Automatically Optimizing Secure Computation

Florian Kerschbaum
SAP Research
Karlsruhe, Germany
florian.kerschbaum@sap.com

ABSTRACT

On the one hand, compilers for secure computation pro-
tocols, such as FairPlay or FairPlayMP, have significantly
simplified the development of such protocols. On the other
hand, optimized protocols with high performance for special
problems demand manual development and security verifi-
cation. The question considered in this paper is: Can we
construct a compiler that produces optimized protocols? We
present an optimization technique based on logic inference
about what is known from input and output. Using the
example of median computation we can show that our pro-
gram analysis and rewriting technique translates a FairPlay
program into an equivalent — in functionality and security
— program that corresponds to the protocol by Aggarwal et
al. Nevertheless our technique is general and can be applied
to optimize a wide variety of secure computation protocols.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Optimiza-
tion; D.4.6 [Operating Systems]: Security and Protec-
tion— Cryptographic controls

General Terms

Security, Programming Languages

Keywords

Secure Two-Party Computation, Programming, Optimiza-
tion

1. INTRODUCTION

Secure (Multiparty) computation protocols [4, 7, 15, 31]
allow a number of parties the computation of a function on
joint input without disclosing anything except what can be
inferred by one party’s input and output. This offers an
intriguing solution to many real-world problems where col-
laboration is prevented by the reluctance to disclose one’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCS’11, October 17-21, 2011, Chicago, Illinois, USA.

Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

data. Privacy-preserving data mining [2, 21] is just one ex-
ample of many.

Secure computation protocols are notoriously difficult to
develop, since they require a high degree of domain exper-
tise. Compilers, such as FairPlay [23] or FairPlayMP [6],
have significantly simplified their development. They im-
plement general techniques — the protocols of Yao [31] and
Beaver et al. [4], respectively — in a cryptographic protocol
layer and translate a program describing the ideal function-
ality into a circuit that is then interpreted by this layer. This
reduces the development of the protocol to programming the
ideal functionality.

Unfortunately, the compiler approach can be quite inef-
ficient and is currently not amenable to large problem in-
stances. Fortunately, a large body of work exists on opti-
mized secure computation protocols for special problems.
Besides the specification of the protocol itself, optimized
protocols usually require a hand-crafted proof of security.
These proofs are difficult and can be omitted in the com-
piler approach, since they are implicit in the cryptographic
protocol layer.

Naturally, the question arises if a compiler could also pro-
duce optimized protocols. In programming languages the
optimizing techniques of compilers have already overtaken
the capabilities of even the most skilled assembler program-
mers. In this paper we present an optimization technique for
a secure computation compiler. To the best of our knowl-
edge this is the first such technique. Our optimizer takes as
input a FairPlay program in the Secure Function Definition
Language (SFDL). It outputs a Java program with several
calls to FairPlay as a subroutine.

The basic idea is as follows: Everything that can be in-
ferred from one’s input and output is known. All known in-
formation can be revealed during the computation and does
not have to be computed securely. Via logic inference we
(under-) estimate the knowledge of each agent about a pro-
gram’s variables. Then we extract all operations on known
data to the Java program of the local agent. This can signif-
icantly reduce the functionality that needs to be computed
securely and the size of the circuit(s).

This paper contributes

e logic inference rules about an agent’s knowledge in a
SFDL program.

e a program transformation based on the result of the
inference.

e an evaluation based on example applications of median
and weighted average.

‘We present our optimization technique using a running ex-
ample of median computation. In Section 2 we present this
example in detail with program code for SFDL, optimized
version as suggested by Aggarwal et al. [1] and performance
comparison. Then, based on this example we show our in-
ference rules and transformation technique in Section 3. We
report our evaluation including the examples of oblivious
transfer and weighted average in Section 4. Finally, we de-
scribe related work in Section 5 and conclude the paper in
Section 6.

2. RUNNING EXAMPLE

As a running example in this paper we consider the joint
computation of the median. We consider two parties — Alice
and Bob — and each party has a set of n (distinct) integers.
Alice and Bob want to jointly compute the median element
of the union of their sets without disclosing anything else.

We implement the distributed algorithm by Aggarwal et
al. [1]. Let each party’s set be sorted in ascending order.
The algorithm proceeds in several rounds. In each round
each party chooses the median element of its set and then
the parties compare these two elements. The party with the
lower median disposes all elements below its median and the
party with the higher median disposes all elements above its
median. They begin a new round with these newly formed
sets until each set has size 1 in which case they choose the
lower one as the joint median.

