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AHSTKACT 

I n  this paper we present a coherent approach using the hierarchical 
HMM with shared slructures to extract the structural units that form 
the building blocks of an rducationltraining video. Rather than 
using hand-crafted approaches to define the structural units, we 
use the data from nine training videos to learn the parameters of 
the HHMM, alld thus naturally extract the hierarchy. We then study 
this hicrdrchy and examine the nature of the structure at different 
levels of abstraction. Since the observable is continuous, we also 
show how to extend the parameter learning in the HHMM to deal 
with continuous observations. 

1. INTRODUCTION 

The indexing of multimedia content is an important issue in the 
management of vast amount of data. This involves the ability to 
automatically categorise the data at different levels of semantic 
abstraction by combining the cuts from all modalities. Whilst this 
categorisation can he achieved to some extent by a bottom-up ap- 
proach that uses the visual and aural media explicitly, it is our con- 
tention that higher levels of abstraction can be emacted if a data 
driven bottom up approach is combined with top-down contextual 

In this paper we examine a category of video, the education 
and training videos, whose objective is to educate and train. This 
particular video genre is important for e-learning and is often a 
simpler category of video as the aim of the video is unambiguous, 
and the techniqucs for educating and training fall in a somewhat 
well contained set, as opposed to a much larger set of techniques 
for handling aesthetics in motion pictures. The narrative in  such 
video is also simpler, often linear, and mostly developed in a hier- 
archic way to elucidate concepts in greater levels of detail. Deduc- 
tive approaches will move from the general to the particular, whilst 
inductive approaches will move from the detail to the general.The 
set of conventions and rules that shape these videos is termed pro- 
duction grammar, and our earlier work [ l ]  has explored the S ~ N C -  

tural elements. In this work we present a coherent approach using 
the hierarchical HMM to extract the structural units that form the 
building blocks of an educationitraining video. Rather than using 
the hand-crafted approach of our previous work [ I ]  to define the 
structura~ units, we use the data to l e a n  the parameters of a HHMM, 
and thus naturally extract the hierarchy. We then study this hierar- 
chy and examine the nature of the structural units at different levels 
of  abstraction. 
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Discovering structure i n  vidcos is a current active research 
area. The central task is to eflicieiitly index data into semantic 
units, pxsihly at different level of abstractions, to simplify the 
process of navigation. There have been several systems proposed 
f(tr speTific vidm genres. Partition and classification of broadcast 
videos into nieaningful sections has attracted significant attention. 
For inslance, in [2], low-level features are combined with the con- 
cept of shot syntax to idcntify and label different narrative struc- 
tures such as anchor shots, voice-over segments and interview sec- 
tions found in news programs. Research into the domain of lecture 
videos be found in [31. I n  their work, visual events are detected 
from the visual stream and then incorporated with audio infoma- 
tion in a probabilistic framework to detect topic transitions. The 
domain of entertainment film has also been studied lately. Wang er 
U/. [4], for example, attempt to detect scenes in film using the sim- 
ilarity in visual information and further improve the results with 
guidance from cinematic grammar. 

In all videos there is often a common and natural hierarchy in 
the content. For example, surveillance videos map to different re- 
gions; news reports are organised into layers of details; a film has 
episodes, story units, scenes then shots, and a training video has 
several sub-topics which in tum form a main topic. Being able to 
model the hierarchic nature of a video offers ways to index the con- 
tent in a meaningful hierarchy of semantic units. The hierarchical 
HMM has emerged naturally as a candidate to model this problem. 
The HHMM is a powerful stochastic model, first introduced in [5].  
in which the HHMM is viewed as a form of probabilistic context 
free grammar (PCFG), and the inference algorithm and parameter 
learning procedures are constructed based on the inside-outside al- 
gorithm. I n  [61, the HHMM is converted to a DEN, and a general 
DBN inference algorithm is applied to achieve complexity linear in 
time T.  but exponential in the depth D of the HHMM. The same 
approach is applied in [7], ie: the HHMM is 'flattened' into regular 
HMM with a very large State space for inference purpose. Their 
work [7] aims to detect structures of ~ ~ c c e r  videos in an onsuper- 
vised manner. The model selection is first carried out using the 
MCMC to determine the structure parameters for the model, fol- 
lowed by a feature selection procedure. Finally, the HHMM is used 
to detect two semantic concepts. namely ploy and break in soccer 
videos. As there is little hierarchy at this level, the power of the hi- 
erarchic probabilistic model is not used. The HHMM is also applied 
in other domains other than multimedia such as in hand-written 
recognition [51, robot navigation, behaviour recognition and infor- 
mation retrieval. 

