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Online Judge (OJ) systems have been widely used in many areas, including programming, mathematical
problems solving and job interviews. Unlike other online learning systems such as MOOC, most OJ systems
are designed for self-directed learning without the intervention of teachers. Also, in most OJ systems, problems
are simply listed in volumes and there is no clear organization of them by topics or difficulty levels. As
such, problems in the same volume are mixed in terms of topics or difficulty levels. By analyzing large-scale
users’ learning traces, we observe that there are two major learning modes (or patterns). Users either practice
problems in a sequential manner from the same volume regardless of their topics or they attempt problems
about the same topic, which may spread across multiple volumes. Our observation is consistent with the
findings in classic educational psychology. Based on our observation, we propose a novel two-mode Markov
topic model to automatically detect the topics of online problems by jointly characterizing the two learning
modes. For further predicting the difficulty level of online problems, we propose a competition-based expertise
model using the learned topic information. Extensive experiments on three large OJ datasets have demonstrated
the effectiveness of our approach in three different tasks, including skill topic extraction, expertise competition
prediction and problem recommendation.
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1 INTRODUCTION

The rapid advancement of Internet technologies largely promotes the development of online
education services, which makes educational resources more easily accessible than ever before.
Among these services, Massive Open Online Course (MOOC) platforms (e.g., Coursera) are
maintained by experts and teachers, which support the interactions among students, professors,
and teaching assistants. On the contrary, Online Judge (OJ) systems are designed for self-directed
learning without interventions from or interactions with teachers. OJ systems usually maintain
a large pool of problems or questions (a.k.a. problem bank) related to some specific domain, and
provide real-time automatic assessment of the solutions submitted by users.
OJ systems can serve as an open and shared test platform with increasingly new resources for

self-regulated learning [50]. Example OJ systems include mathematical problem solving sites like
ACT Math1, job interview practice sites like LeetCode2, and driver license sites like JKYDT3. On
OJ systems, learning resources (i.e., problems) are often organized by volumes; a fixed number
of problems are selected and piled into a volume. Each problem from a volume is assigned with
a unique ID. This essentially forms a two-layer index structure for problems: volume index and
problem ID. We present the snapshots of Timus Online Judge4 in Fig. 1, which is the largest Russian
archive of programming problems, to illustrate the organization of problems by volumes. Up to date,
Timus contains 1,110 problems uniformly distributed in 12 volumes. After logging into the system,
a user can select any problem for practice from one of the 12 volumes. Using volume organization,
there are low maintenance costs for developing and updating an OJ system for repaid resource
sharing and exercise assessment.

(a) Volume index. (b) Prolem index for Volume 1.

Fig. 1. Snapshots of the Timus Online Judge.

Volume organization is hard for users to locate required resources quickly. For example, a novice
programmer only wants to practice easy programming problems, but it would take her considerable
amount of time to identify suitable problems from the large problem pool at her ability level.
Similarly, a user who only wants to focus on dynamic programming would also find it hard to
locate appropriate problems as they may spread across multiple volumes. As have been previously

1http://http://www.act.org/content/act/en/products-and-services/the-act/test-preparation/
english-practice-test-problems.html
2https://leetcode.com
3http://www.jkydt.com/
4http://acm.timus.ru/
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observed, two very important factors should be considered in curricula design [6, 54, 57], namely,
topics and difficulty levels. Topics refer to the categorization or grouping of problems in terms of their
related knowledge components, concepts or skills; difficulty levels refer to the degrees of difficulty
of problems. Traditionally, topics and difficulty levels are manually annotated for problems by
domain experts or experienced teachers. It requires heavy manual efforts. Nevertheless, as have
been shown in past studies [11, 16], users’ learning traces often contain important evidence for
inferring the information of topics and difficulty levels of problems. Hence, in this paper, we focus
on mining users’ learning traces for automatic detection of topics and difficulty levels of problems
in OJ systems.

By analyzing users’ learning traces, we find that there are two major learning modes. Users either
choose problems in a sequential manner from the same volume regardless of their topics (volume-
oriented learning) or focus on one specific topic and choose problems from multiple volumes but all
about the same topic (topic-oriented learning). To characterize the two learning modes, we propose
a novel two-mode Markov topic model, which can jointly characterize both learning patterns. We
assume there are two sets of topics: volume topics characterize the generative probability of drawing
a problem from a volume, while skill topics characterize the generative probability of drawing
a problem from a skill topic. A user is profiled with two topic distributions over either volume
topics or skill topics, and she has the preference to switch between the two modes. The sequential
relatedness and mode selection preference are characterized in a joint model.

Apart from detecting topics of problems in OJ systems, we also study how to infer the problem
difficulty and user expertise using users’ learning traces. Different from traditional expertise
models [13, 33], which usually characterize the difficulty or expertise level using a single scalar
value, we have found that questions from different topics may have varying degrees of difficulties.
Furthermore, a user is also likely to have different expertise levels on different topics. These findings
indicate that difficulty or expertise levels should be defined over topics. Hence, we further propose
a topic-aware competition-based expertise model. We assume that a problem is associated with a
topic-specific difficulty score, while a user is also associated with a topic-specific expertise score. If
considering a problem as a virtual user, then both difficulty or expertise levels can be characterized
by a vector of topic-specific expertise scores in the same representation space. We model the
problem solving process as a competition between a user and a problem. The topic information of a
problem is obtained using the previously proposed two-modeMarkov topic model, and incorporated
as the context of the competition for learning the difficulty (or expertise) levels.

User learning 

traces
Online Judge Systems

Two-mode Markov 

topic model
Task 1: Topic extraction

Task 2: Difficulty/expertise

             estimation

Topic-aware 

competition model

topics

topic

difficulty

/expertise
 Problem 

recommendation

Application

& Evaluation

Problem 

classification

Expertise 

competition

Fig. 2. Overview of the proposed approach. The solutions to task 1 and task 2 are
presented in Section 4.1 and 4.2 respectively. We further present the applications
of the proposed approach in Section 4.3 and experimental results in Section 5.
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As shown in Fig. 2, we focus on two tasks, topic detection which automatically identifies the
topics of a given problem and difficulty/expertise level estimation which quantizes the difficulty level
of a problem. The derived topic and difficulty/expertise information can be subsequently used in
downstream OJ-related applications, e.g., problem recommendation or expert finding. Our proposed
approaches have been evaluated on the programming OJ systems, but they are also applicable to
any other OJ systems. Our contributions are summarized as follows:

• We present the first study to automatically learn topics and difficulty levels for problems
on OJ systems where problems are simply organized by volumes.
• We quantitatively analyze the learning behaviors of users on OJ systems. We have identified

two learning patterns, i.e., volume-oriented and topic-oriented learning. The observation is
further explained and supported by the theories from educational psychology. Based on
the above behavioral characteristics, we propose a two-mode hidden Markov topic model
for learning topics of problems.
• We quantitatively analyze the distribution of difficulty levels over different topics. We have
found that questions from different topics may have varying degrees of difficulty levels.
Based on this finding, we develop a topic-specific expertise model for estimating problem
difficulty levels and user expertise scores.
• Extensive experiments on three large online judge datasets have demonstrated the effec-

tiveness of our approach in three different tasks, including skill topic extraction, expertise
competition prediction and problem recommendation.

2 PROBLEM DEFINITION

Let u and q denote a user and a problem respectively. Assume that there are a set of users U
and a set of problems Q. Usually, the problems are organized in a volume set V . Each problem
q belongs to a unique volume vq ∈ V . In an OJ system, a user u can submit her solution to a
problem q. We call such an action an attempt. Each attempt happens at a timestamp s and ends
with a status label l . The timestamps are accurate to the second in the UNIX timing system, and
the status label usually only has two possible values: Pass or Failed. Given a user u, we sort her
Nu attempt records in an ascending order according to the timestamps, and obtain an ordered User
Attempt Sequence (UAS): 〈q1, s1, l1〉 → 〈q2, s2, l2〉 →...→ 〈qi , si , li 〉 →...→ 〈qNu

, sNu
, lNu
〉, where we

have s1 < s2 < ... < si < ... < sNu
. With user attempt sequences, we can trace the attempts of a

user over time.
The attempt label reflects the individual competition result between a user and a problem. We

further introduce a competition between two users on a problem. An Expertise Competition Triplet
(ECT) 〈u,u ′,q〉 consists of two users u, u ′ and a problem q. Given a pair of users (u,u ′), we can
form an ECT 〈u,u ′,q〉 if there exists some intermediate problem q that has been successfully solved
by u but not by u ′. That is to say, u beats u ′ on the problem q. To make the notations consistent,
we create a virtual user uq for each problem q. Our final user setU is extended to the union set of
the user set and problem set, i.e.,U ′ = U ∪ Q. In this way, 〈u,uq ,q〉 can be used to represent the
competition between a user u and a problem q.

Using the above formulation, user attempt records are characterized in two kinds of data repre-
sentations: the user-specific attempt sequences which model user attempts in a sequential manner,
and the problem-specific competition triplets which model the comparison between two users
(including virtual users corresponding to problems) in terms of their expertise levels. We could
potentially also consider using problem descriptions to extract topic information. However, prob-
lem descriptions often contain figures or attachments which makes it hard to extract relevant
information. Hence they are ignored in our work here.

ACM Transactions on Information Systems, Vol. 36, No. 3, Article 27. Publication date: April 2018.
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With the above definitions, we are ready to define our two tasks, namely topic extraction and
difficulty/expertise level estimation.

Definition 2.1. Topic Extraction. Topics here refer to the related components, skills and facts for
structuring and organizing problems in a coherent way. The goal of topic extraction is to discover a
set of skill topics T in OJ systems, and each topic z is a multinomial distribution over the problems
{ϕz,q }q∈Q .

For example, a sectional organization of C language programming can be listed as follows:
introduction, variables, loops and controls, arrays, struct and pointers and IO. These sections can
be considered as topics in a coarse granularity. It is worth noting that topic granularity is not
pre-defined but automatically learned from data.