We implemented this algorithm in SFDL of the FairPlay
system [23]. This is not straightforward, since efficiently ac-
cessing the median of a variably sized array requires division
which is not available in SFDL. This problem can be avoided
by unrolling the loops and precomputing the division. In
order not to complicate the exposition we choose n = 2.
Furthermore, to simplify the analysis to be presented in this
paper we replace arrays with structures of scalar variables.
The resulting program is depicted in Listing 1.

Aggarwal et al. [1] not only present a distributed algo-
rithm, but a distributed, secure protocol. The key insight
of their protocol is that given the output of the joint me-
dian, the result of each comparison can be inferred. Then,
in order to implement an efficient, secure algorithm it is only
necessary to implement the comparisons using secure com-
putation and all other operations can be implemented locally
at the party’s site. In Listing 1 the two relevant comparisons
are depicted in lines 17 and 25.

The protocol by Aggarwal et al. can no longer be im-
plemented as a single FairPlay program. Instead we im-
plemented it using the L1 language and system for mixed-
protocol secure computation [30]. The resulting program is
depicted in Listing 2.

In L1 the same program is executed by both parties; ex-
cept lines preceded by numbers are only executed by the
parties with the respective identifiers. These identifiers are
also returned by the call to the built-in function id(). The
function call comp32 in lines 9 and 17 invokes a secure com-
putation of a comparison using the local input z, i.e. each
party submits its variable x to a joint secure computation
protocol.

The similarity between the two programs is not surpris-
ing, since they implement the same algorithm. Nevertheless,
they compile into two very different protocols. While the
FairPlay program implements Yao’s protocol, the L1 pro-
gram invokes secure computation only for the comparisons.

21

26

31

17

22

27

program Median {

type
type

type
type

type
type

type

Int <32>;
struct {Elem x,
Elem

Elem
Alicelnput

AliceOutput
Boblnput

Elem;
struct {Elem x,
Elem

BobOutput = Elem;

Input = struct {Alicelnput alice,
Boblnput bob };

struct {AliceOutput alice ,
BobOutput bob };

Output =

function Output out (Input in) {

L

var Elem a, b;

.alice.x <= in.bob.x) {
in.alice.y;

in.bob.x;

1S

in.alice.x;

in.bob.y;

[72]
e =

if (a<=b) {
out. alice
out . bob

1 else
out.
out.

alice
bob

1
o

Listing 1: Median Computation in FairPlay

include
include

"utilYaoOTs.I1";

"

"compareYao.ll";

int Median() {

}

int x = loadInt("input_x” 4+ id());
int y = loadInt("input_y” + id());
int a;

1 {

if (comp32(a) = 1) {)

1: send(2, "a”, a);

2: a = readlInt("a");
} else {

1: a = readInt("a");

2: send(1l, "a”, a);

return a;

Median ();

Listing 2: Median Computation in L1

Median
120
100
£
g 60 —
k=] mLl
3 4 | ‘
Fairplay
20 =
0 ,4——'_——r_——'__—'__—\

4 8 16 32 64

Number of Elements

Figure 1: Secure Median

The result is a striking difference in performance. We ran
experiments with both protocols for different joint set sizes
2n = 4, 8,16, 32, 64. The performance measurements are de-
picted in Figure 1. For only 64 elements in the joint set the
L1 implementation already outperforms the FairPlay imple-
mentation by more than a factor of 30.

The research question of this paper is: Given the similar-
ity between the two programs can we compile the FairPlay
program into the protocol of the L1 program? Furthermore,
can we design an optimization algorithm that is not only
applicable to Aggarwal et al.’s median computation, but is
generic?

3. TRANSFORMATION

3.1 Semi-Honest Security

We consider secure computation protocols secure in the
semi-honest model [14]. Loosely speaking, an adversary in
the semi-honest model adheres to the protocol, but may keep
a record of the interaction and later try to infer additional
information from it. A protocol secure in the semi-honest
model, keeps everything about a party’s input confidential
that cannot be inferred from one’s input and output.

Goldreich [14] defines security in the semi-honest model.
The view VIEW™(z, y) of a party during protocol II on this
party’s input x and the other party’s input y is its input z,
the outcome of its coin tosses and the messages received
during the execution of the protocol.

DEFINITION 1. We say a protocol I1 computing f(x,y) is
secure in the semi-honest model, if for each party there exist
a polynomial-time simulator S given the party’s input and
output is computationally indistinguishable from the party’s
view VIEWY(x,y):

S(x, f(z,y)) = VIEW (z,y)

FairPlay programs are secure in the semi-honest model by
construction. L1 programs need to be proven secure man-
ually, but can also implement more efficient protocols. Ag-
garwal et al.’s protocol is secure, if (correctly) implemented
in L1.