The remainder of the paper is organised as follows. We briefly 
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discuss the HHMM with shared structures in Sec. 2. Next, Sec. 3 
presents a brief analysis o f  the narrative structure i n  educational 
videos. This is  followed by the experimental results in Sec. 4. 
Finally, the conclusion is  provided in Sec. 5 

2. THE HIERARCHICAL HMM W I T H  SHARED 
STRUCTURES 

Thc discrete H H M M  was originally proposed in [SI and i ts exten- 
sion to accommodate shared structured has beeti addressed in our 
previous work [RI. We rcfcr readers to [8] for a complete trcat- 
ment. Hcrc, we refocus our attention to elucidatc the idea of the 
sharrd stcuctures and briefly discuss the DEN representation and 
the E M  procedure for parameter estimation. We then present the 
casc when the emission probability i s  modeled as a mixture of 
Gaussians. 

A hierarchical H M M  extendsthe traditional H M M  toallow each 
Stale itself to he a HMM. Formally, a H H M M  i s  defined by a topo- 
logical structure and a set o f  parameter 6 attached to the topol- 
ogy. The dcpth D 4efincs the number of layers in the hierarchy- 
andthenurnberufstare.~availableateachlevcl Q", fo rd  = 1, .., D, 
are specified by . Fig. 2 shows an cxample of a topology o f  depth 
3. Level I i s  the root level and is  always fixed to havc only a sin- 
gle state, and only the lowest levcl D. termed as pmdudiun level. 
emits observation. Furthcrmore, the topological structure reveals 
the 'parent-childrcn' relationship of states between two consecu- 
tive Icvcls'. A state p at level d i s  assigned to a se1 of children, 
ch(p), at level d +  1. A state i at level d +  1 therefore might mul- 
tiply inherit, or be shored, from more than one parent at level d. 
The general form o f  DEN representation' i s  shown in Fig. I(a). 

I t r  1 2 3 ... 

(a) 

Fig. 1. (a) DEN representation for the discrete H H M M ;  (b) Added 
mixture component zt at level D. 

Given a topology , the parameter 0 {T, A, p> E) of the 
H H M M  i s  specified as follows.. For each level d (except D), p E 
Qd.  and i , j  E ch(p) we define: i s  the initial probability o f  
the child i given the parent is p at level d; 4,; i s  the transition 

probability from child i; and k;,zd i s  the probability that state p 
terminates at level d given i ts  current child i s  i. We require that xi ?T:'p = 1. x j  !$ = 1, and e:, 1, which later become 
Lagrangian constrants used in the maximisation Step in the EM 
procedure. Finally, at level D an observation probability matrix 

'Note that the original HHMMin [5]  aSSumes that a slate has B only a 
single parent and therefore the topology reduces stnctly to a tree. 

lThe DEN structure for HHMM wuq originally presented in 161 

B i s  specified in the case of discrctc HHMM, or a set o f  { p ,  C) 
in case the observation values are continuous and modeled as a 
Gaussian mixture model (GMM).  

Given an observed data set D and some initial parameters, 
the EM algorithm iteratively re-estimates a new parameter 8, hil l 
climbing in the parameter space which i s  guaranteed to converge 
to a local maxima. As shown in [RI, doing EM parameter re- 
estimation reduccs to first calculating the enpccted sufficient statis- 
tics (ESS) = EViD ,and then sctting the re-estimated parame- 

ter 6 to the normalized value o f  -. The ESS f<)r parameter {A::}. 

for example, i s  calculated as: 

T- 1 

whcrc the auxiliary variable < : p ( i , j )  i s  defined as the transition 
probability Pr(q$!; = j,q:+' = i ,qf+,  = p ,  = 0I,D), 
which i s  diagrammatically visualised as [&I. We mfer readers 
to [RI for complete details on the coniputatioii of auxiliary vari- 
ables and other expected sufficient SLatistics. The rest of this sec: 
tion wil l discuss the case when the emission probability i s  modeled 

The general mcthod when modeling G M M  as the observation 
probability in the hierarchical H M M  i s  similar to that ofthe regular 
HMM. The DEN Structure at level D i s  modified as i n  Fig I(b). 
where a mixture variable zL i s  added. For simplicity, thereaftcr 
in this section we wil l drop the index D. Let M be the number 
of mixtures and N be the number o f  states at level D. The ob- 
servation matrix B i n  the discrete case i s  replaced by the mixing 
weight matrix {A,;) and a set o f  means and covariance matrices 
{p , ; ,  E,,,*} for i = 1,. . . , N and m = 1,. . . , M .  Given ob- 
served data D, following a standard E M  procedure, the expected 
complete log-likclihood (e(&D))in the E-step i s  given as (dis- 
carding terms imelevant to zt and yt): 

as a G M M .  