Definition 2.2. Difficulty/Expertise Level Estimation. The goal of difficulty/expertise level
estimation is to infer the difficulty/expertise level of a problem or a user in OJ systems. Specially,
given a user u (or problem q), it aims to estimate the expertise level of u on each specific skill topic
z, denoted by su,z , which is a real scalar value in some predefined range. Similarly, we can use sq,z
to denote the difficulty level of problem q on topic z.

As discussed in [6, 57], topics and difficulty levels are very important to be used to organize
educational resources. Hence, our major focus of this work is to study how to learn them automati-
cally based on users’ learning traces. To solve the above two tasks, we propose a topic modeling
approach to learn topics and difficulty levels (Section 4.1 and 4.2). Furthermore, we can utilize the
identified topics and difficulty levels information to improve related applications in OJ systems
such as problem recommendation (Section 4.3).

3 DATA COLLECTION AND ANALYSIS

We select three popular programming OJs for analysis and evaluation:

• Timus: Timus Online Judge is the largest Russian archive of programming problems with
automatic judging system. Questions are mostly collected from contests held at the Ural
Federal University, Ural Championships, Ural ACM ICPC Subregional Contests, and Petroza-
vodsk Training Camps.
• POJ : Peking University Online Judge5 is the most famous Chinese archive of programming
problems. POJ has attracted the best programmers in China and even worldwide.
• HDU : HDU6 is hosted by Hangzhou Dianzi University from China. It consists of a large
number of problems for beginners, many of which are presented in Chinese.

On all the three platforms, problem resources are organized by volumes. OJ systems provide
automatic assessment to users’ submitted solutions in a black-box test way. A problem consists of
multiple test cases with the same input and output format. Only after a user’s submitted program-
ming code passes all the test cases, the system would return the “Accepted" status, indicating the
problem has been solved successfully. Programming OJ systems present in real-time a ranked list
of users based on their number of accepted (a.k.a. solved) problems. The entire attempt record of a
user is visible to all the other users. Such an open and competitive mechanism is one of the key
successful factors for programming OJ systems [50].

5http://poj.org/
6http://http://acm.hdu.edu.cn/
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Table 1. Statistics of our datasets.

Dataset # Users # Questions # Attempts # Triplets #Ave. Attempted #Ave. Solved

Timus 9, 973 1, 099 1, 419, 786 2, 089, 651 142 65

POJ 20, 100 3, 054 4, 755, 216 8, 304, 625 237 112

HDU 19, 410 1, 999 3, 477, 657 6, 145, 544 179 95

3.1 Construction of the Datasets

We crawl the data from the three OJ systems. At the time of crawling, the total numbers of registered
users in Timus, POJ and HDU are 111,182, 715,002 and 460,322 respectively. Most of the tail users
have made very few submissions, so we only keep the top users ranked by the number of accepted
problems. To construct the user attempt sequence, we remove repeated attempts from a user on
the same problem in a very short time period (i.e., 1 hour), and only keep the latest attempt with
the Pass label. To construct the expertise competition triplets, we only use the final attempt result,
i.e., once u has successfully solved q regardless of how many times she has failed previously, u is
considered to be able to beat q. The statistics of our datasets is presented in Table 1.

Timus provides category (or topic) labels for some problems and difficulty scores for all problems.
Out of 1,110 problems, 538 are tagged with one or multiple category labels from the category set {
Dynamic programming, Palindromes, Geometry, Tricky problem, Hardest problem, Data structures,
Number theory, Graph theory problem for beginners, Game, Unusual problem, String algorithms }.
For POJ and HDU datasets, there are no such labeled data. Nevertheless, we notice that some top
performing users categorize the problems they have solved by topics in their blogs. We therefore
use those category labels as the topic labels of problems. For problems with multiple category labels
assigned by more than one user, we manually merge those labels. Finally, 458 out of 3,054 problems
on POJ and 482 out of 1,999 problems on HDU have been annotated with a topic label (which was
proposed by at least two users) using a similar category set from Timus. We do not annotate the
difficulty levels for the problems on POJ and HDU, since they are not used explicitly as ground
truth in our evaluations.

3.2 Basic Analysis and Observations

Given the datasets, we conduct some initial analysis on the Timus dataset. Our findings on the
other two datasets are similar and are hence omitted here. First, we plot the distributions of the
number of users with respective to their numbers of attempted or accepted problems in Fig. 3. We
can observe that both distributions show a clear power-law like shape, which indicates that only a
small fraction of users have attempted or solved many problems.
We then conduct further analysis related to topics and difficulty levels and make the following

observations.
Observation 1: A user is likely to make consecutive attempts on problems from the same volume.
Since problems are organized by volumes, we first examine whether the user behaviors are affected
by such an organization. For each user, we sample thirty short windows consisting of five attempts
(we remove consecutive repetitive submissions). Then we make pairwise comparisons between two
problems from a window and check whether they belong to the same volume. We have found that
about 40.2% problem pairs are indeed from the same volume. In a random setting, two problems
from the same volume can be approximately estimated by V

V×V
, where V = 11 is the number of

volumes on the Timus dataset. Hence, the reference ratio is roughly 9.0% by chance. We can see
that the derived ratio (40.2%) is significantly higher than the reference ratio (9.0%), which indicates
that the learning behavior of a user is indeed affected by volume organization.

ACM Transactions on Information Systems, Vol. 36, No. 3, Article 27. Publication date: April 2018.
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Fig. 3. Distributions of users w.r.t. the number of accepted or a�empted problems
on the Timus dataset in log-log scale. We have excluded users with few a�empts
for ease of data crawling.

Observation 2: A user is likely to make consecutive attempts on problems under the same topic.
Similar to the above analysis, we continue to study the effect of the topic information on users’
learning behavior. For each user, we sample thirty short windows consisting of five attempts (we
remove consecutive repetitive submissions). Then we make pairwise comparisons between two
labeled problems (problems without labels are ignored here) from a window and check whether
they belong to the same topic category. We have found that about 41.4% problem pairs are indeed
labeled with the same topic. The ratio is also significantly larger than the reference ratio 8.3%,
which is estimated by T

T×T
and T (= 12) is the total number of topic categories on Timus. Unlike

the analysis in Obs. 1, the estimated ratio here is only an approximation, since only half of the
problems were annotated with the topic labels. Although the problems are organized by volumes
without any topic information, the users still show a strong learning pattern by working on the
same topic consecutively.
Observation 3: Questions from different topics may have varying degrees of difficulty levels. Here
we analyze the characteristics of the distribution of difficulty levels for problems under different
topics. We plot the distributions over 12 topic categories in Figure 4. It can be observed that the
distribution of difficulty scores highly depends on topics.

We can explain Obs. 1 and 2 using classic theories in educational psychology. In classic theories
on the arrangement of practice sets, problems are usually arranged in two ways, namely, blocked
where all problems are drawn from the same topic, and mixed where a mixture of problems are
drawn from multiple topics [51]. The volume organization can be considered a specific case of
the mixed practice, where each volume contains a mixed set of problems in different topics. The
behavior of repeatedly practicing problems on the same topic is called overlearning [52]. Our finding
indicates that even with a mixed practice setting, a user could still show the overlearning behavior
as typically found in the blocked setting. Such a phenomenon can be explained by the classic
metacognition learning theory [56], which describes the processes involving when learners plan,
monitor, evaluate and make changes to their own learning behaviors. The above findings show that
users typically adopt a mixture of the two learning patterns (we call it two-mode learning behaviors).
An example of two-mode learning behaviors is illustrated in Figure. 5. In such a trace window, the

ACM Transactions on Information Systems, Vol. 36, No. 3, Article 27. Publication date: April 2018.
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user with nickname of momohuang has attempted 12 problems. It can be seen that the first seven
attempts are topic-oriented, while the last five attempts are volume-oriented. Obs. 1 and 2 also
motivate us to develop a two-mode Markov topic model to characterize users’ learning behaviors
for topic extraction (Section 4.1).
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Fig. 5. Illustrations of the two-mode learning behaviors from a sample user on
Timus. Such an a�empt sequence is called users’ learning trace. It is evident that
the last five consecutive a�empts are from Volume I. Although the seventh a�empt
is also from Volume 1, it is likely to be topic-driven since there have already been
two a�empts on dynamic programming.

ACM Transactions on Information Systems, Vol. 36, No. 3, Article 27. Publication date: April 2018.



Automatically Learning Topics and Difficulty Levels of Problems in Online Judge Systems 27:9

As for Obs. 3, we have observed that the difficulty levels of problems from different topics are
different and varying. We could utilize the topic information of problems for better characterizing
difficulty levels of problems. Obs. 3 thus motivates us to develop an approach to model problem
difficulty and user expertise levels (Section 4.2).

4 A TOPIC MODELING APPROACH FOR LEARNING TOPICS AND DIFFICULTY

LEVELS

In Section 3.2, we have made some interesting observations about topics and difficulty levels. In this
section, we study how to develop our solution for topic extraction and difficulty level estimation
based on these findings. A key point is that the entire learning process should be unsupervised
and rely on no or little labeled data, since it is the actual case for most of OJ systems. Hence, we
adopt the topic modeling approach, which is able to generate meaningful soft clusters for “words",
i.e., problems in our setting. Our approach can effectively extract skill topics, and further learn
the topic-specific difficulty/expertise levels. In what follows, we start by studying how to learn
topics in Section 4.1 and subsequently followed by the estimation of difficulty levels of problems in
Section 4.2. In Section 4.3, we introduce some downstream applications that can be improved by
our models. For clarity, we first present the notations used throughout the paper in Table 2.

4.1 Topic Extraction using a Two-Mode Hidden Markov Topic Model

Based on our definition, a user attempt sequence presents the learning trace consisting of her
attempts on problems in a given time span, which is essentially a behavior sequence of user actions.
We would like to capture the relatedness reflected in user behavior sequences, and infer topic
information from there. Specifically, we adopt topics from topic modeling [5] to model the grouping
or clustering of problems. As shown in Obs. 1 and 2, there are two different learning patterns
to consider, either volume- or topic-oriented modes. To characterize both learning modes, we
incorporate two kinds of topics in our model, namely volume topics and skill topics. Volume topics
correspond to the volumes set up by OJ systems, while skill topics correspond to topics related to
different skills. Since a problem attempt is likely to be influenced by both learning modes, we have
to jointly characterize them in order to more accurately model the generative process for problems.
We start to discuss how to model each type of relatedness separately, and then combine these two
parts in a joint model.