Semi-honest security ensures confidentiality except what
can be inferred from one’s input and output. This inference
is the basis of our optimization. We construct a program
analysis technique for FairPlay programs that infers what

is known from input and output. If our optimized proto-
col reveals this additional information — but nothing else —,
then this does not violate semi-honest security, since it can
be constructed by the simulator. We need to be very care-
ful that our analysis is safe and always underestimates the
possible inferences from input and output.

3.2 Algorithm

In our algorithm to transform a SFDL program we use la-
beling of variables. Each variable in the program is assigned
any of two labels: {A} or {B}. Labels are non-exclusive,
i.e. a variable may be assigned none, one or two labels. The
contents of a variable labeled {A} is (always) known to Alice
and the contents of a variable labeled { B} is (always) known
to Bob. A variable without labels is secret and can only be
implemented using secure computation while a variable with
both labels is public information and can be freely shared.
The program text is known to both parties and so are all
constants in the program. Our algorithm for optimizing a
SFDL program proceeds as follows:

1. We convert the SFDL program into single-static as-
signment (SSA), 3-operand code form.

2. We use our inference algorithm to infer the labels of
each variable.

3. We segment the program into different protocols. Each
statement of which all variables are known to any party
are executed locally by that party. Only statements
with operands whose intersection of labels is empty will
be executed using a secure computation as in FairPlay.

We give two examples of our segmentation of a program
into protocols. Consider the addition expression in Listing 3.
We have written the labels of the variables in subscript.

aa=ba+casB;

Listing 3: Local Computation

This statement can be executed locally at Alice’s site,
since she knows all variables and the result a can be used
as input in subsequent computations. Now, consider the
comparison expression in Listing 4.

aaB=ba<ces;

Listing 4: Secure Computation

This statement must implemented as a secure computa-
tion. It is the program representation of Yao’s millionaires’
problem [31] where two parties compare private numbers.

3.3 Static Single Assignment

We convert the SFDL program into static single assign-
ment (SSA) [9] form. In SSA each variable is assigned at
most once and never changed afterwards. If a variable is
changed in the original program, a new variable is intro-
duced in SSA.

a=b?c:d;

Listing 5: Conditional Assignment

14

program Median {

function Output out (Input in) {
var Boolean a, d;

var Elem b, c;

a = in.alice.x <= in.bob.x;
b=a ? in.alice.y : in.alice.x;
c =a ? in.bob.x in.bob.y;
d =b <= c;

out.alice =d ? b : ¢;

out . bob =d ? b : c;

——

Listing 6: Single Static Assignment Form

We also unroll all loops — in SFDL loops have a constant
number of iterations —, inline all functions — in SFDL there
is no recursion —, and transform all if statements to condi-
tional assignments. A conditional assignment has the form
of Listing 5 where the variable a is assigned either the value
of ¢ or d depending on the truth value of the condition b.

Furthermore, we resolve complex expressions and trans-
form all expressions into 3-operand code (except conditional
assignments which have four operands). FEach statement
takes two operands (and an operator) as input and assigns
the result (a new) operand as output.

The result of our SSA transform is depicted in Listing 6.
We have omitted the type declarations for brevity as they
are the same as in Listing 1. The challenge for our inference
is now to determine that both Boolean variables, a and d,
are (always) known to both, Alice and Bob, if they know
their respective input and output.

3.4 Inference

Our inference algorithm (under-)estimates the knowledge
about variables given one’s input and output. In the notion
of information flow, we try to determine whether there is an
inevitable flow of information from the input to that variable
or from that variable to the output. We differ from language-
based information flow [29] which tries to detect and prevent
possible information flows. One particular challenge in our
inference is therefore that the flow of information may occur
differently as possible flows depending on the state of pro-
gram, but does occur inevitably in all possible states. We
address this challenge by using a more powerful logic.

Furthermore, all (sensible) secure computations involve a
declassification (release) of private information. Assuming
that information flow is admissible, our inference algorithm
indicates the earliest possible declassification operation in
order to later increase the performance of the protocol. We
present the details in Section 3.5.

3.4.1 Epistemic Modal Logic

We use epistemic modal logic (EML) [16] to reason about
the knowledge of the protocol participants. Let p be a propo-
sition which can be either true (p) or false (—p). We consider
a single agent (either Alice or Bob) and use the modal op-
erator K to denominate its knowledge. When we write

Kp

we mean that the agent knows p. EML only considers truth-
ful knowledge, i.e.