where N(.) i s  the multivariate Gaussian density function, (.) is 
the expectation operator, and 12:; i s  the identity function which 
takes 1 if {x = m U y = i), and 0 otherwise. I t  is straightfor- 
ward to compute the expectation of the identity function: 

(IZ:?) = Pr(zt=m,q,=i I ir)) = Pr (z t=m I qt=i ,yt)Pr(qt=i  12)) 

where' the auxiliary variable rP(i) defined as the probability 
Pr(qF= i, D )  and can be computed directly from horizontal transi- 
tion probability (,d,"(i, j )  and vertical transition probability x;"(i) 
(defined [SI). Finally, in M-step we maximise the expected com- 
plete log-likelihood (e(s;D)) with respect to A;, and pmi, C,i. 
Introducing Lagrange multipliers for A,; and setting derivatives 
to zero for pm,, E,*, the set o f  re-estimated parameters is  given 

'we put back hierarchic index D forclanly here 
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as: 

When multiple (iid) observation sequences are given, the set of 
ahuvc equations can he adjusted by simply adding a sunimation 
over the numhcr of sequences. This correspnds to 'counting' ovcr 
all scuucnccs. 

3. NARRATIVE STRUCTURAL UNITS 

The structure of an educationltraining video is fashioned by the 
way in  which training material is prcscntcd. I n  almost all iascs, 
there is a narrator that takes us on the journey of learning through 
the suhject. Thus, the narrator will rcapwar through the video, 
guiding us along the way. To make the points, the narrator uses 

text, footage with voice-over, or discussion with 
people or interviews. Gcnerally a shot in  this video genre can 
he classified into one of following three categorics. On-screen 
narration rcfers to sections of narration, both direct and assistcd, 
in which the narrator dircctly speaks to the audience. Voice-over 
refers to sections where the narrator will maintain the narIdliVe 
by using Voice-over. Linkage sections refers to sections of infor- 
mational footage without the narrator and we divide this into two 
subgroups: expressive linkage and functional linkage, where the 
former is used to dramatise a situation. Readers are referred to [I] 
for precise definitions and examples of these structural units. For 
now, i t  is sufficient for us to augment these four main categories 
as a set of high level semantics. In a generative process, one can 
imagine that they correspond to four parent states that consists of a 
number children states producing what we see in the video such as 
the red colour, the caption texts and so on. We use this knowledge 
to construct a topology for the experiment presented next. 

4. EXPERIMENTAL RESULTS 

In this experiment, we present initial results on applying the H H M M  
to automatically map semantic concepts to the model states at dif- 
ferent levels of abstraction. Taking the advantages of the expres- 
siveness of shared Structures, we construct a 3-level HHMM with a 
'1171~' modcl in mind, ie: the topology of the H H M M  is constructed 
in such a way that it maps into the hypothesised hierarchy as in 
Fig 2. That is, for example, at the production level, we are hypoth- 
esise that the model can 'perfectly' learn to map each state to an 
elementary feature such as face, text or speech, from which higher 
levels of descriptions such as on-screen narration section can he 
built. 

Given this topology, a 3-level H H M M  is subsequently formed. 
The production level includes 7 states directly attached to the oh- 
served features (recall that these are shot-based features). The next 
level have 4 states, which in our opinion, adequately reflects the 
number of higher level units in this experiment. Finally, the root 
covers the entire video. We first randomly initialise the parameter 
of the model and then use EM to learn a new set of model param- 
eters. 

The feature vector used in this experiment includes seven fea- 
tures computed at the shot level. Three of them are from the ViSudl 

irLr text 0101i"" L F C i h  d i n C C  mu% NL-ruund 

Fig. 2. Hierarchy of connected concepts which is uscd as toplog- 
ical specification for the corresponding H H M M  (links from state 
1 , 2  (level 2) to statc 7 (Icvel3) are not shown for rcadahility). 

stream, namely: face-content-ratio, text-content-ratio, and aver- 
age motion based on camera pan and tilt estimation: and the other 
Cour features arc cxtracted Crom the sound track including: music- 
ratio, speech-ratio, silence-vatio. and non-literal sound (NL-) ratio. 
Computation of these fcatures are detailed in [9]. Note that all of 
thcsc features are in thc range of [0, I]. 

