¢ + 1 sets is that of a correct processor, it follows that all correct
processors can change the round-complexity in the same round because there are enough
faulty processors detected in the system.

Note that the agreement protocol can be run in parallel with the translated protocol
and that messages of the agreement protocol can be appended to those of the translated
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protocol. This means that running the agreement protocol does not add rounds of com-
munication to the translated protocol.
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Chapter 5

Translations for Asynchronous Systems

Coan developed translations from crash to arbitrary failures for asynchronous systems.
This chapter complements Coan’s work by proving lower bounds on the time complexity
of translations for asynchronous systems.

The chapter is organized as follows. Section 5.1 motivates and presents the program-
ming model used by Coan cast into our system model. Section 5.2 gives a definition of the
running time of protocols. Section 5.3 gives a definition of translations and their complex-
ity measures. Section 5.4 contains the proofs for the lower bounds on the time complexity
of translations.

5.1 Programming Model

Many problems do not have fault-tolerant solutions in asynchronous systems. For in-
stance, there is no fault-tolerant solution to the consensus problem [19] in asynchronous
systems [12]. This is significant because many problems are equivalent to the consensus
problem.! The approzimate agreement problem [8,11] and the inezxact agreement prob-
lem [20] are two problems that have fault-tolerant solutions in asynchronous systems.

Fault-tolerant solutions to these and other problems in asynchronous systems have a
specific form. This form is shown in Figure 16. Protocols in this form run in asynchronous
rounds. To that end, processors maintain a two-dimensional array rcvd. Each entry in
rcvd contains the array of messages sent in a given asynchronous round. The rth element
of the rcvd contains the array of messages of round r that a processor receives. A message
sent in round r is called a round r message. Note that every processor only sends one
message in round r. If p receives from g a message m sent in p’s rth round, it sets
rcvd[r][g] = m. Every message sent is tagged with the round number in which it is sent.
To synchronize their steps, processors do not advance to round r + 1 until they receive
n — t round r messages. Note that only round r messages are used to update the state in
round 7.

This form is reasonable for asynchronous systems because a processor cannot wait for
more than n—t messages in these systems. In fact, a slow processor cannot be differentiated
from a faulty processor.

 Informally, two problems are equivalent when a solution to either of the two problems can be used to
solve the other.

63



state = initial state;
revd[i][g] = L for all (z,q) € N x P
for »r =0 to oo do
input = external input
message = (v, ur(r, p, state, input));
send message to all processors;
repeat
receive any message (I, m) from any processor gq
revd|[l][qg] = m
until |{g € Plrevd[r]lg] # L|} >n—t
state = 8 (r,p, rcvd[r));
output = wy(state);

Figure 16: Standard form for a protocol in asynchronous systems

Coan calls this form the standard form for protocols in asynchronous systems. His
translations apply to protocols in the standard form. Coan’s model differs from the model
of this dissertation in that he considers problem specifications with only one input and one
output. The model of this dissertation is more general in that it considers specifications
with multiple inputs and outputs.

5.2 Time

In asynchronous systems, there are no upper bounds on message delays or processors
speeds. It follows that correct processors can take arbitrarily long to produce their outputs.

To measure the performance of his protocols, Coan introduced a normalized measure
of time for asynchronous protocols. This measure is adopted in this dissertation. The
following is a definition of the normalized time measure in the dissertation model. An
execution is I-bounded if

1. All processors start executing at time 0.
2. If a message is sent at time ¢; and received at time o, then to < 1 + 1.

In this model, the running time of a protocol is measured for 1-bounded executions.

5.3 Translations

This section gives a definition of the time-complexity of translations in asynchronous
systems, and presents the previous work done for these systems.
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5.3.1 Definitions

The definition of translations for asynchronous systems is identical to the definitions of
translations for synchronous systems. In asynchronous systems it is more reasonable to
talk about time-complexity instead of round-complexity because in general protocols do
not have a round-based structure. As for synchronous systems, the time-complexity of a
translation is defined by comparing the worst-case running time of the object protocol to
that of the source protocol. In asynchronous systems, this means comparing the worst
case running times in 1-bounded runs.

As in synchronous systems, we define the response time of outputs in asynchronous
systems. In asynchronous systems, the response time of an output is equal to the time
that elapsed since some input was received my some processor. The rest of definition is
identical to that for synchronous systems with the only difference that only 1-bounded
executions are considered.