Kp=1p

Although the agent’s knowledge is certain, the agent might
consider different possible worlds. A possible world is an in-
terpretation of propositions assigning them a truth value.
One of the possible worlds is the real world, but the agent
cannot differentiate between them. For example, let WW; and
W be two different, possible worlds. A proposition p might
be true in world Wi, but false in world W2. We write

Wi Ep
Wz':ﬁp

As already mentioned we consider one agent at a time
and using the possible worlds we can define the meaning of
knowledge. Let there be n possible worlds Wi, ..., W,. If
and only if the proposition p is true in all possible worlds,
then the agent knows p. We write

W;EKpe VA1 <i<n)W;Ep

This implements one of the simplest Kripke structures [20].
Introducing “logical and” for complex propositions ¢ and
we can summarize our simplified EML variant as

WED if p is assigned true in W
WE —¢ ifWE P
WEoANY ifWEPand WE
WE K¢ if for all W; E ¢

3.4.2 Traces

In the remainder of this section we will consider wlog Al-
ice as the agent. We create possible worlds by tracing the
program. Each possible world contains one trace of the pro-
gram. The trace is a set of propositions where each propo-
sition is generated by a possible assignment in the program.

For integers we follow the assumption by Aggarwal et
al. and assume that each input is unique. This assump-
tion is not essential in our inference and can be easily lifted
by adapting the algorithm to generate the traces. No fur-
ther changes are necessary, but Aggarwal et al.’s protocol
is then insecure and our running example no longer works.
We therefore trace each integer variable in Alice’s input as a
unique identifier from the set {A1,..., An}. We trace each
integer variable in Bob’s input as the identifier B. Boolean
variables may be traced as either true or false.

a = in.alice.x + in.bob.y

Listing 7: Integer Assignment

An assignment creates a new entry in the trace. An as-
signed integer variable is added to the trace with the inter-
section of the identifiers of its operands (with L marking the
empty set). In Listing 7 we add to the trace the proposition

WEa=1

a = in.alice.x < in.bob.y

Listing 8: Boolean Assignment

Each Boolean assignment with integer operands doubles
the number of possible worlds. For each existing world W

WEa= false
WEDbL= Al
WEc=B
WEd= false

W E out.alice = B

Figure 2: Trace

we create a new world W’. In the example of Listing 8 we
add to the trace of world W the proposition

WE a = true

In world W’ we copy all of the previous trace (except, of
course, the trace of a) of the world W and then add the
proposition

W' Ea = false

For Boolean assignments with Boolean operands we opti-
mize this to a single proposition in all possible worlds by
evaluating the expression.

Conditional assignments as in Listing 5 interpret the truth
assignment of the condition. In worlds with the proposition
b = true we add a proposition for a with the trace of c and in
worlds with the proposition b = false we add a proposition
for a with the trace of d.

In our example of the median computation (Listing 6) we
get four possible worlds: one for each trace of a and d. We
show one of the four traces in Figure 2.

Each variable is a proposition. The proposition is true in
a possible world, if the contents of a variable is known to
Alice in this world, i.e. under the assumption of a specific
trace. If a variable a is known to Alice in all worlds, i.e.
proposition a is true, then then the proposition Ka is true
and we add the label {A} to the variable.

It is important to note that we consider all possible traces.
This may include invalid traces of unreachable code. Since
we perform static analysis, we must either over- or under-
estimate the reachable code. By considering all unreachable
code our analysis is safe. An additional, invalid trace can
only reduce the set of labels of a variable, since even in the
invalid trace the variable must be known to Alice in order
to result in a label {A} for the variable.

3.4.3 Rules

Initially only input and output are known to Alice (in all
worlds). Further knowledge needs to be inferred via rules.
We present these rules in this section.

Rules are logical deductions of propositions. Our rules are
true in all worlds, although they might make a reference to
a trace proposition. Let ¢, ¢ and x be propositions. We
write

PNY =X
or
¢ ¥
X
as a shortcut for
~((p AY) A =x)

We use the SSA form of the program and for each state-
ment we add several rules. As we try to infer additional

knowledge about program variables from input and output,
we can distinguish two types of rules. Forward rules try to
infer knowledge about the result of a statement from knowl-
edge about its input. Backward rules try to infer knowledge
about the input of a statement from knowledge about its re-
sult and maybe partial input. Forward and backward rules
are true and applied concurrently during the logical infer-
ence. Only their combination enables us to make the nec-
essary inferences. We have rules for expressions (3 operand
code), conditional assignments, symbolic computation and
previous knowledge.