4.1.1 Volume-Oriented Sequential Relatedness. As we can see in Obs. 1, a user is likely to make
consecutive attempts on problems from the same volume. Such a behavioral pattern is similar to
that of the click behavior [7] in the field of Information Retrieval. Since the problems are present
to a user by volumes, once a user has attempted or solved a problem from a specific volume, the
remaining problems from the same volume are more likely to attract the user’s attention than
those from other volumes. To capture this kind of behavioral relatedness, we introduce a set of
volume topics. Formally, let ϕVv denote the topic model corresponding to the volume v , where the
superscript of V stands for “volume". The probability of ϕVv,q denotes the conditional probability of
a problem q from a volume topic v . Different from standard topic models, which have non-zero
Bayesian priors over all the problems, we make a constraint on volume topics: only the problems
from the volume v can be assigned with a non-zero probability by ϕVv . Furthermore, each user
u has a preference distribution over the volume topics, modeled by a multinomial distribution
θVu . In order to generate a problem from a volume topic, we first draw a volume topic label, and
then generate the problem under the corresponding volume topic. The key point in capturing
the sequential relatedness lies in modeling the dependency of volume labels from consecutive
attempts. Following [24], we make the one-order Markov assumption that the topic label of the

ACM Transactions on Information Systems, Vol. 36, No. 3, Article 27. Publication date: April 2018.



27:10 Zhao et al.

Table 2. Notations and explanations.

Notations Explanations

u a user
Nu number of attempts by user u
q a problem
qu the attempt sequence of user u
n an index variable to the attempts
v a volume or volume topic
z a skill topic
c binary continuity indicator
y binary mode indicator
KS number of skill topics
KV number of volumes
ϕS
k

the k-th skill topic
ϕV
k

the k-th volume topic
θSu the preference distribution of u over the skill topics
θVu the preference distribution of u over the volume topics
ρSu the Bernoulli distribution over the continuation of skill topics
ρVu the Bernoulli distribution over the continuation of volume topics
xu,n the features related to the n-th attempt from user u
ϵ the weight vector of the logistic classifier

e
(q )
u the expertise score of user u with the context of q
xq the topical probabilities related to query q
bu the base expertise score of user u
su topic-specific expertise vector of user u
w the importance vector of topics
µu ,σu Gaussian parameters for user u
α , β,ψ prior parameters of the topic models

current attempt depends on the topic label of the previous attempt. Formally, we assume that a
user is associated with a Bernoulli distribution ρVu . At the n-th attempt, a user first draws a binary
indicator variable cu,n ∼ Bern(ρVu ). If cu,n = 0, we keep and reuse the volume topic label of the
previous problem, i.e., vqu,n = vqu,n−1 ; otherwise, we draw a new topic label using the user-specific
preference distribution θVu .

4.1.2 Topic-Oriented Sequential Relatedness. We continue to model the topic-oriented sequential
relatedness in Obs. 2. Formally, let T denote a set of skill topics, each of which is a multinomial
distribution over the problems, denoted by ϕSz , and the probability ϕSz,q , i.e., Pr (q |z), indicates the
conditional probability that a problem q is generated from topic z. We use the superscript of S to
discriminate skill topics from volume topics. Furthermore, each user u has a preference distribution
over a set of skill topics, modeled by a multinomial distribution θSu , in which θSu,z indicates the
preference degree of user u on topic z. To generate a problem, we first sample a skill topic label,
and then generate the problem using the corresponding skill topic model. We further make a
similar Markov assumption as before: the current skill topic label depends on the skill topic label of
the previous problem. We adopt the one-order Markov chain structure to characterize the topic
relatedness. Formally, we assume that a user is associated with a Bernoulli distribution ρSu . At the

ACM Transactions on Information Systems, Vol. 36, No. 3, Article 27. Publication date: April 2018.



Automatically Learning Topics and Difficulty Levels of Problems in Online Judge Systems 27:11

Table 3. The different generation routes with the two-mode topic models. “follow"
and “re-draw" refer to whether the previous topic assignment is reserved or newly
sampled.

yu,n yu,n−1 cu,n zu,n vu,n remark

1 1 1 − v ∼ Multi (θVu ) volume-mode, re-draw
1 1 0 − vu,n−1 volume-mode, follow
1 0 1 − v ∼ Multi (θVu ) volume-mode, re-draw
0 1 1 z ∼ Multi (θSu ) − topic-mode, re-draw
0 0 1 z ∼ Multi (θSu ) − topic-mode, re-draw
0 0 0 zu,n−1 − topic-mode, follow

n-th attempt, a user first draws a binary indicator variable cu,n ∼ Bern(ρSu ). If cu,n = 0, we keep
and reuse the skill topic label of the previous problem, i.e., zqu,n = zqu,n−1 ; otherwise, we draw a
new topic label using the user-specific preference distribution θSu .

4.1.3 The Two-Mode Markov Topic Model. After describing the two kinds of learning patterns
separately, we are ready to integrate them in a unified model. Our core idea is that a user has two
optional learning modes to select, either volume-oriented or topic-oriented, indicating whether
a user is likely to work on problems from the same volume or under the same skill topic. We
use another hidden variable y to control the mode switch. The mode indicator variable yu,n is
drawn from a user-specific Bernoulli distribution, denoted by ηu . The parameter ηu characterizes
the tendency of user u to select over the two modes. With the incorporation of y, we can code
the different generation routes in Table 3. Note that we use the same binary indicator variable c
to model the Markovian relatedness for both kinds of topics. As we can see in Table 3, we can
control and select the corresponding mode using a certain combination of y and c . Once these two
variables are set, we can easily generate an attempted problem by a user. When determining the
continuity variable c , we apply a hard constraint: once y has changed, c has to be re-drawn. Note
that entries for the cases where yu,n , yu,n−1 and cu,n = 0 are invalid, since the topic variable has
to be re-drawn once the mode indicator has changed.

Table 4. The list of auxiliary features used in the logistic classifier for mode se-
lection. I[·] is an indicator function which returns 1 iff when the condition is
true.

Mode feature Formulation

local volume continuity I[ỹu,n−1 = 1 and ỹu,n+1 = 1]
local skill continuity I[ỹu,n−1 = 0 and ỹu,n+1 = 0]

forward volume continuity argmaxk,k≤5,k≤n[ỹu,n−k = ... = ỹu,n−1 = 1]
backward volume continuity argmaxk,k≤5,k+n≤Nu

[ỹu,n+1 = ... = ỹu,n+k = 1]

forward skill continuity argmaxk,k≤5,k≤n[ỹu,n−k = ... = ỹu,n−1 = 0]
backward skill continuity argmaxk,k≤5,k+n≤Nu

[ỹu,n+1 = ... = ỹu,n+k = 0]

mode ratio
∑

n+i∈window I[ỹu,n+i=1]
2×sz

weighted mode ratio
∑

−sz≤i≤sz,i,0
1
i
× I[ỹu,n+i = 1]

bias term b
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Fig. 6. The plate notation of the proposed model.

4.1.4 Enhancing the Mode Learning with Auxiliary Features. In the above, the mode preference ηu
is drawn from a symmetric Beta prior. The learning of ηu fully relies on the sequential characteristics
of the the trace data. Here, we further propose to incorporate useful auxiliary features for deriving
the prior knowledge in determining the mode. Our idea is inspired by the observation in Fig. 5.
Although it is difficult to identify the topic mode (since the topic itself is hidden), it is relatively
easy to collect evidence that is useful to identify the volume mode. Intuitively, in a short window,
if multiple attempted problems are from same volume and also have nearby problem IDs, it is
probable to be in the volume mode. We compile a list of such auxiliary features, and derive a feature
vector xu,n for the n-th attempted problem by user u. We then train a binary logistic classifier to
set the mode selection probability. The probability that selects the volume mode can be set below

Pr(yu,n = 1|xu,n ,ϵ ) =
1

1 + exp(−ϵ⊤ · xu,n )
, (1)

where ϵ is the weight vector for the logistic classifier. Once we have obtained the above conditional
probabilities, we can then generate the mode by using ηu as the prior. Unlike ηu , Pr(y = 1|xu,n ,ϵ )
is both user-specific and attempt-specific. Even for the same problem, when it appears in different
sequential contexts, the mode selection probability will vary according to the actual context.
For each attempt, we pre-compute a local volume mode indicator ỹu,n . We set ỹu,n to 1, iff (1)
vu,n−1 = vu,n = vu,n+1 and (2) the problem ID differences are smaller than a threshold of ∆, i.e.,
|qu,n − qu,n−1 | ≤ ∆ and |qu,n − qu,n+1 | ≤ ∆. We set ∆ to 20. ỹu,n can be considered as a good
surrogate of yu,n with evidence gathered for the volume mode. By incorporating the volume mode
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1. For each skill topic k = 1, ...,KS ,
(1) draw a multinomial distribution ϕS

k
∼ Dir (βS );

2. For each volume topic v = 1, ...,KV ,
(1) draw a multinomial distribution ϕVv ∼ Dir (βV ), set ϕVv,q = 0, if vq , v ;

3. For each user u = 1, ..., |U |,
(1) draw a multinomial distribution θSu ∼ Dir (αS );
(2) draw a multinomial distribution θVu ∼ Dir (αV );
(3) draw a Bernoulli distribution ρVu ∼ Beta(ψV );
(4) draw a Bernoulli distribution ρSu ∼ Beta(ψ S );
(5) For each problem qu,n (n = 1, ...,Nu ) in the attemp sequence by u,

(i.) draw the mode variable yu,n ∼ Pr(y |xu,n ,ϵ );
(ii.) draw cu,n by,

cu,n =



1 if yu,n , yu,n−1,

c ∼ Bern(ρVu ) if yu,n = yu,n−1 = 1,

c ∼ Bern(ρSu ) if yu,n = yu,n−1 = 0.