5.3.2 Previous Work

Coan presented two translations from crash to arbitrary failures for asynchronous systems.
One is a translation with time-complexity 2 that requires n > 4¢ and the other is a
translation with time-complexity 3 that requires n > 3t. The general structure of his
translations is similar to those presented in Section 4.4.1.

Even though Coan’s translations are correct for asynchronous systems, they are not
applicable to synchronous systems. The programming model to which they apply is the one
presented above and, therefore, his results are not general enough for synchronous systems.
Coan’s model is not very general because processors can ignore some of the messages
without affecting the correctness of the protocol. This cannot be done in translations
for synchronous systems because processors can be required to receive messages from all
processors in order to produce an output; in asynchronous systems it is enough to receive
messages from n — ¢ processors.

Coan’s translations exploit these facts. In his translations, a processor is never required
to “receive” L from another processor as the synchronous translations require. This makes
the development of translations easier.

By the above discussion, it should not be surprising that translations from crash to
arbitrary failures were developed for asynchronous before they were developed for syn-
chronous systems.

5.4 Lower Bounds

This sections gives lower bounds on the time complexity of translations from crash to

arbitrary failures for asynchronous systems. It proves that Coan’s translations are optimal

with respect to both time-complexity and fault-tolerance for asynchronous systems.?

2Coan’s translation with time complexity 2 can be easily modified to work for n ~ 4¢
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The proof that there can be no translation with time-complexity 1 is a modification of
the proof that there is no translation with time complexity 1 for synchronous systems and
is omitted. The following proves that there can be no translation with time-complexity
less than 3 if 3t < n < 4t — 1.

The proof considers a problem that requires correct processors to produce two outputs
subject to some constraints. It shows that the problem can be solved in the presence
of crash failures such that correct processors produce their first output by time 1 in 1-
bounded executions. It then shows that there is no solution to the problem in the presence
of arbitrary failures such that correct processors produce their first output before time 3
in all 1-bounded runs.. By arguments similar to those presented for synchronous systems,
it can be then shown that any translation will have a time-complexity equal to 3.

The specification ¥ of the problem is the following. Let b be a specific processor. Let
Ag, A1, Cy, Cy be a partition of P—{b} such that |Cy| = |C1| = ¢t, |Ao| = [ (n — (2t + 1))/2],
and |Ag| = [(n — (2t +1))/2]. Note that [{b} UCy| = [{b} UC1| = t+1 and, since n > 3t,
|{b} U Ag U Ay| > t.

We assume that Z = {0,1}. The set of output O can be deduced from the problem
specification. The outputs of the correct processors should satisfy the following constraints.

1. The first outputs of correct processors have the form (vp,p) where v), is a value and
p is a processor name.

2. The first output of processor b is (v,b). If b is correct then v is its first input.

3. The first output of a correct processor in A; U C; is of the form (vp,p) where p is a
processor in {b} U Cy, where 7 =1 — 1. If p is correct, then vy, is the first input of p.

4. The second output of a correct processor in CoUC1 is of the form ((vq,q),p), where
p is a processor in {b} U Ag U A;. If p is correct, then (vg,q) is the first output of p.
If p = b, then ¢ must also be equal to b.

5. If (vp,p) and (vg,q) are the first outputs of two correct processors and p = g, then
vp = vg. If (vs,s) and (((vy,7),p) are the first and second outputs of two correct
processors and s = r, then v, = v,.

Note that ¥ does not specify the second outputs of processors in {b} U Ay U A;.
First we prove that the following lemma.

Lemma 28: Specification ¥ can be solved in a system with crash failures such that correct
processors produce their first output by time 1 in any 1-bounded execution

Proof:  The problem can be solved in a system with crash failures as follows. Every
processor sends its first input to every other processor. These are first-round messages.
Then, every processor waits to receive n — t first round messages. Since [{b} U Cy| =
|{b} U Ci| = t + 1, every correct processor in Ag U Cy will receive an initial message from
some processor in {b} U C] and every correct processor in A1 U C; will receive an initial
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message from some processor in {b} U Cy. The first output of a processor acy € AgU ) is
(vp,p), where p is the first processor in {b} UC} from which ag received an initial message
and v, is the value in the message. Similarly, the first output of a processor ac; € A1 UC}
is (vp,p), where p is the first processor in {b}UC from which a; received an initial message
and vy, is the value in the message. Note that different processors in Ay U Cy might have
different outputs. Similarly, different processors in A; U C; might have different outputs.
When b receives its first input v, it outputs (v,b). After a processor a produces its first
output, it sends a new message with that output. These are second-round messages.