Expressions.
a=b+4+c
d=e x f

Listing 9: Expression Assignment

The forward rule for expressions is simple. If both operands
are known then, then the assigned variable is known. For
the example in Listing 9 we write

bcef
a d

The backward rules for expressions are already more com-
plex. Whether there is a backward rule depends on the
operator. For addition (+) and subtraction (—) there are
backward rules.

a ¢ a b
b ¢

But for multiplication (*) and (integer) division (/) there
are none. This is for safety reasons. While in (modular)
addition and subtraction it is always possible to compute
the inverse, this is not always the case for multiplication
and division. Consider multiplication by 0: the result is 0
independent of the value of the other operand.

Conditional Assignment.

The forward rule for conditional assignments is similar.
Nevertheless we distinguish between the two possible worlds
by making a reference to the trace proposition. Consider
the example in Listing 5: we construct the following forward
rules

b b=true c b b= false d
a a

For conditional assignments there are two different back-
ward rules. One for the assigned operand and one for the
condition. The backward rules for the operands are as fol-
lows.

b=true a m
c d

We emphasize that these rules do not require knowledge of
the condition. This is safe (as we will show at the example of
oblivious transfer in Section 4.1), since the conclusion is only
true in half of the possible worlds and therefore no further
inference on labels is feasible.

The backward rule for the condition is our most complex
rule. For its understanding we need to consider a specific
world (trace). For example, consider the trace of Figure 2
and the conditional assignment in line 12 of the correspond-
ing Listing 6. It is the final output assignment for Alice of
the median computation.

Our intuition is the following: If the agent Alice knows
the assigned variable (out.alice) and the trace of the variable
(out.alice = B) only occurs in possible worlds with a specific
condition (d = false), then the agent knows the condition.
In other words: Alice can infer the condition from observing
the known and unique output for that condition. This rule
combines our tracing, backward rules and EML. We can
express the uniqueness of the trace as Alice’s knowledge

K (out.alice = B = d = false)

Recall that the modal operator K ranges over all possible
worlds. The entire rule for the example is as follows

out.alice out.alice = B K(out.alice = B = d = false)
d

In the median example this means that Alice knows that
in the last comparison her value was larger, because the
output is a value of Bob. Recall that she can distinguish her
and Bob’s values, because all inputs are distinct.

Symbolic Computation.

In addition to the evaluation of statements we need to
perform some symbolic computation. We can infer addi-
tional knowledge about the program’s state by manipulating
its symbols. Particularly, we introduce propositions for the
lower-than relation into our inference.

Let a and b be two variables. Then the (true) proposition
lt_a_b means that (in this possible world)

lt,absa<d

c=2z 7y ! x;
a=b<=c;
d=e ? f : c;

Listing 10: Comparison Example

First, we need to tie the symbolic computation to the
program. Consider the example in Listing 10. We deduce
a proposition Ilt_c_b, if a = false is in the trace and the
variable a is known to the agent Alice.

a a= false
ltcb

We also deduce knowledge about program variables from
symbolic knowledge. We can omit the trace proposition,
since our deduction of symbolic knowledge is always correct
and safe.

lt_cb
a

We need to take care of conditional assignments and track
variable renaming. Variable tracking works, again, back-
ward and forward. In the example of Listing 10 we write

e = false lt_c_b z = false lt_c_b
lt_db ltx b

There are many such rules, one for each direction, condition
truth value, front or back position of the variable in the
proposition and integer variable that is not c.

Second, we implement mathematical axioms, such as nega-
tion and transitivity. Since all inputs are distinct, the lower-
than relation can be inverted for negation.

—lt_a_b
lt_b_a

The lower-than relation is also transitive.

lt_a b It bc
lt_a_c

Unfortunately, propositions in EML are simple, such that
when using symbolic computation on n variables the num-
ber of rules increases to O(n?’) with only transitivity already.
Also, each conditional assignment introduces O(n) variable
renaming rules. We must therefore take care to restrict sym-
bolic computation to the minimum set of variables necessary.
We use symbolic computation only for variables appearing
as operands in comparison statements.

Nevertheless, in our running example of median compu-
tation symbolic computation is necessary. The agent Alice
needs to infer that in the world of the trace in Figure 2
the condition in.alice.x > in.bob.x in the first comparison is
true, since in.alice.x > in.bob.y from the second comparison
and in.bob.y > in.bob.z in all of its inputs.

Assumptions.
Of course, we need to start out with the propositions that
input and output are known.