(iii.) sample topic ku,n by,

ku,n =



ku,n−1 if cu,n = 0,

v ∼ Multi (θVu ) if yu,n = 1, cu,n = 1,

z ∼ Multi (θSu ) if yu,n = 0, cu,n = 1.

(iiii.) sample the problem qu,n by,

qu,n =

q ∼ Mul (ϕVv ) if yu,n = 1,ku,n = v,

q ∼ Mul (ϕSz ) if yu,n = 0,ku,n = z.

Fig. 7. The generative process of the two-mode Markov topic model.

indicator ỹu,n , we can derive a series of compositional features based on ỹu,n from a short window
as summarized in Table 4.

4.1.5 Summary. We present the plate diagram of the proposed model in Fig. 6 and its full
generative process in Fig. 7. Apart from hidden topic variables, we also include two binary hidden
variables y and c to control the mode selection and mode continuity respectively. Furthermore,
we introduce a general topic assignment ku,n for both skill and volume topics. Finally, a problem
will be generated according to the corresponding topic model with the control of both y and c . We
present the six generation routes for an attempted problem in Table 3. When c = 1, we need to
sample a new topic assignment for the current problem according to the user-specific preference
distribution as in standard LDA model [5]. The key in discriminating the two modes is the use
of auxiliary features from local attempt context. Although we have two types of topics, namely
volume topics and skill topics, the assignments of volume topics are actually observed. However,
for consistency of derivation, we still treat the volume topic assignments as hidden, which are
generated from a point mass distribution. That is, Pr(v = vq |u,q) = 1 and Pr(v = v ′ |u,q) = 0 for
all v ′ , vq . Recall that our volume topics are truncated to the problems from the corresponding
volume. In other words, Pr(q |v ) = 0 for any v , vq . Based on this, Pr(q |v ) × Pr(v |u) , 0 iff when
v = vq .

ACM Transactions on Information Systems, Vol. 36, No. 3, Article 27. Publication date: April 2018.



27:14 Zhao et al.

4.1.6 Inference and Parameter Learning. In our model, the parameters to learn are topics {ϕSz }
and {ϕVz }, users’ preferences {θ

S
u } and {θ

V
u }, switch distributions {ρVu } and {ρ

S
u }, and the logistic

weights ϵ . The hyper-parameters α , β,ψ are set to small values empirically. We need to infer the
values of hidden variables, i.e., c , y and z.

Let Ψ denote all the hyper-parameters. We first derive the joint likelihood of all the variables
(both hidden and observed) conditional on the hyper-parameters. For clarity of derivation, we do
not expand the probability of Pr (ϕSz ,ϕ

V
z ,θ

S
u ,θ

V
u , ρ

V
u , ρ

S
u ,ϵ |Ψ). The joint likelihood is given below

Pr (k,y,c,q,ϕSz ,ϕ
V
z ,θ

S
u ,θ

V
u , ρ

V
u , ρ

S
u ,ϵ |Ψ)

=

|U |∏

u=1

Nu∏

n=1

Pr (yu,n |u,ϵ )Pr (cu,n |ρu ,yu,n ,yu,n−1)Pr (ku,n |ku,n−1,yu,n , cu,n ,θ
S
u ,θ

V
u )

Pr (qu,n |yu,n ,ku,n ,ϕ
V
ku,n
,ϕSku,n )Pr (ϕ

S
z ,ϕ

V
z ,θ

S
u ,θ

V
u , ρ

V
u , ρ

S
u ,ϵ |Ψ),

(2)

where we use ku,n to denote either type of topics, and the rest factors can be expanded as follows

Pr (yu,n = 1|xu,n ,ϵ ) =
1

1 + exp(−ϵ⊤ · xu,n )
. (3)

Pr (cu,n |ρu ,yu,n ,yu,n−1) =



1 if yu,n , yu,n−1,

ρVu if yu,n = yu,n−1 = 1,

ρSu if yu,n = yu,n−1 = 0.

(4)

Pr (ku,n = k |ku,n−1,yu,n ,θ
S
u ,θ

V
u ) =



I[ku,n−1 = k] if cu,n = 0,

θS
u,k

if yu,n = 1, cu,n = 1,

θV
u,k

if yu,n = 0, cu,n = 1.

(5)

Pr (qu,n = q |yu,n ,ku,n ,ϕ
V
ku,n
,ϕSku,n ) =


ϕSz,q if yu,n = 0,ku,n = z,

ϕVv,q if yu,n = 1,ku,n = v .
(6)

Our objective is to jointly optimize the above likelihood given the hyper-parameters. Since it
involves both observed and hidden variables, it is computationally infeasible to perform direct
optimization. In this work, we develop a method to perform approximate inference following the
standard parameter estimation method for HMMs. Our model captures two types of sequential
relatedness, namely topic-oriented and volume-oriented, in a chain-like structure. The user attempt
sequence essentially forms a Markov chain. The topic assignment of an attempt will depend on its
preceding attempt. Specially, in our model, each hidden triplet 〈cu,n ,yu,n ,ku,n〉 stands for the state
of the current attempt, which consists of three hidden assignments. So, the total number of hidden
states in our model is (2 · |T | + 2 · |V |). For each skill or volume topic, we associate it with two
unique states to indicate whether it follows the previous assignment or is re-drawn. Following the
standard Expectation-Maximization algorithm, we use the E-step is to infer the values for hidden
variables, and the M-step to optimize the parameters. We omit the derivation details, and present
the update formulas for the E-step and M-step.
In the E-step, we perform the calculation for the hidden variables
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E (Cz,q ) =

|U |∑

u=1

Nu∑

n=1

Pr (qu,n = q,ku,n = z,yu,n = 0|qu ), (7)

E (Cv,q ) =

|U |∑

u=1

Nu∑

n=1

Pr (qu,n = q,ku,n = v,yu,n = 1|qu ), (8)

E (Cu,z ) =

Nu∑

n=1

{
Pr (yu,n = 0,yu,n−1 = 1,ku,n = z |qu ), (9)

+Pr (yu,n = 0,yu,n−1 = 0, cu,n = 1,ku,n = z |qu )
}
, (10)

E (Cu,v ) =

Nu∑

n=1

{
Pr (yu,n = 1,yu,n−1 = 0,ku,n = v |qu ), (11)

+Pr (yu,n = 1,yu,n−1 = 1, cu,n = 1,ku,n = v |qu )
}
, (12)

E (Cu,n,i ) = Pr (yu,n = 1|qu ), (13)

E (Cu,n,s ) = Pr (yu,n = 0|qu ), (14)

where qu is the attempt sequence by excluding the n-th attempt.
While for the M-step, we can perform the following update to optimize the parameters

ϕVv,q ∝ E (Cv,q ) + β
V − 1, (15)

ϕSz,q ∝ E (Cz,q ) + β
S − 1, (16)

θVu,v ∝ E (Cu,v ) + α
V − 1, (17)

θSu,z ∝ E (Cu,z ) + α
S − 1, (18)

ρSu =

∑Nu

n=2 Pr (yu,n = 0,yu,n−1 = 0, cu,n = 1|qu ) +ψ
S

∑Nu

n=2 Pr (yu,n = 0,yu,n−1 = 0|qu ) + 2ψ S
, (19)

ρVu =

∑Nu

n=2 Pr (yu,n = 1,yu,n−1 = 1, cu,n = 1|qu ) +ψ
V

∑Nu

n=2 Pr (yu,n = 1,yu,n−1 = 1|qu ) + 2ψV
. (20)

As we also have logistic parameters involved in the model, we need to learn the logistic weights
ϵ by maximizing the following objective function in the M-step.

ϵ
j+1
= argmax

ϵ

|U |∑

u=1

Nu∑

n=1

E (Cu,n,i ) log Pr (yu,n = 1|xu,n ,ϵ ) + E (Cu,n,s ) log Pr (yu,n = 0|xu,n ,ϵ ), (21)

which can be optimized by using a stochastic gradient descent method

∂J (ϵ )

∂ϵf
(22)

=

|U |∑

u=1

Nu∑

n=1

xu,n,f ·

{

E (Cu,n,i ) ·
exp(−

∑

f ϵf · xu,n,f )

1 + exp(−
∑

f ϵf · xu,n,f )
− E (Cu,n,s ) ·

1

1 + exp(−
∑

f ϵf · xu,n,f )

}

,

where ϵf is the weight of the f -feature.
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In order to avoid local minima as commonly encountered when using the EM algorithm, we
train the model with multiple random initializations.

4.2 Difficulty and Expertise Level Estimation using a Competition Model with Topical

Contexts

In the above, we have studied how to learn topics using the two-mode Markov topic model. The
proposed model is able to capture the sequential relatedness from two learning modes. Our final
model outputs a set of skill topics (i.e., {ϕSz }), each of which groups problems with coherent skills
under a specific topic. Now, we continue to study how to estimate user expertise and problem
difficulty levels by introducing a novel competition model. Recall that we have created a virtual
user for each problem (Section 2), we thus do not need to discriminate between user expertise
and problem difficulty unless otherwise specified. Our focus is to predict (1) whether a user u is
qualified to solve a problem q; and (2) whether is a user u is more capable of solving a problem q

than another user u ′.