All processor wait until they receive n — ¢t second-round messages Note that, since
|{b} U Ag U A1| > t, one of the n — ¢t second-round messages is from a processor in
{b} U Ay U A;.

When a processor in Cy U C] receives n — t second-round messages, it chooses the first
processor ¢ in {b} U Ag U A1 and outputs the pair (v,q) where v is the value it received
from q. Note that processors in {b}U A; U A are note required to produce second output.

It is not difficult to see that all correct processors that are required to produce a first
output, do so no later than time 1 in 1-bounded runs. Also, it can be easily shown that
the above solution satisfies all the constraints of the problem. Finally, it can be easily
checked that the protocol is in the standard form. O

Now we show that there is no solution to ¥ in A(n,t) such that correct processors
produce their first output by time 2 in all 1-bounded executions. As was mentioned
in Section 3.3, it is enough to prove the results for full-information protocols. In full-
information protocol, processors relay all the messages that they receive in every step.
Note that these protocols are not of the standard form. This makes the proof stronger
because it shows that the lower-bound applies to protocols that are not in the standard
form.

Before giving the proof, we consider a set of histories of a full-information protocol
and prove a set of lemmas about the outputs of processors in these histories. Note that
since the histories are those of a full-information protocol, correct processors send their
outputs to all other processors whenever they produce them.

All histories will be described in the text and illustrated in figures. In the figures,
each horizontal set of discs represents a snapshot of the processors at a given time. The
solid discs represent correct processors, while the empty discs represent faulty processors.
The arrows represent messages. Only the most important messages will be shown in the
figures.

Consider the two histories Hy[z] (¢ € {0,1}), shown in Figure 17(a) for ¢ = 0. In H;[],
all processors are correct and receive their first inputs at time 0. Processor b receives vy
as first input at time 0. Processors steps take 1/4 time units in H;[7]. Messages sent by
processors in P — C; take 1/4 time unit to be delivered. Note that all processors receive
these messages at time 1/4. Messages sent by processors in C; take 1 time unit to be

delivered in H;j[i]. Note that H;[i] are 1-bounded.
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Figure 17: a) History Hj, b) History Hp
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Lemma 29: In Hi[t], at time 1/2, processors in A; cannot output (v,c;) where v is an
input value and ¢; is a processor in C;.

Proof: At time 1/2, processors in A; do not know the inputs to processors in C; be-
cause messages from processors in C; take 1 time unit to be delivered. Processors in Az
cannot output (0,¢;), ¢; € C;, in Hi[i] because the first input of processors in C; could 1.
Similarly, they cannot output (1,¢;), ¢; € C;. a

Now, we consider two history Ha[i] (i € {0,1}), shown in Figure 17(b) for ¢ = 0. In
Hj[7], processors in C; are faulty and send no messages (this is possible because |C;| = t).
All correct processors receive their first inputs at time 0 in Ha[7] These inputs are identical
to those they receive in Hj[i]. Processor b is correct in Ha[i] and receives v; as input at
time 0. All messages take 1 time unit to be delivered and processors steps take 1 time
unit in Ha[7]. Note that Ha[i] are 1-bounded.

Lemma 30: In Hs[7], at time 2, processors in A; should output (vp,b).

Proof: At time 2 in Ha[i], processors in A; have the same states as those they have in
H;[¢] at time 1/2. In fact, in both histories, they send and receive the same messages and
they receive the same inputs. It follows that they should behave at time 2 in Hy[7] as they
would in H;j[i] at time 1/2. By Lemma 29, it follows that at time 2 in Ha[i], processors
in A; cannot output (v,p) where p is a processor in C;. Since we assumed that correct
processors produce their first input by time 2 in all 1-bounded executions, processors in
Az should produce their first output at time 2 in Hs[i]. By condition 3 they should output
(v,p) where p is a processor in {b} U C;. By the above, they cannot output (v,p) where p
is a processor in C;. It follows that they should output (v,bd). Since b is correct in Ha[],
they should output (vp,b) by condition 3. a

We next describe a parameterized history Hz(k). Before doing so, remember that, in a
full-information protocol, correct processors send all the outputs they produce to all other
messages. This is implicit in the description below. Let k be a constant. Consider history
H;3(k) shown in Figure 18. In H3(k), processors in {b}UA are faulty. All correct processors
receive their first inputs at time O in H3. These inputs are identical to those they receive
in Hy[1]. Processors’ steps take 1/4k time units in H3(k). At time 0, all processors send
their first message containing their first inputs to all other processor. Processor b sends 1
to processors in P — Cy and sends 0 to processors in Cy. All first messages by processors
in {b} U Ag U A; take 1/4k time units to be delivered. All messages sent by processors in
C; take 1 time unit to be delivered (this is true for all messages of Cy throughout Hs(k)).
The first messages sent by processors in Cy to processors in A; take 1/k time unit to be
delivered. First messages sent by processors in Cj to processors in P — A; take 1/4k time
unit to be delivered.