Kin.alice.x
Kin.alice.y
Kout.alice

But as seen in the previous example we need to also encode
the assumptions about the input. Following the assumption
of Aggarwal et al. we start out with the propositions

Klt_in.alice.x_in.alice.y
Klt_in.bob.x_in.bob.y

Note that these assumptions could also be encoded in the
program. If the program would start with a sorting routine
of the inputs, then the subsequent inference would remain.
The sorting routines would also be marked as local by our
optimization technique, since they operate on local input
only. They would then be executed at the local site’s before
the secure computation. This shows another advantage of
our technique!.

3.4.4 Deduction

We can now enter all possible worlds (traces) and rules
into a theorem prover. If it can deduce knowledge about
the variables, we can assign the labels. Let ¢ be the propo-
sitions for all possible worlds and 1 all rules derived from
the program. We then enter the following theorem for each
variable, e.g. a

dAY = Ka

If the theorem can be proven, we assign the label {A} to the
variable a. We create one such theorem for each variable. If
the theorem cannot be proven, we do not assign a label.

We then repeat the process with Bob as the agent. The
derivation algorithm for the rules and traces remains un-
changed, but some propositions in the rules made in Sec-
tion 3.4.3 “Assumptions” change, since now Bob’s input and
output are known instead of Alice’s. Also, the propositions
in the traces change, since Bob can distinguish its integer
input variables, but not Alice’s. We also create one theorem
for each variable for Bob.

"We have omitted this option in order to stay truthful to
the example of Aggarwal et al.

12

program Median {

function Output out (Input in) {

var Boolean a Ao B, d A B;

var Elem b A, c B;

a A B = in.alice.x oA <= in.bob.x 3;

b a=a a 8?7 in.alice.y a: in.alice.x a;
c gB=a A B? in.bob.x g in.bob.y B;
daAaB=ba<=cs;
out.alice A =d a B ? b a: c B;
out.bob B =dag ?ba:cos;

L

Listing 11: Assigned Labels

Finally, we assign the labels. The result of the median
example is depicted in Listing 11. As we have pointed out in
the beginning of the paper, the challenge is to infer the labels
on the variables a and d. We show a complete deduction of
Ka for Alice in Appendix A.

3.5 Segmentation

We can now segment the program of the median compu-
tation and perform selected computations at the local sites.
The first statement in line 7 needs to be performed as a se-
cure computation, since the intersection of labels is empty.
Nevertheless, the result of the secure computation can be
made available to both, Alice and Bob. This computation
is an instance of Yao’s millionaires’ problem. Line 8 can be
performed solely by Alice and line 9 solely by Bob. Line 11
is a secure computation again.

For lines 12 and 13 we need to implement a special rou-
tine. Although the intersection of labels is empty, Alice (or
Bob) needs to learn the output of the computation. There-
fore for output variables assigned in conditional statements,
in case the operand is only known by the other party, we
need to implement a send and receive message operation.
Care must be taken and this routine only applies, if the
condition variable is public and known to both, Alice and
Bob, and not in our further example of oblivious transfer
where the condition is only known to Alice and which must
be implemented as a secure computation. The transmission
operations are also implemented locally at Alice’s and Bob’s
site, respectively.

If you compare this segmentation with the L1 program of
Listing 2 the program transform is completely successful (ex-
cept some syntactical constructs). We encode our segmented
program as a Java program that calls FairPlay as a subrou-
tine for its secure computation. We have transformed a (rel-
atively) inefficient FairPlay program using program analysis
into an efficient protocol similar to the hand-crafted one by
Aggarwal et al.

4. FURTHER EXAMPLES

In this section we consider further examples in order to
validate our optimization technique. First, we consider 1-
out-of-2 oblivious transfer [11] and show that our inference
is safe, i.e. the optimized protocol still implements secure
oblivious transfer. Second, we use our optimization to re-

program Median {

type Elem = Int <32>;
type Alicelnput = Boolean;
type AliceOutput = Elem;
type Boblnput = struct {Elem x,
Elem y};
type Input = struct {Alicelnput alice,
Boblnput bob };
type Output = struct {AliceOutput alice };

function Output out (Input
out.alice = in.alice 7

}
}

in) {

in.bob.x in.bob.y;

Listing 12: Oblivious Transfer

duce joint lot size computation [3] to weighted average com-
putation.

4.1 Oblivious Transfer

Oblivious transfer (OT) can be implemented with the
SFDL program shown in Listing 12. Of course, it is not
best practice to implement OT using SFDL, since FairPlay
uses an optimized OT protocol to implement Yao’s protocol.
It is much more efficient to use such an optimized protocol
directly. We can nevertheless test if our optimization tech-
nique is safe.