4.2.1 The Bradley-Terry comparison model. The estimation for user expertise and problem
difficulty levels has been widely studied in the past [13, 21]. Most of existing studies assume that
each user or problem is associated with a single expertise or difficulty score. Our base model is built
on the classic Bradley-Terry model [47], which is the basis of many research works in pairwise
comparison. In the Bradley-Terry model, each player’s strength is represented by a single real
number, and the probability of player u beating player u ′ is modeled as

Pr(u beats u ′) =
exp(eu )

exp(eu ) + exp(eu′ )
, (23)

=

1

1 + exp(−(eu − eu′ ))
,

= S (eu , eu′ ),

where eu and eu′ are the expertise scores of user u and u ′ respectively. The Bradley-Terry model
essentially adopts the sigmoid function which takes the difference between the strengths of the
two players. The actual “competition" case can be very complex, and a single expertise score has a
relatively weak capability to measure the expertise level of a user or a problem in varying contexts.
Hence, we consider incorporating the contextual information for two-player comparison into the
Bradley-Terry model. Given the ECT 〈u,u ′,q〉, a problem has to be specified as the context of a
competition, which is defined below

Pr(u beats u ′ |q) =
exp(e

(q )
u )

exp(e
(q )
u ) + exp(e

(q )

u′ )
, (24)

=

1

1 + exp
(

− (e
(q )
u − e

(q )

u′ )
) ,

= S (e
(q )
u , e

(q )

u′ ),

where e
(q )
u is the expertise score that u attempts on q. In other words, e

(q )
u is the expertise score of

user u with the context of q. As shown in Obs. 3, it is easy to see that the topic information of a
problem is likely to influence its difficulty level. We would like to characterize the topic information
using the extracted skill topics.
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4.2.2 Expertise Modeling with Topical Contexts. In order to define e
(q )
u , we have to consider two

points: (1) how to represent the contextual information from problem q; and (2) how to define the

context-aware expertise score e
(q )
u . First, we extract the skill topic information related to a problem

and define the context as the distribution over the skill topics. Formally, for each problem q, we can
obtain its conditional probabilities in all the skill topics, i.e., {ϕS

k,q
}k . Note that these conditional

probabilities {ϕS
k,q
}k for problem q do not sum to 1. For simplification of notations, we use xq to

denote the KS -dimensional vector consisting of the probability set {ϕS
k,q
}k for problem q. In this

way, the contexts from all the problems can be represented in a unified way. After introducing
topical contexts, we can further define the topic-aware expertise. Formally, we assume that a user

u is associated with a base expertise score bu , which is static and fixed. In addition, let su ∈ RK
S

denote a topic-specific expertise vector for user u, where each entry su,k denotes the expertise level
of user u on the k-th topic. With the above definitions, we can define the expertise score that user
u attempts to solve problem q as follows

e
(q )
u = w⊤ ·

(

xq ⊙ su
)

︸            ︷︷            ︸
problem-specific expertise

+ bu
︸︷︷︸

base expertise

, (25)

where w ∈ RK
S
is a weight vector which measures the global importance for different topics,

xq ∈ R
KS

is a contextual vector with topical information for problem q, and “ ⊙ ” denote the
element-wise product for vectors. By incorporating the problem as context, the topical vector xq

weights the topic-specific expertise vector su in different topic dimensions. In this way, e
(q )
u is

decomposed into two parts, namely base expertise score and problem-specific expertise score.
We further put prior on the model parameters. The base score is drawn from a user-specific

Gaussian distribution, i.e.,

bu ∼ N (µu ,σu ), (26)

where µu and σu are the prior parameters of a Gaussian distribution, which are user-specific.
Similarly, the topic-specific expertise vector can be drawn as follows

su ∼ N (µu , Σu ), (27)

where µu = [µu , ..., µu ]
⊤ is a KS -dimensional vector of µus, and Σu = σu · I is the diagonal matrix

of size KS × KS . In the above, the user-specific prior parameters (µu ,σu ) essentially control both
bu and su . We can put hyper-prior on (µu ,σu ). However, such a full Bayesian approach will make
the optimization too complicated. Hence, we pre-train the classic TrueSkill model [28] to set
the (µu ,σu ). The TrueSkill is a strong skill-based ranking system, in which a player’s skill is
represented as a normal distribution characterized by a mean value and a variance. We use the
learned means and variances to set the (µu ,σu ) in our model. By taking the output of TrueSkill as
prior parameters, we can obtain a high-quality prior and better guide the learning of the parameters.
Finally, we put prior on w , which is drawn from N (0, I ). The overall model description is

summarized in Fig. 8.
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1. Draw a global topic importance vectorw ∼ N (0, I );
2. For each user u = 1, ..., |U |

(1) set µu and σu using TrueSkill;
(2) draw the base expertise score bu ∼ N (µu ,σu );
(3) draw the topic-specific expertise vector su ∼ N (µu ,σuI );

(4) derive the context-aware expertise score e
(q )
u using Eq. 25;

3. For each problem q = 1, ..., |Q|,
(1) derive xq using the topic model in Section 4.1;

4. For each ECT 〈u,u ′,q〉 in the dataset,
i. draw the competition result using Eq. 24.

Fig. 8. The description of the topic-based competition model.

4.2.3 Optimization. After defining e
(q )
u , we can plug Eq. 25 into Eq. 24 and derive the probability

for a ECT 〈u,u ′,q〉, which indicates that u beats u ′ on the problem q. In other words, u successfully
solved q but u ′ failed in solving q. We present the overall objective function to learn the expertise
score using the training ECT set D as below

L (G) =
∑

〈u,u′,q〉∈D

log Pr(u beats u ′ |q,Φ) + λ log Pr(Φ), (28)

where the loss function is essentially a Bayesian decomposition in a log form, and Φ denote all the
related parameter, includingw , base scores {bu } and topic-specific expertise vector {su }.
Note that we have created a virtual user for each problem. We treat the related expertise score

from each virtual user as the difficulty level of its corresponding problem. To generate the training
ECT set {〈u,u ′,q〉}, we need to consider two types of comparisons: (1) a user v.s. a problem, and
(2) a user v.s. another user. The first type is achieved by mapping problems to virtual users, while
the second type can be constructed by selecting intermediate problems. Once the triplets have
been generated, we can adopt the standard Stochastic Gradient Descent approach for parameter
optimization. At each time step, we sample a mini batch of 128 ECTs and then update the parameters
involved in these ECTs.

4.3 Applications of the Proposed Approaches to Online Judge Systems

In this section, we discuss how to apply the proposed approaches to improve OJ systems.

4.3.1 Topic Extraction and Problem Classification. The learned skill topics (e.g., dynamic pro-
gramming, backtracking, etc.) using our proposed two-mode Markov topic model can be helpful to
organize problems in a topical way. Here, we consider a practical application, i.e., how to perform
problem classification based on the learned skill topics. Given a set of predefined categories A, we
would like to classify a problem q using very little labeled data {(q′,aq′ ) |aq′ ∈ A}. We classify a
problem based on the following equation:
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aq = argmax
a∈A

Pr(q |a), (29)

= argmax
a∈A

∏

aq′=a

Pr(q |q′),

= argmax
a∈A

∏

aq′=a

∑

z∈T

Pr(q |z) × Pr(z |q′),

∝ argmax
a∈A

∏

aq′=a

∑

z∈T

Pr(q |z) × Pr(q′ |z) × Pr(z),

where z is a skill topic, and the involved three factors Pr(q |z), Pr(q′ |z), Pr(z) can be directly obtained
using our model. We assume that the number of labeled problems is the same for each category.

4.3.2 Expertise Level Estimation and Competition Prediction. Our expertise model can generate
expertise scores for both users and problems. Since we create a virtual user for each problem,
problem difficulty and user expertise can be measured in the same scale. Following Eq. 24, we can
predict the outcome of (1) an attempt of a user on a problem; or (2) a competition between two
users on a problem.

4.3.3 Problem Recommendation. By combining the above two aspects, the third application aims
to recommend problems to a user by considering both aspects of topical interests and expertise levels.
Intuitively, a user has a topical preference over the problems, and would attempt the problems that
have matched her topical interests. Also, a user cannot solve problems beyond her expertise level.
We can therefore make recommendations of problems to users by combining these two factors.

Specially, we consider two scenarios for recommendation. The first scenario is overall recom-
mendation, which aims to generate a list of time-insensitive recommendations, while the second
scenario is the next-basket recommendation, which predicts the problems that a user is going to
attempt next. Formally, the overall recommendation task can be casted as a similarity evaluation
problem between a user u and q as follows

scoreoverall (u,q) =

{
∑

v

ϕVv,q · θ
V
u,v · ηu +

∑

z

ϕSz,q · θ
S
u,z · (1 − ηu )

}

︸                                                          ︷︷                                                          ︸
Interst

× Pr(u beats uq |q)
︸              ︷︷              ︸

Expertise

, (30)

where Pr(u beats uq |q) is defined in Eq. 24. Our scoring function considers both topical interests
and expertise scores. For topical interest, we further calculate two preference scores for skill and
volume topics respectively.

For next-basket recommendation, we make the prediction based on the users’ preference and
the previous attempt history
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scorenext (u,q) (31)

= Pr(qu,n = q |u,qu,1, · · · ,qu,n−1,Φ)
︸                                       ︷︷                                       ︸

Interst

× Pr(u beats uq |q)
︸              ︷︷              ︸

Expertise

= Pr(yu,n |u,ϵ )

×Pr(cu,n |ρu ,yu,n ,yu,n−1)

×

K∑

z=1

Pr(ku,n = z |ku,n−1,yu,n , cu,n ,θ
S
u ,θ

V
u )

×Pr(qu,n |yu,n ,ku,n ,ϕ
V
ku,n
,ϕSku,n )

×Pr(u beats uq |q),

where the first four terms are defined in Eq. 3 to Eq. 6 respectively, and Pr(u beats uq |q) is defined
in Eq. 24.

Different from conventional recommendation algorithms, we incorporate expertise into consid-
eration for recommendation. We decrease the score of a candidate problem which matches the
interests of a user well but exceeds her expertise level. The learned topic information is mainly
used for interest-driven recommendation, while the learned expertise/difficulty information is
mainly used for expertise-based recommendation. The final recommendation is a balanced trade-off
between these two factors.

5 EXPERIMENTS

In this section, we conduct experiments on the three datasets presented in Table 1 to evaluate our
proposed models on the three application scenarios mentioned in Section 4.3, namely, skill topic
extraction, expertise competition prediction and problem recommendation.

5.1 Skill Topic Extraction

Automatic learning of skill topics for problems is extremely important for OJ systems since the
learned topics can be used to group problems which makes it more easier for users to search for
problems under certain topics.

5.1.1 Experimental setup. Recall that for each of the three datasets, we have the topic or category
labels for a fraction of problems. Hence, our experiments are evaluated only using the partial set
of labeled problems. We evaluate our approach in the following aspects, namely, topic similarity,
topic purity and problem classification.