At time 1/4k, all processors relay the messages they receive (remember that not all
first messages are received at time 1/4k). All processors in P — Cy relay 1 to processors
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70



in A;. This means that all processors correctly relay the message they received. At
time 1/4k, processors in C correctly relay 0 to all other processors. Messages relayed by
processors in C to processors in A; take 1/k time units to be delivered. Messages relayed
by processors in C to processors in P — Ay take 1/4k time unit to be delivered. Messages
relayed by processors in A; to processors in A; take 1/4k time unit to be delivered. All
other messages relayed by processors in A; take 1 time unit to be delivered. All messages
relayed by processors in {b} U Ay take 1/4k time units to be delivered.

At time 1/2k processors receive the relayed messages. In particular, processors in A
receive 1 from all processors in P — Cy. Note that processors in A; are correct. At time
1/2k, processors in A; relay the messages they received to all other processors. These and
all subsequent messages by processors in A; take 1 time unit to be delivered. At time
1/2k, processors in Cp U C; correctly relay all the messages they receive. These and all
subsequent messages relayed by processors in Cp U Cj take 1/k time unit to be delivered.
At time 1/2k and thereafter, b relays 0 to all processors. Messages relayed by b at time
1/2k and all subsequent messages relayed by b take 1/4k time unit to be delivered. At
time 1/2k, processors in Ay incorrectly relay the messages the received. They claim to
have received 0 from P — C; and not having received any messages from processors in Cf.
These and all subsequent messages relayed by processors in A take 1/4k. In subsequent
messages before time 1, processors in Ay claim they receive no new messages from Ag
and they relay all other messages correctly. Note that H3(k) is 1-bounded. We prove the
following to lemma for H3(k).

Lemma 31: In H3(k), the second output of processors in Cy UCy should not be ((0,b),p)
for any p € P. If their second output is of the form ((vq,q),a1) where a1 € Ay, then

(vg,9) = (1,0).

Proof: By Lemma 29, processors in A; should output (1,6) in Hz(k) at time 1/2k be-
cause their state at that time is identical to their state at time 1/2 in H;[0] in which v = 1.
By condition 5, it follows that processors in C; should not output ((0,b),p) for any p € P
because processors in Ay are correct H3(k) and their first output is (1,5). Processors in Ag
are correct in H3(k) and their first output is (1,b). By condition 4, if the second output
of processors in Cp U C; is of the form ((vq,q), a1) where a1 € A1, then (vg,q) = (1,b). O

Now, we consider history Hy shown in Figure 18. In Hy, processors in {b}UA; are faulty
(this is possible because |{b} U Aj| < t). All correct processors receive their first inputs
at time 0 in Hy These inputs are identical to those they receive in Hj[1]. All the steps
of processors take 1/4 time unit in Hy. At time 0, all processors send their first message
containing their first input to all other processor. Processor b sends 1 to processors in
A1 UC and 0 to all other processors. All first messages by processors {b} U Ay U A; take
1/4 time units to be delivered. All first messages sent by processors in Cj take 1/4 time
unit to be delivered to all processors. All messages sent by processors in C; take 1 time
unit to be delivered to all processors. At time 1/4, all processors relay the messages they
receive. Processors in {b} U Ag U A1 U Cy relay 0 to all processors in Ag. This means that
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processors in A; incorrectly relay the message they received from b at time 1/4. Processors
in C] relay 1 to all other processors.

At time 1/2 processors receive the relayed messages (note that not all relayed messages
are delivered at time 1/2). In particular processors in Ag receive 0 from processors in
P — (. Processors in Ag are correct. These messages and all subsequent messages by
processors in Ag take 1/4 time unit to be delivered to all other processors. At time 1/2
and thereafter, processors in A; send no new messages. At time 1/2 processors in C;
correctly relay the messages they received, and if specified by the protocol they output
their second value. These messages and all subsequent messages by processors in C; take
1 time unit to be delivered. At time 1/2 and thereafter, b correctly relays the messages it
receives. Note that Hy is 1-bounded.