Let V be any arbitrary video, and T be the number of shots 
in V .  Feature extraction from V will rcsult in a sequence of oh- 
servations of length T where each observation is a column vector 
of seven features. We collect nine vidcos in total to use for the 
training purposc with T ranging from 124 to  245. We analyse the 
learned model and prcscnt the results at two levcls. 

Semanric mapping at the producrion level 
We use the mean matrix at the production level to understand the 
mapping between the production level states and the feature vec- 
tor components. Figure 3 shows the visualisation of the means. 
Thus, for example, state 1 is strongly linked to face and speech, 
and a little bit of motion. This state corresponds to direct and assi- 
tive narration sections. State 2 corresponds to speech and motion. 
and thus to voice-over sections. State 3 corresponds to NL-sound, 
and thus to expressive linkage sections and so on. In Table 1, we 
summarise this result of mapping the production level states to the 
structural units manually crafted in our earlier work. The mean 
values learned at the production level is visualised in Fig 3. 

m D L I m I * s T A r r  

Fig. 3. Gray-scaled visualisation of the mean values of seven fea- 
tures learned at the production level. 

Semantic muppings at the upper kvel  
The middle level of topology (Fig. 2) contains 4 states. Cambin- 
ing the information of the 'parent-child' relationship specified in 
topology and results from Table I,  we can interpret the meaning of 
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State Feature 
I face. speech, motion 
2 speech, motion 
3 NL-sound 
4 motion, NL-sound, text 
5 motion. speech, music 
6 text, motion. spccch 
7 motion, music 

Structural Units 
direct-, assistive- narration 
pure voice-over (VO) 
expressive linkage 
linkage, VO with texts 
expressive linkage 
VO, functional linkage 
dramalic/expressive linkage 

Table 1. Deduced semantic mappings at prnduction (shot) level. 

each state. However, this must he done in conjunction with the es- 
timated ?r matrix sincc i t  specilies the probability of a child being 
called. 

Fig. 4. Estimated transition probability at the upper level. Only 
dominant probabilities are shown. 

For example. from Fig 2,  state 1 has four children at the pro- 
duction level, namely 1,2,4 and 7. However, the estimated initial 
probability gZ,’ shown in Fig 4(a) indicates that the children 4 and 
7 are almost disconnected.This licenses us to attach this parent 
state with only on-screen section or with pure voice-over section 
(with a lower probability). Similar analysis shows that Stale 2 i s  
connected with expressive linkage sections or voice-over; state 3 i s  
connected with expressive voice-over (ie: voice over with no texts 
and lots o f  motion); state 4 i s  connected with functional linkage or 
sometimes with voice-over sections. Overlapping i s  observed with 
the voice-over sections, however, they have different probabilities. 
A transition matrix for these four states i s  shown in Fig 4(b). While 
we cannot deduce the complete ‘style’ of educational video from 
this result, i t  does suggest a ‘common’ presentational style for this 
genre of video. I n  this case, written in regular grammar, i t  is‘: 

[2143[4,11*[31+[4,~1*~L 41*[31+ 

At  this stage, we cannot make conclusions about the power of this 
type of gramma?. However, our initial results from the Viterbi 
decoding suggests a vew interesting wint .  The sequence of states 

4Note that together with b e  probabilities specified in Fig 4(b). ulis 
g r a n ”  should k viewed as Probabilistic Regular Grammar 

We also notice the absence of sofe 2 in Ihe middle pm of this gnm- 
max This is somewhat due to he rare appearance of expressive linkage 
sections except at the swning pan used to build an intmduction ‘ m d  

tivated at time t .  A uscful state pattern from the above the gram- 
mar i s  [41] or [14]. Wc observe this pattern in this video at times 
lF ,29 ,25 ,45 ,  . . . or 118. These correspond to suh-topic bound- 
aries. In fact, when compared with the ground-truth there i s  only 
onc miss and one false positive. 

S. CONCLUSION 

In  this paper we have utilised the hicrarchic expressiveness o f  the 
hierarchical HMM to automatically exploit thc Struclural units in an 
education and training video. Wc extend the H H M M  to deal with 
continuous observations, and estimate the parameters of a 3-level 
H H M M  for this task using nine training videos. We have analysed 
the hierarchy constructed in this data driven approach, and our re- 
sults indicatc the promise o f  this approach Sor structure discovery 
in video data 
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