• Topic similarity: Given a problem q, we can obtain a vector {ϕz,q }z∈T consisting of its
probabilities generated by each topic, where each entry ϕz,q is the probability of problem
q generated by topic z. The intuition is that if two problems are from the same category,
then their topic-probability vectors should be also similar. Based on this idea, given two
categories, we compute the average similarity between the learned topic-probability vectors
for the problems in the two categories. Formally, let C1 and C2 denote two labeled problem
sets, each of which corresponds to a category. We compute the pairwise similarities between
two categories as follows

sim(C1,C2) =
1

|C1 | ∗ |C2 |

∑

q∈C1

∑

q′∈C2

∑

z∈T ϕz,q · ϕz,q′

‖ ϕ ·,q ‖2 · ‖ ϕ ·,q′ ‖2
, (32)
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where we use the cosine similarity to measure the similarity between two topic-probability
vectors.
• Topic Purity: Topic models can be considered as a soft clustering of items. Hence, we

measure the quality of the generated skill topics using purity, a commonly used metric for
clustering evaluation. Given a topic, we take the top ten problems to form a cluster. Then
we compute the purity score for a set of topics as follows

Purity (T ) =
1

|T |

∑

z∈T

N
(z )
amax

∑

a′ N
(z )
a′

, (33)

where N (z )
a denote the number of problems with the category label a and amax is the most

common category label in topic z.
• Problem classification: The eventual goal of learning skill topics is to classify problems into
categories. We follow the derivations in Section 4.3 to classify a problems as follows

aq ∝ argmax
a∈A

∏

aq′=a

∑

z∈T

Pr(q |z) × Pr(q′ |z) × Pr(z), (34)

where we only use five labeled problems for each category. Since it is a multi-classification
task, we use the F1 and accuracy as the evaluation metrics.

5.1.2 Methods to Compare. We compare our model with three topic models and a Hidden
Markov Model.

• LDA: We use the Latent Dirichlet Allocation [5] to generate skill topics. We first combine
all the attempted problems by a user as a document, then run the standard LDA model
using GibbsLDA++ [41]. LDA does not consider the order of word tokens, and it cannot
discriminate between skill topics and volume topics. We apply the default settings in [22],
i.e., α = 50/K , β = 0.01.
• LDAtext : Instead of using problems as word tokens, we directly crawl the textual problem

descriptions from OJ websites. Then we remove the stopwords and run the standard topic
extraction using the LDA model. Note that in this method, we cannot learn problem
topics but instead word topics. Hence, we only use LDAtext in the evaluation of problem
classification. The hyper-parameters are set as α = 50/K , β = 0.01.
• HTMM: It is the Hidden Markov Topic Model [24], in which the order of tokens has been

characterized based on the first-orderMarkovian property. In our setting here, the attempted
problem sequence from a user is considered as a document. The hyper-parameters are set
as α = 1 + 50/K ,η = 1.01.
• HMM : It is the standard first-order Hidden Markov Model, which is used to characterize the
attempted sequences. For fairness, we implement the HMM model using Gibbs sampling,
where the state hidden variables can be considered as problem topics.
• Our model: It is our proposed model in Eq. 29. We only use the learned skill topics for
evaluation. The hyper-parameters are set as follows: αV = αS = 1 + 50/K , βV = βS =

1.01,ψ = 0.01.

We set the number of topics to 40 for all the compared methods based on a validation set of 10%
training data.

5.1.3 Results and Analysis. We first present the results of topic similarity on the Timus dataset
in Figure 9. We use the heatmaps to visualize the pairwise similarities between two categories. It
can be observed that our model produces a clear diagonal lines consisting of large similarity values,
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while the other three methods have even distributions for category similarities. The results indicate
that our generated skill topics are very effective to discriminate problems from different categories.
We also find hat it is not easy to learn clear skill topics using traditional models like LDA and HMM.
One main reason is that the generation of attempt sequences is a mixture of two learning modes.
while the baselines can only consider one of the two modes.
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Fig. 9. Heatmaps for pairwise category similarity measured by different topic
models on the Timus dataset.

Next, we present the purity scores of different methods on the three datasets in Figure 10. We
vary the number of topics (or states in HMM) from 10 to 50 with a step of 10. It can be observed that
our model is consistently better than the baselines in all the cases. For our model, a topic number
of 20 gives best performance on the datasets of POJ and HDU, while a topic number of 10 gives
best performance on the dataset of Timus. The main reason is that Timus has fewer problems than
the other two OJ websites.
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Fig. 10. Purity scores of different methods on three datasets.

We finally present the results of problem classification in Table 5. We can make the following
observations. First, the text-based LDAtext model is muchworse than the problem-based LDAmodel,
which indicates that the textual content is less useful for inferring the problem topics. Our result is
consistent with the finding in [50], where it has shown that often times the problem statements
are obscure for determining the topic information. Overall, the baseline HTMM performs the
best among all the baselines, since it considers the sequential relatedness. Our model significantly
improves over all the baselines with a large margin, which demonstrates the effectiveness of our
model on problem classification.

5.1.4 Effect of different mode features. In our model, we incorporate a binary logistic classifier
component for predicting the learning mode yu,n for the n-th attempted problem from a user u
based on a set of features. When yu,n = 1, it is the volume mode, and when yu,n = 0, it is the topic
mode. Our features mainly consist of the features derived from local volume mode indictors ỹu,n in
a window with the size set to five (See Section 4.1.4). We report the learned feature weights of our
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Table 5. Performance comparison for problem classification on three datasets.

Methods
PO J Timus HDU

F1 Accuracy F1 Accuracy F1 Accuracy

LDA 0.659 0.713 0.464 0.49 0.564 0.596
LDAtext 0.382 0.413 0.341 0.392 0.387 0.396
HMM 0.605 0.647 0.568 0.596 0.546 0.592
HTMM 0.627 0.667 0.473 0.493 0.561 0.613

Our model 0.751 0.817 0.644 0.707 0.724 0.788

model on the Timus dataset in Table 6. It is clear to see that the weights of volume-related features
are positive while the weights of skill-related features are negative, which confirms to our intuition.

Table 6. Effect analysis of the weights for different features. I[·] is an indicator
function which returns 1 iff when the condition is true.

Mode Feature Formulations Weight

local volume continuity I[ỹu,n−1 = 1 and ỹu,n+1 = 1] 1.243
local skill continuity I[ỹu,n−1 = 0 and ỹu,n+1 = 0] -3.186
forward volume continuity argmaxk,k≤5,k≤n[ỹu,n−k = ... = ỹu,n−1 = 1] 1.261
backward volume continuity argmaxk,k≤5,k+n≤Nu

[ỹu,n+1 = ... = ỹu,n+k = 1] 1.261
forward skill continuity argmaxk,k≤5,k≤n[ỹu,n−k = ... = ỹu,n−1 = 0] -0.201
backward skill continuity argmaxk,k≤5,k+n≤Nu

[ỹu,n+1 = ... = ỹu,n+k = 0] -0.775

mode ratio
∑

n+i∈window I[ỹu,n+i=1]
2×sz 0.02

weighted mode ratio
∑

−a≤i≤sz,i,0
1
i
× I[ỹu,n+i = 1] 0.21

bias term b 1.519

Summary. Our model can effectively discriminate between the two learning modes, and generate
clear skill topics. The learned skill topics enhance the within-category similarity and reduce the
cross-category similarity. These topics have a higher purity score than the baselines. Moreover,
they are helpful to improve the performance of problem classification.

5.2 Evaluation on Expertise Competition Prediction

Problem difficulty and user expertise estimation has been a hot research topic in educational data
mining [11, 42, 64]. It is particularly useful to help schedule the curriculum and practice for students.
In this part, we examine the performance of the proposed model on user expertise estimation.

5.2.1 Experimental Setup. In our task, it is infeasible to assign an absolute score to measure
the difficulty level of a problem or the expertise of a user. Following the idea in ranking-based
competition systems [28], we propose to use the competition based comparisons for evaluating the
performance of various methods. Specially, we consider two kinds of competition scenarios, i.e., a
user v.s. a problem and a user v.s. another user.
We first generate the labeled competitions between a user and a problem. Given a user u and

an attempted problem q, there can be two outcomes, either accepted or non-accepted. We use
UQ −AC andUQ − NAC to denote these two types. Next, we generate the labeled competitions
between two users. Sometimes, it might be difficult to make a direct comparison between two users
since they may have expertise in two different areas. For example, a user may be good at dynamic
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Table 7. Statistics of the three competition types on three datasets.

Datasets #UQ-AC # UQ-NAC # UUQ

Timus 1, 004, 817 118, 396 966, 438

POJ 2, 897, 504 193, 960 5, 213, 181

HDU 2, 473, 997 121, 157 3, 550, 390

programming while another may be good at graph algorithms. Hence, it would be sensible to
include a problem as the context. In this case, we essentially predict the outcome for the competition
triple 〈u,u ′,q〉, i.e., whether user u is more capable than user u ′ for problem q. To generate such
labeled triplets, we start by selecting a difficult problem, e.g., the problems with fewer than 500
accepted solutions. Given a selected problem, we further select a user pair, in which a user has
solved this problem while the other user has failed in this problem. We denote the third competition
type byUUQ . In this way, we can generate a large amount of labeled ECTs. We combine the labeled
competitions for different types of competition scenarios and form a final evaluation set. We present
the statistics of the thee competition types in Table 7.
Since our datasets are imbalanced as there are more UQ − AC competitions than UQ − NAC

competitions, we perform oversampling to duplicateUQ − NAC competitions by five times. We
then randomly split the labeled competitions with a ratio of 4:1 into training and test sets. For the
training set, we take 10% to form the development set for optimizing model parameters. In our
experiments, accuracy is used as the evaluation metrics, which is defined as follows:

ACC =
#correctly_predicted_competitions

#all_competitions
. (35)

5.2.2 Methods to Compare. The methods to be evaluated in our data are listed below:

• TrueSkill: The TrueSkill ranking system [28] is a skill based ranking system for Xbox Live
developed at Microsoft Research. For each player, it characterizes her average skill and the
degree of uncertainty in the player’s skill. We use the open source implementation from
http://trueskill.org.
• Bradley-Terry: In the Bradley-Terry model, each player u’s strength is represented by a
single real number eu , and the probability of player u beating player u ′ is modeled as

Pr(u beats u ′) =
1

1 + exp(−(eu − eu′ ))
. (36)

• PageRank: We follow [33] to build a competition graph consisting of users and problems as
vertices. Then we run the standard PageRank algorithm on the competition graph. The
final competition results are derived by comparing the PageRank scores.
• Blade-chest: Unlike standard preference-learning models that represent the properties of

each item/player as a single number, the blade-chest method [8] infers a multi-dimensional
representation for the different aspects of each item/player’s strength. We use the open-
source implementation from https://github.com/csinpi/blade_chest.
• AC rank: We simply rank users by their number of solved problems. Note the AC rank
method can only predict the competition result between two users.
• Our model: It is our proposed model in Eq. 24, in which we use the topic-related information

from problems as the context for competition. Similar to the blade-chest model, we charac-
terize the skill-specific expertise by a multi-dimensional representation. Note that we also
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incorporate a base expertise in the proposed model. In addition, we consider two variants
by removing the skill-specific expertise or base expertise, denoted by our model¬skill and
our model¬base respectively. We set the number of topics K to 40.