Let [ be the time at which processors the last processor in CyU (1 produces its second
output. We prove the following to lemma for Hy.

Lemma 32: In Hy, processors in CyUCT cannot produce a second output without violating
the problem specifications.

Proof:  Consider H3(l). The states of processors in C at time [ in Hy are identical to their
states at time {/4] = 1/4 in H3(l). In fact, processors in C] receive no messages other than
the first message from processors in A; in Hy and in H3([) they receive no messages other
than the first message from processors in A; before time 1. In both histories they receive
the same messages from all other processors. It follows that the output of processors in C
in Hy at time [ should be identical to its output at time 1/4 in H3(I). By Lemma 31, the
second output of processors in Cy cannot be ((0,b),p) in H3(l). It follows that processors
in (7 cannot produce second output equal to ((0,b),p) in Hy. In Hy processors in A, are
correct and their first output is ((0,b). By condition 5, it follows that processors in C;
cannot produce second output equal to ((1,b),p) in Hy.

Now, processors in C; should produce second output of the form ((vg,q),p) where p is
a processor in {b} U Ag U A;. If their second output is ((vq,q),p) where p € Ap, then by
the above their second output should be ((0,b),p) which is not as explained. Similarly, if
their output is ((vg,q),p) where p € A1, then, by Lemma 31 their second output should
be ((1,b),p). Again, this is not possible by the above. So they should output ((vg,q),p)
where p = b. By condition 4, they should output ((v,b),b) Again this is not possible.
Giving a contradiction. O

We conclude with the following theorem.

Theorem 33: There is no translation with time-complezity 2 from C(n,t) to A(n,t) if
n <4t —1.

Proof:  Assume that there is such a translation 7. Recall that II. given in Lemma 28

above is a solution to Y that tolerates crash failures. Remember that in that solution,
correct processors produce their first outputs by time 1 in all 1-bounded executions of II..
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It follows that 7 (Il.) is a solution to ¥ that tolerates arbitrary failures and that correct
processors produce their first outputs by time 2 in all 1-bounded executions of T (IL.).
However, Lemma 32 implies that 7 (Il.) must have executions that do not satisfy 3. This
is a contradiction. a

Note that this theorem shows that Coan’s translation with time-complexity 2 is opti-
mal.
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Chapter 6

Translations for Partially Synchronous Systems

This chapter presents a first attempt at studying translations for partially synchronous
systems. It presents some preliminary results and discusses some of the difficulties en-
countered in designing translations for these systems.

The chapter is organized as follows. Section 6.1 discusses some issues involved in pro-
gramming for partially synchronous systems. Section 6.3 gives a definition of translations
and their complexity measures. Section 6.4 contains some upper bounds and some lower
bounds on the round-complexity of translations for partially synchronous systems. Sec-
tion 6.5 concludes with a discussion of the potential use of translations in solving some
open problems for partially synchronous systems.

6.1 Issues

In a partially synchronous system, there is an upper bound d on message delivery times.
Also, there are upper and lower bounds on processors speeds; the steps of processors take
no less than ¢; and no more than ¢ time units. The existence of bounds on processors
speeds and message delays allow processors to timeout faulty processors.

For instance, assume that processor p is required by the protocol to send a message to
q at time O (recall that all processors start executing at time 0). Each time g takes a step,
at least c1 time units elapse. So, if ¢ does not receive the message of p by [d/c1] of its
own steps, it can conclude that the message was not sent. In fact, at least ¢; [d/e1] > d
time units must have elapsed from the time the message was sent.

Detecting that a message was not sent might take more than d time units. In fact,
each step can take up to co time units to execute, and ¢ might detect the failure as late
as time cg [d/e1]. For simplicity, we will assume that d is a multiple of ¢1. So, ¢z [d/ec1]
reduces to dea/c1. The ratio C' = cg/cy is called the timing uncertainty of the system.