OT is implemented as a single conditional assignment
without intermediate variables. Therefore only traces and
the rules for conditional assignments apply. There are four
possible worlds — two for Alice and two for Bob — depending
on the condition in.alice.

First, in Alice’s case the backward rule for the operand
applies. In one world she learns in.bob.x and in the other
in.bob.y. Then also the forward rule applies, but she al-
ready knows out.alice. Alice cannot distinguish Bob’s in-
put, therefore the backward rule for the condition does not
apply. Since Alice only learns either of Bob’s inputs in a
single world, she does not gain knowledge in all worlds and
no new labels are created.

Second, in Bob’s case no rule applies. Neither backward
rule applies, since he does not know out.alice. The for-
ward rule also does not apply, since he does not know the
condition in.alice.

Therefore no optimization is possible using our inference
algorithm. This is good news, since OT is an elementary
cryptographic primitive and any “optimization” at the lan-
guage layer would show that our inference algorithm is un-
safe. We show next that a slight deviation in just one rule
could already lead to such unsafe inferences.

Assume we would change the forward rule by omitting the
proposition in.alice of the condition, as we have done in the
backward rule, resulting in the rules below

in.alice = false in.bob.y

in.alice = true in.bob.x

out.alice

out.alice

Then, Bob would learn out.alice in both worlds. Further-
more, the backward rule for the condition would apply and
Bob would also learn in.alice. A complete breakdown of
the safety of the optimization. It is therefore necessary to
include the condition in the forward rule, but not the back-
ward rule for the operand.

11

16

21

26

31

program Median {

type Elem = Int <32>;
type Alicelnput = struct {Elem d,
Elem fV,
Elem hV,
Elem c};
type AliceOutput = Elem;
type Boblnput = struct {Elem d,
Elem fB,
Elem hB};
type BobOutput = Elem;
type Input = struct {Alicelnput alice,
Boblnput bob };
type Output = struct {AliceOutput alice,
BobOutput bob };

function Output out (Input in) {
var Elem a, b, ¢, d, e, f, g, h, i;

a =2 % in.alice.d;
b =2a % in.alice.fV;
¢ = in.alice.d / in.alice.c;
d =~c % in.alice.hV,;
e =2 x in.bob.d;

f = e % in.bob.fB;
g=1f + b;

h = in.bob.hB + d;
i =g/ h;

out.alice = i *x 2;
out.bob =i *x 2;

——

Listing 13: Joint Economic Lot Size

4.2 Weighted Average

We now consider an example from business administra-
tion. When placing an order buyer and vendor need to agree
on an order quantity or lot size. Both, buyer and vendor,
know the (yearly) demand d of the buyer as part of their
contract, but they also have private information. The buyer
has holding costs hg per item and fixed ordering costs fg
per order. The vendor has holding costs hy per item, fixed
setup costs fy per order and capacity c. They can jointly
compute the optimal lot size ¢ using Banerjee’s formula [3]

below
g = [2UBt fv)
hp + $hy

Since information such as costs and capacities is very sen-
sitive, it is sensible to implement the computation securely.
Buyer and vendor can do so using the (extended) SFDL pro-
gram in Listing 13 where Alice is the vendor and Bob the
buyer. We extend SFDL with multiplication (*) and integer
division (/) which are parsed, but not implemented in Fair-
Play. This has been fixed in FairPlayMP. Furthermore, we
introduce the operator (#x) for integer roots which cannot
be parsed by FairPlay. Therefore we need to execute the
resulting protocols using the L1 system.

The program is entirely constructed from assignment ex-
pressions. Therefore only its forward and backward rules

apply. Recall that constants are public and known to both,
Alice and Bob.

As a result of our analysis intermediate variables a, b, c,
d and i are known to Alice. Variables e, f and i are known
to Bob. Therefore the first segment of the program (lines 20
- 23) can be executed locally at Alice’s site and the second
segment (lines 25 and 26) can be executed locally at Bob’s
site. Only the middle segment (lines 28 - 30) need to be
executed as a secure computation. The final segments can
be executed locally again, at either party’s site.

Thus, we have optimized the protocol significantly. In-
stead of securely computing a square root — amongst other
arithmetic operations —, we have reduced the problem to
securely computing a weighted average. This significantly
increases the efficiency of the protocol by locally comput-
ing several expensive operations and shows another success-
ful application of our optimization technique. All our op-
timizations (including segmentation) were performed auto-
matically.