It is worth noting that all the baselines cannot utilize the problem information in theUUQ com-
petitions, since they can only characterize pairwise user expertise comparison without modelling
problem context.

5.2.3 Results and Analysis. We report the performance of competitions in Table 8. We can make
the following observations.

• TrueSkill performs very well for the competition typeUQ −AC , but poorly forUQ − NAC .
One main reason we have found is that TrueSkill tends to assign a higher expertise score to
a user than a problem in the user-problem competition, since the majority of the attempted
problems are essentially solved by users (See Table 7). Although oversampling can alleviate
this problem to some extent, TrueSkill is still sensitive to data imbalance.
• Compared with TrueSkill, Bradley-Terry and PageRank performs worse on UQ −AC but

better for the other two types. We have empirically found that Bradley-Terry and PageRank
seem to be more robust to deal with imbalanced training data.
• The simple baseline AC rank works well for predictingUUQ competitions. The AC rank
method is effective to discriminate between a skilled user and a new user. And ourUUQ

competitions are created by first selecting difficult problems, which tends to generate more
comparisons between users with different expertise levels.
• Blade-chest performs the best among all the baselines. It uses a multi-dimensional rep-
resentation to characterize a player’s skill in multiple latent dimensions, which tends to
represent users’ expertise more accurately.
• Our model is consistently better than all the baselines in all three competition types. The
improvement over TrueSkill on UQ − AC is relatively small, but the improvement on
the other two types is significant. We also report the performance from the variants by
removing skill-specific or base expertise. As we can see, the incorporation of skill-specific
expertise is the key to yield the major improvement.

Table 8. Performance comparison for expertise competition prediction on three
datasets.

Methods
PO J Timus HDU

UQ-AC UQ-NAC UUQ UQ-AC UQ-NAC UUQ UQ-AC UQ-NAC UUQ

TrueSkill 0.922 0.645 0.831 0.942 0.635 0.826 0.945 0.689 0.828
Bradley-Terry 0.899 0.711 0.844 0.909 0.823 0.832 0.922 0.803 0.833
PageRank 0.901 0.793 0.834 0.912 0.831 0.855 0.902 0.815 0.831
Blade-chest 0.885 0.824 0.875 0.858 0.844 0.866 0.889 0.814 0.863
AC rank — — 0.853 — — 0.857 — — 0.846

our model¬base 0.924 0.851 0.870 0.942 0.872 0.888 0.939 0.876 0.881
our model¬skill 0.918 0.847 0.865 0.923 0.865 0.887 0.932 0.865 0.878

our model 0.929 0.868 0.884 0.944 0.874 0.897 0.943 0.881 0.886

5.3 Evaluation on Problem Recommendation

We finally consider the evaluation on problem recommendation. Question recommendation can
be utilized to improve OJ systems by recommending appropriate problems to users which could
significantly reduce users’ search efforts and improve user experience.

ACM Transactions on Information Systems, Vol. 36, No. 3, Article 27. Publication date: April 2018.



27:26 Zhao et al.

5.3.1 Experimental Setup. To make our evaluation more practical, we consider two recommen-
dation scenarios. The first one is overall recommendation, which aims to recommend a list of
problems based on the problems already attempted or solved by a user. The second one is next-
basket recommendation for predicting the problems that a user is going to attempt in the next time
period.

For overall recommendation, we randomly split the attempted or solved problems by a user with
a ratio of 4:1 into training and test data. Similar to Information Retrieval, we use Precision@k and
Recall@k as the evaluation metrics.

For next-basket recommendation, we hold out the last ten attempted or solved problems by a
user. Then we predict the held-out problems for a user in a sequential manner. In each time period,
we assume that all the previous problems have already been observed, and we predict what the
next problem is going to be for a user. Following [60], we adopt hit@k as the evaluation metrics,
which calculates the ratio of the correct predictions in the top ten recommendations for all the
users.
For both tasks, we set k to 10. Specifically, for both recommendation scenarios, we can also

consider either the attempted problems or the solved problems as the ground truth. The attempted
problems reflect users’ interest, while the solved problems reflect both interest and expertise for
users. We learn the models on the training data and examine its performance on the test data. We
take 10% users from the training data as the development set to optimize model parameters.

5.3.2 Methods to Compare. We first present the methods to compare for overall recommendation.

• UserKNN : It is a classic collaborative filtering algorithm, which make the recommendations
based on the top similar neighbors. We apply the Jarccard coefficient to find the most
similar neighbors for a user based on her historical data. The number of similar neighbors
is set to 50.
• PMF : It is the commonly used Probabilistic Matrix Factorization [37] model. We run the
standard implementation of PMF on user-item interaction matrix. The number of latent
factors is set to 40.
• BPR: It is the Bayesian Personalized Ranking model [48], which proposes a generic optimiza-
tion criterion for personalized ranking that is the maximum posterior estimator derived
from a Bayesian analysis. The number of latent dimensions is set to 40. BPR is a widely
used baseline for recommendation with implicit feedback.
• NCF : It is the Neural Collaborative Filtering model [27], which utilizes deep learning

techniques to enhance the modeling of user-item interactions. We follow the optimal setting
tuned by [27] with three hidden layers. We also pretrain the NCF model as suggested in
[27], which is important to improve its performance.
• Our model: It is our proposed model, which ranks the problems according to Eq. 30. We also
consider two variants of our model, which either removes interest modeling or expertise
modeling. We denote the two variants by our model¬int and our model¬exp . The number of
topics is set to 40.

Next, we present the methods to compare for next-basket recommendation.

• TOP : It is the frequency based recommendation method as mentioned before.
• MC: It is the frequency based Markov Chain model, which estimates the transition proba-
bility between two problems using the maximum likelihood estimation method.
• FPMC: It is the Factorized Personalized Markov Chain (FPMC) model [49], which subsumes

both a common Markov chain and the normal matrix factorization model. It is an extension

ACM Transactions on Information Systems, Vol. 36, No. 3, Article 27. Publication date: April 2018.



Automatically Learning Topics and Difficulty Levels of Problems in Online Judge Systems 27:27

of the BPR model for the next-basket recommendation. The number of latent factors is set
to 40.
• HRM: It is the Hierarchical Representation Model (HRM) [60] for next-basket recommen-
dation. HRM can capture both sequential behavior and users’ general taste by involving
transaction and user representations in prediction with distributed representations. The
number of embedding dimensions is set to 40.
• Our model: It is our proposed model, which ranks the problems according to Eq. 31. We

also consider two variants, which either removes interest modeling or expertise modeling.
We denote the two variants by our model¬int and our model¬exp . The number of topics is
set to 40.

5.3.3 Results and Analysis. We first present the results for overall recommendation in Figure 11
and 12, which consider the attempted problems or the solved problems for recommendation
respectively. We can make the following observations:

• The two baselines PMF and BPR give similar performance on the three datasets. Both
methods adopt the latent representations to characterize the user preference. The classic
UserKNN method performs very well and even slightly outperforms PMF and BPR. One
main reason is that OJ systems are an open competitive platform, where a user can trace all
the attempt records of others. In this way, users are likely to follow the attempt traces of
those who have a similar expertise level, which makes similar users become more similar.
• The NCF model performs best among all the baseline methods. It utilizes a multi-layer

perceptron component to characterize the complex user-item interactions, which is ideally
to be able to model arbitrary binary interaction relations.
• Our proposed model is consistently better than the baselines. An interesting observation is

that the improvement over the baselines in the solved-problem recommendation is more sig-
nificant than that in the attempted-problem recommendation. Attempted-problems mainly
reflect users’ interest, while solved-problems reflect both users’ interest and expertise.
Hence, our model can gain more improvement for the recommendation of solved-problem
recommendation by modeling both interest and expertise.
• By looking into Figure 11, we can see that the variant by excluding the expertise part is
only slightly worse than the complete model with both parts, i.e., our model¬exp ≈ our
model, in recommendation of attempted questions. However, as shown in Figure 12, the
difference between these two variants become more significant in the recommendation for
solved problems. In practical applications, we should recommend problems which match
both users’ interest and expertise.

Next, we continue to examine the performance of different methods for next-basket recommen-
dation. We present the results in Table 9. We can make the following observations:

• For the baselines, we have the performance ranking as: HRM > FPMC > MC > TOP .
The simple baseline TOP performs the worst and MC improves over TOP in most cases,
especially on the dataset of Timus. This is because Timus has fewer problems, in which the
frequency-based method can achieve more reliable estimations.
• FPMC further improves over MC by modeling the transitions using matrix factorization,
which can alleviate the problem of data sparsity for estimation. The HRM model performs
the best among all the baselines, which applies the distributed representations to solve
next-basket recommendation.
• Our proposed model is consistently better than the baselines, which characterizes the
sequential recommendation with a two-mode topic modeling approach. One key merit
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Fig. 11. Performance comparison for overall recommendation with the a�empted

problems as ground truth on three datasets. The improvement of our complete
model over the best baseline is significant at the confidence level of 0.95.
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Fig. 12. Performance comparison for overall recommendation with the solved

problems as ground truth on three datasets. The improvement of our complete
model over the best baseline is significant at the confidence level of 0.95.

of our model is that it can utilize auxiliary information to enhance the mode learning. In
recommendation, we only utilize the features extracted from the preceding attempts.
• By examining the variants of our model, it is easy to see that modeling interests is im-
portant for recommendation. Similar to the finding in Figure 11 and 12, the improvement
of the complete model over the variant our model¬exp in terms of the solved-problem
recommendation is more significant than the attempted-problem recommendation.