It is possible to simulate fully synchronous systems in partially synchronous sys-
tems [26]. This can be done as follows. To simulate the first round, processor wait
until they receive messages from all other processor or until d/c; of their steps elapse. By
that time, they must receive all messages sent at time 0 or they detect all the messages
that were not sent. To simulate the second round, processors wait until they receive all
the messages from round 1 or until they timeout all such messages. Since round 1 mes-
sages can be sent as late as time C'd, processors should wait (Cd + d)/c; of their steps to
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timeout the messages of round 1. This implies that the messages of the third round could
be sent as late as time co(Cd + d)/c1 = C%d + Cd. More generally, to simulate round i,
processors wait to receive all messages from round 7 — 1 or to timeout all such messages.
So, the messages of round 7 could be sent as late as time C*~! + C*~2 4 ...+ Cd. This is
particularly undesirable because C is greater than 1.

It follows that, in designing algorithms for partially synchronous systems, one needs
to avoid synchronizing the steps of processors.

6.2 Failures

In addition to the failures introduced in Chapter 2, processors can be subject to timing
failures in partially synchronous systems. A processor p is subject to timing failures if its
steps can take more than ¢ or less than ¢; time units to execute. Also, messages sent by
or to processors subject to timing failures can take more than d time units to be delivered.

Timing failures are more severe than crash failures because processors subject to timing
failures can be arbitrarily slow and therefore indistinguishable from crashed processors.
Timing failures in partially synchronous systems exhibit some of the characteristics of
general omission failures in synchronous systems. For example, if processor p takes a large
number of steps while waiting for a message from another processor ¢, then there is no
way for p to know whether it is faulty by running fast or if ¢ is faulty by being slow. For
instance, a processor running too fast, will timeout correct processors This is similar to
receive omission failures. Also, a processor running too slow, will be timeout by correct
processors. This is similar to send omission failures. In proving lower bounds for timing
failures, this fact can be used for coming up with scenarios similar to those for general
omission failures in Section 3.3.1.

An interesting aspect of arbitrary failures in partially synchronous systems is that
processors subject to arbitrary failures can appear to be subject to timing failures. For
example, a processor subject to arbitrary failures can send a message at time ¢; while
claiming that the message is sent at time t) < ¢; — 2d. Assume that another correct
processor receives the message at time ¢; + d. To the receiver, the behavior of the sender
looks the same as the behavior of a processor subject to timing failures. Similarly, pro-
cessors subject to arbitrary failures can simulate all the other anomalies in the behavior
of processors subject to timing failures.

6.3 Translations

The definition of translations for partially synchronous systems is identical to that for
synchronous and asynchronous systems.

The time-complexity of a translation is defined by comparing the worst case response
time of an output in the object protocol to that in the source protocol. The response time
of an output is measured by the time that elapsed since an input was received by some
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processor. The rest of the definition of the response time of a protocol and the delay of a
translation are identical to those for synchronous systems and asynchronous systems.

For convenience, we will say that a translation with time complexity ¢ is a c-round
complexity. Also, we will talk about the round-complexity instead of the time-complexity
of a translation.

6.4 Upper and Lower Bounds

This section presents some upper bounds and some lower bounds on the round-complexity
of translations in partially synchronous systems. The results follow from a direct appli-
cation of the results for synchronous systems. All attempts at obtaining more interesting
bounds have not been fruitful. Since the results do not involve new techniques, only proof
sketches will be given.

6.4.1 Translations from Crash to Timing Failures

For a given n and ¢, let z be the lower bound on the round-complexity of translations
from crash to general omission failures for synchronous systems; that is z = |[t/(n —¢)| +

[t/(n — )] + 1.

Theorem 34: 2C' is a lower bound on the round-complexity of translations from crash to
timing failures for partially synchronous systems.

Proof Sketch:  Consider problem 3 of Section 3.3.1. Note that ¥ can be solved in a
system with crash failures such that correct processors produce their first output by time
d. The proof will show that there is no solution for ¥ in the presence of timing failures
and such that processors produce their first output before time zCd. It follows that the
round complexity of any translation from crash to timing failures is at least zCd/d = zC.

The proof uses a scaling argument similar to that used in Section 5.4. Consider a
history Hj in which every message delivery between correct processor takes d time units
and their steps take co time units. Assume that the steps of faulty processors take Ceca
time units and that they receive messages sent by correct processors C'd time units after
they are sent (this is possible because faulty processors are subject to timing failures). To
the correct processors, H; looks like history Ha in which message delivery take d/C time
units between correct processors and d time units otherwise and such that steps of correct
and faulty processors take c¢1 and c2 respectively and in which no processors are subject to
timing failures. By argument similar to those used for synchronous systems with general
omission failures, we can prove that correct processors cannot produce an output before
time zd in Hs. But time zd in Hs is actually time Czd in H;. This finishes the proof. O
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6.4.2 Translations from Crash to Arbitrary Failures

The scaling argument also works for arbitrary failures, because, as was mentioned in
Section 6.2, these processors can appear to be subject to timing failures in addition to
sending messages with arbitrary content. It follows that C is a lower bound on the round-
complexity of translations from crash to arbitrary failures in partially synchronous system.