Summary. By combing the results in Figure 11, 12 and Table 9, we can find our proposed model
can make more accurate problem recommendation by matching both the interest and expertise of
a user.

6 RELATED WORK

In this section, we review the related work in four aspects. The first two aspects are mainly related
to our tasks, while the last two aspects are mainly related to our models. We also discuss the major
differences of our proposed approaches in comparison with the previous work.
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Table 9. Performance comparison for next-basket recommendation using hit@10
on three datasets. “**" indicates the improvement over the best baseline is signifi-
cant at the confidence level of 0.99.

Methods
Attempted problems Solved problems

POJ Timus HDU POJ Timus HDU

TOP 0.139 0.194 0.122 0.136 0.176 0.171
MC 0.145 0.336 0.183 0.106 0.354 0.276

FPMC 0.274 0.322 0.297 0.291 0.336 0.302
HRM 0.287 0.339 0.312 0.309 0.363 0.351

our model¬exp 0.346 0.396 0.355 0.331 0.379 0.369
our model¬int 0.027 0.104 0.085 0.078 0.091 0.087
our model 0.355** 0.402** 0.388** 0.389** 0.412** 0.407**

6.1 Cognitively Diagnostic Assessments and Knowledge Tracing

Our work is closely related to the Cognitively Diagnostic Assessments (CDA) originated from
educational psychology [19, 38]. CDA aims to diagnose students’ strengths and weaknesses and
to provide specific information in the form of skill mastery profiles using Cognitive Diagnosis
Models. Traditional models often employed item response theory (IRT) or classical test theory
(CTT), which was developed by modeling the probability that a learner was able to correctly solve
a problem [20]. For CDA, a key task is to measure the specific ability level of a learner on multiple
skills or knowledge components. A widely used mathematical formulation is the well known
Q-matrix [3, 58], which is typically a binary matrix establishing the relationship between responses
and attributes (i.e., skills) by indicating the required attributes for each question. To construct
a Q-matrix, experts in a particular domain usually need to specify the correspondence between
attributes and key knowledge or skills for students to acquire [16]. The manual construction of the
Q-matrix in the early stage is time-consuming. It is therefore essential to construct the Q-matrix
automatically. During the past decade, the problem of how to map test questions into latent skills
based on students’ test responses has become a hot research topic in Educational Data Mining
(EDM) [17, 26]. Typical approaches include the well-known DINA model based Q-matrix learning
approach [14, 15], which adopts the EM algorithm to solve the Q-matrix. By factorizing the user-
question response data matrix, Matrix Factorization (MF) has been applied to automatically learn
the Q-matrix from the students’ item response matrix [17, 18]. More recently, fuzzy cognitive
diagnosis framework has been proposed to model the skill proficiency of examinees [61].
Knowledge tracing is a common task in EDM, which aims to model student knowledge over

time for the predictions of students’ performance in near future [11]. A popular knowledge tracing
approach is Bayesian Knowledge Tracing (BKT) [64]. BKT characterizes a learner’s latent knowledge
state as a set of binary variables, corresponding to the learners’ understandings on different concepts.
Furthermore, such knowledge states are traced in a sequential manner based on Markov models.
Many extensions have been proposed to improve BKT, including contextualization of guessing and
slipping estimates [12] and estimating prior knowledge for individual learners [39]. More recently,
various approaches have been developed by applying new data models to knowledge tracing, such
as Markov decision processes [45], sparse factor analysis [31], and recurrent neural networks [42].
These sequence models typically assume that the current state depends on historical information
but did not explore well users’ sequential behavior characteristics.
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6.2 User Learning Behaviors/Characteristics

Our work is related to the traditional studies on behavioral characteristics or patterns in the learning
process. Bransford et al. [6] presented a thorough and comprehensive summarization and review
of human being learning in various aspects, including learners and learning, teachers and teaching,
and learning environments. One interesting topic is to study how the arrangement of practice
sets affects the learning of students [51]. Two fundamental ways of arrangement are blocked and
mixed view. Mixed view refers to distributing practice questions on the same topic across many
practice sets, while blocked view refers to organizing practice questions on the same topic in
a single practice set. With the mixed view, it has been found that spacing provides review and
improves long-term retention, and mixing improves students’ ability to pair a problem with the
appropriate concept and procedure [52].
Our work is also related to self-regulated learning, which refers to learning that is guided by

metacognition and motivation to learn [56]. As an important research subject, metacognition
describes the processes involved when learners plan, monitor, evaluate and make changes to their
own learning behaviors. Based on the concept of metacognition, “self-regulated" describes a process
of taking control of and evaluating one’s own learning and behavior [66].

Furthermore, our work is related to the mining of programming trace data, including the devel-
opment of online judges [35, 40, 50], hint generation in problem solving [43], and modeling how
students learn to program [44].

6.3 Expertise Learning using Comparison-based Competitions

Measuring the question difficulty and student ability is related to the work of learning and mining
expertise in both general and domain-specific settings. In games and matches, the competition-
based ranking methods have also been widely studied [13, 21], where the aim is to evaluate the
skill level of each involved player. These studies typically only use a scalar value as the measure of
the skill rating of an individual player. By extending the two-player model, TrueSkill [28] is able to
characterize a multi-player setting by incorporating a dynamic variance.
In sociology, it is a common sense that competition is usually correlated with expertise [62].

Following this, many studies try to model the expertise level of a user using a competition-based
ranking approach, e.g., community question and answering platforms [33] and generalized crowd-
sourcing systems [10]. More recently, Chen et al. [8, 9] have proposed to use low-dimensional
latent representations for modeling match-ups and preferences. By modeling comparison-based
preference, we can essentially perform any ranking task. For example, in information retrieval
(IR), learning to rank aims to learn the ranking for a list of candidate items with manually selected
features [34].
Another related topic is to mine and measure expertise using social data. Since the direct

performance data is infeasible to obtain in many scenarios, much research tried to leverage social
data to estimate the expertise level of users, including enterprise-specific social data [25], community
question and answering data [63], and microblogging data [65].

6.4 Topic Modeling and User Interest Profiling

Topic modeling is a type of statistical model for discovering the abstract “topics" that occur in a
collection of documents. The pioneering models include Probabilistic Latent Semantic Analysis
(PLSA) [29] and LDA [5] which mainly characterize a set of topics and document-specific distribu-
tions over these topics. The topics are modeled by multinomial distributions over the terms in a
vocabulary, and the top ranked terms in a topic are supposed to provide a word-level semantic ex-
planations for the underlying topic. The standard topic models (e.g., LDA) make the exchangeability
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assumption for the word tokens in a document. Subsequently, the assumption was relaxed in many
ways, such as the modeling of the topic correlation [4] and hierarchical topic structure [59]. The
most relevant study is the incorporation of topic dependence between consecutive word tokens. A
commonly adopted strategy is to assume the topic label of the current word depends on that of the
previous word, so called hidden Markov topic model [23, 24].

Furthermore, topic models have been applied to learn user interests in many tasks. A represen-
tative work is the Author-Topic Model [55], in which an author has an interest distribution over
topics in text generation. More recently, topic models have been adapted to model users interest
profiles in various applications, including trajectory mining [32], sentiment analysis [46], and
recommender system [36].

Differences with Previous Work. Our work focuses on improving OJ system by mining users’
learning trace data. In particular, we select the programming OJ systems [50] as the testbed.
Mining users’ learning traces from online learning platforms, such as traditional intelligent tutoring
systems [2, 30] and MOOC [1], has received much attention in the past. Most of the existing studies
have been conducted on private and/or well-organized learning or tutoring systems, in which the
students are well monitored and instructed in the process of learning. We also aim to understand
how students learn and behave on online learning platforms [53], but with a particular focus on
OJ systems, which represent public and self-regulated learning systems. Since there is a lack of
supervisions and feedbacks from teachers, our task setting is more challenging than that in existing
studies. To the best of our knowledge, our work is the first that focuses on understanding users’
learning behaviors by mining users’ learning traces on OJ systems.

7 CONCLUSION

In this work, we studied how to automatically mine topic and difficulty information from users’
learning traces on OJ systems. Our analysis on users’ learning traces leads to an important finding:
there are two major learning modes on OJ systems, where users either choose questions sequentially
from the same volume regardless of their topics or identify questions from multiple volumes but all
about the same topic for practice. Based on this observation, we proposed a novel two-mode Markov
topic model, which can jointly characterize the two learning modes, for topic detection of online
problems. With the learned topic information, we developed a topic-aware competition-based
expertise model. Extensive experiments on three large online judge datasets have demonstrated
the effectiveness of our approach in three different tasks, including skill topic extraction, expertise
competition prediction and problem recommendation. We believe our work will be of great value
to improve online education services.

In our current work, wemainly consider the sequential characteristics in users’ learning behaviors.
On programming OJ systems, topics and difficulty levels of problems remain relatively stable, but
the topical interests and expertise levels of users are likely to evolve over time. Recently, recurrent
neural networks have been shown to be effective as a general approach to modeling temporal
dynamics and dependency in sequence data. It is thus possible to model users’ interest and expertise
evolvement using sequential neural network models in future work. Also, we did not utilize problem
descriptions here. We will study how to extract useful topic information from problem descriptions
by jointly modeling text content and user behavior. As the future work, we will also consider
evaluating our proposed approaches on other types of online learning or question-answering
systems, such as MOOC and Quora.
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