Ponzio developed a simulation mechanism that transforms protocols that run correctly
in synchronous systems into ones that run correctly in partially synchronous systems [26].
The simulation mechanism requires that n > 3t. Every synchronous round is simulated
in time 2Cd + d by his mechanism.

One can obtain a translation from crash to arbitrary failures by composing a translation
for synchronous systems with Ponzio’s simulation as follows. Let II. be a protocol solves
problem with specification ¥ in partially synchronous systems in the presence of crash
failures. It follows that II solves ¥ correctly in executions of the system where processors
are synchronized and message delivery takes exactly d. If n > max{6¢— 2,3t} one can use
the 2-round translation from crash to arbitrary failures to obtain protocol II' that solves
Y in such executions in the presence of arbitrary failures. If the maximum response time
of an output of II, in synchronous systems is r, it follows that the maximum response time
of an output of I, is 2r (r is a number of rounds). Note that r rounds are rd time units
long. It follows that R(II), the maximum response time of Il., is at least rd, and R(II,)
is at least 2rd. Now, one can use Ponzio’s simulation mechanism to transform II, into
I/, that solves ¥ in partially synchronous systems in the presence of arbitrary failures.
Since every round of II, is simulated in 2Cd + d, it follows that D(II.), the the delay of
the composed translation for II., is less than or equal to (2Cd + d)2r/rd = 2 4+ 4C. Since
this is true for all protocols Il., it follows that the round-complexity of this composed
translation is less than or equal to 2 + 4C.

By the same argument we get similar results using the other two synchronous transla-
tions. To recapitulate:

e If n > max{6t—2,3t}, then there is a translation with round-complexity ¢, ¢ < 2+4C.
e If n > max{4t—1,3t}, then there is a translation with round-complexity ¢, ¢ < 3+6C.

e If n > 3t, then there is a translation with round-complexity ¢, ¢ < 4 + 8C.

6.4.3 Translation from Crash to General Omission Failures

If n > 2t, then the translation for synchronous systems from crash to general omission
failures( [23]) can be used to translate in partially synchronous from crash to general
omission failures. It is still unclear how to develop efficient translations between these two
failure models if n < 2t.
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6.5 Potential Applications

Efficient translations from crash to arbitrary failures would have important applications.
It is clear from other work in partially synchronous systems that it is difficult to develop
optimal protocols in these systems or to get tight bounds on the time complexity of the
solutions to some problems [1,26]. For example, the best known time lower bound for the
Byzantine agreement problem in partially synchronous system with arbitrary failures is in
Q(td + Cd) whereas the best known upper bound is td + (2t + 1)Cd € O(tCd) [26]. The
upper bound is also true for crash failures [1]. This means that, so far, researchers were
unable to make use of the characteristics of arbitrary failures to prove tighter bounds.

The gap between the upper bound and the lower bound is large. Whether Q(¢tCd)
is a lower bound is an open question. This is in contrast to the results for synchronous
systems where the bounds are tight. Developing eflicient translations might lead to more
efficient agreement protocols in these systems.

The lower bounds on the round-complexity of translations from crash to arbitrary
failures show that translations cannot be used to close the gap for arbitrary failures. In
fact, using the translations suggested above, one gets an agreement protocol whose running
time is in O(tCd(Cd + d)), which is not better than the existing upper-bound.

Still we hope that translations can give efficient algorithms for agreement in the pres-
ence of general omission failures and n < 2¢. For example, if we are able to get a translation
from crash to arbitrary failures with round-complexity z = [t/(n — )] + [t/(n —t)] + 1,
then this would lead to an agreement algorithm for systems with general omission failures
that runs in O(z(¢t+ Cd)), which would match the upper bound for agreement algorithms
in the presence of send omission failures [26].

Working with translations has the advantage of being modular. Instead of tackling the
agreement problem in the presence of severe failures, one can use a solution that tolerates
crash failures and then use a translation to obtain a solution that tolerates more severe
failures. This division of the problem might may lead to better solutions.
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Chapter 7

Conclusions

7.1 Summary

The translations given in this dissertation simplify the task of designing fault-tolerant
protocols. The designer can work with the assumption that failures are benign and then
convert the protocol automatically to tolerate more severe failures.

For synchronous systems, the dissertation presented a complete study of translations.
For translations from crash to send-omission failures and translations from general omis-
sion to arbitrary failures, the dissertation showed that the original translations of Neiger
and Toueg [23] are simultaneously optimal with respect to fault-tolerance and round-
complexity. For translations from crash to general omission and to arbitrary failures, the
dissertation showed that there are no non-uniform translations that are simultaneously
optimal with respect to both measures. For both of these cases, the dissertation gives a
hierarchy of translations, each of which is proven to have optimal round-complexity for a
given fault-tolerance (or vice versa).

For asynchronous systems, the dissertation showed that Coan’s translations are optimal
with respect to to fault-tolerance and round-complexity. Also, Coan’s programming model
was generalized to allow multiple inputs and outputs.

For partially synchronous systems, the dissertation discussed some of the difficulties
in developing efficient translations.

7.2 Applications

This section shows how the translations developed in this dissertation can be applied to
the file replication problem in a distributed system. File replication is used to provide a
fault-tolerant file server. The file server consists of a number of machines, each of which
holds a copy of all the files in the system. If a client program wants to access a file, it
sends requests to access the file to all the machines in the file server. If a machine is not
available, the file can still be obtained from copies at other machines. In a replicated file
system, different machines might have different versions of a file. A solution to the file
replication problem should insure that a client always access the latest version of a file in
the system. Gifford [13] proposed a voting scheme to solve this problem. In this scheme,
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every machine in the server has a number of votes. A user should collect a majority of
votes in order to access a file. In response to a request, every server process sends its vote
and the version number of its copy of the file. Since different machines might have different
versions of a file, the votes collected by the client program should be from machines that
have the latest version of the file. The client counts the number of votes from machines
that have the highest version number and then decides whether it should access the file
or not.

The solution described above is not correct in the presence of Byzantine failures. For
instance, a faulty processor can send a reply with a version number larger than the version
numbers of correct processors. One possible solution that uses the translations from crash
to arbitrary failures is the following. Whenever a server machine receives a file access
request, it starts a phase of the translation. At the end of the phase, every machine
collects a vector of version numbers. Each entry in the vector corresponds to a machine
in the server. The client program waits until it receive 2¢ 4+ 1 responses from machines,
where ¢ is the upper bound on the number of faulty machines in the server. It is not
difficult to prove that at least ¢ + 1 of these responses have 2¢+ 1 identical entries in their
vectors. This common value is the latest version number of the file. To access the file, the
client program gets a copy that is common to ¢ + 1 of the machines that respond. This
modification of the voting scheme works because the correct machines always have the
latest version of a file (by using the translation), and ¢ + 1 of the machines that respond
are guaranteed to be correct. Note that this modification does not require that all correct
machines respond to the client request, but it requires that all correct machines be able
to communicate with each other to run the translation.

Another possible modification is to assume that some of the server machines are subject
to Byzantine failures and that a fraction of the other machines might go down and recover
at a later time. Solving problems in this hybrid model is an open problem.

7.3 Future Work

There are many possible extensions to the results presented in this dissertation. One pos-
sible extension is to consider more general models of systems and failures. The dissertation
considers fully connected systems with reliable communication. One can consider systems
that are not fully connected or that have unreliable communication. For example, one
can consider models where communication links lose, create, or corrupt messages. New
techniques need to be developed to deal with connectivity issues of the system. Some of
the techniques and results used in solving the Byzantine agreement problem in systems
with processor and link failures [4,10,16] would also be relevant for developing translations
for these systems. In the framework of this dissertation, there are many open problems
relating to translations in partially synchronous systems. For instance, large gaps exist
between upper and lower bounds on the time-complexity of such translations. Also, all
known translations for these systems are trivial and not efficient. Developing non-trivial
translations might help in solving some other open problems for partially synchronous

80



systems.

Another direction for future work is related to the notion of of processor knowledge [17].
This notion seems to be closely related to the work presented in this dissertation. For
example, for translations between crash and more severe failures, a processor to refuse to
receive a message from another, it must know that, by the end of the next round, all correct
processors refuse messages from that other processor. The requirements of translations
can be expressed using a knowledge-based formalism that may make it possible to unify
the proofs presented in Section 3.3.2 and provides a framework within which to prove
related results.
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