We stress that we prepared the SFDL program, such that
the optimizer yields the best result. We structured the arith-
metic in order to form groups of operations that can be op-
timized into local computations. We nevertheless anticipate
that this optimization can also be performed automatically
in the future. Techniques, such as term rewriting, offer ex-
cellent capabilities for such transforms.

S. RELATED WORK

There are several systems for implementing secure com-
putation. We classify them into systems specifying the ideal
functionality and systems specifying the protocol descrip-
tion. Furthermore, we look at the examples used in our
paper.

The positive effect on performance of performing as many
computations as possible locally has been confirmed by [18].
[26] also tries to deduct local computations, but only con-
siders the parties’ input and not also their output as we do.

5.1 Ideal Functionality Specification

FairPlay [23] provides a generic system for secure two-
party computation. The FairPlay system comprises a proce-
dural language, called Secure Function Definition Language
(SDFL), a compiler that translates SDFL programs into one-
pass Boolean circuits that can be securely evaluated using
the protocol suggested by [31]. Originally, i.e., as presented
in [23], the FairPlay system supported only secure two-party
computations written in SDFL 1. This system served as a
basis for the development of the FairPlayMP system [6].
FairPlayMP supports the secure evaluation of multi-party
computations written in SFDL 2. Some circuit optimization
techniques for FairPlay are presented in [28].

There are other compilers [12, 32] which produce safe code
for a program according to an information flow policy in a
distributed environment. Nevertheless, they do not allow to
specify any secure computation and offer no secure imple-
mentation for the resulting information flow.

Just FairPlay and FairPlayMP are instances of systems
which only describe the ideal functionality of a secure com-
putation, i.e. what is to be implemented by the protocol.
The burden of finding the ideal protocol is with the com-
piler. To the best of our knowledge we present the first
technique that automatically optimizes such a program.

5.2 Protocol Description Specification

Next to FairPlay and its specification of the ideal function-
ality, there are several secure computation implementations
where the programmer can give the compiler hints on how to
optimize. In the Secure Multiparty Computation Language
(SMCL) [25] the programmer specifies the ideal function-
ality, but may specify also the visibility of variables as se-
cret, private or public. This is similar to our (party-specific)
labels, but we infer the labels automatically via program
analysis and do not burden the programmer. The TASTY
compiler and its TASTYL language [17] allow implementing
mixed-protocol implementations using not only Yao’s pro-
tocol, but also (additively) homomorphic encryption. The
programmer can specify in TASTYL which protocol is to
be used for which operation. This results in significantly
more efficient, yet always provably secure protocols. The
VIFF framework [10] extends the Python language using
a library. It offers the programmer several primitives for
secure computation, but the protocol description is up to
the programmer. The Sharemind framework [8] offers an
interpreter for an assembler-like language implementing se-
cure protocols. The programmer has to specify the protocol
description using the primitives. The L1 system [30] al-
lows specifying protocol descriptions with many primitives
including Yao’s protocol and homomorphic encryption. It
also offers a library for network communication.

All of these languages, compilers or frameworks are in-
stances of systems where the programmer can — at least
partially — specify how the protocol is implemented. This
approach leads to significantly more efficient protocols, but
puts an additional burden on the programmer. In this paper
we have chosen a different approach. We use program analy-
sis to infer the optimal protocol from the ideal functionality,
but, of course, our techniques are also applicable in combi-
nation with other, programmer specified optimizations. To
the best of our knowledge we are the first to present a fully
automatic technique.

5.3 Examples

We use several optimized protocols as our examples. Our
running example of the median computation by Aggarwal et
al. [1] was one of the first instances of a (hand-)optimized
secure computation protocol. Our optimization technique
was able to even slightly exceed the manual optimization.

Oblivious transfer (OT) is a long known primitive in cryp-
tography. 1-out-of-2 OT was introduced by Even et al. [11].
Our optimization was not able to improve its programming
language specification. On the one hand, this is good, be-
cause our optimization is safe. After all, Kilian has shown
that cryptography can be founded on OT [19]. On the other
hand, it shows that our optimization technique cannot op-
timize the cryptographic implementation. This is not sur-
prising, since it only consider the ideal functionality. There
are several (cryptographically) optimized protocols for OT,
e.g. [13, 22, 24].

Our last example is joint lot size computation as weighted
average. This has been introduced in [27]. It shows the man-
ifold applications of secure computation. Our optimization
technique was able to match the manual optimization, if the
program was accordingly structured.

6. CONCLUSIONS

We have presented the first technique to automatically
optimize a secure computation program. Our program anal-
ysis infers what a party knows from input and output. This
additional information is then used to perform several com-
putations locally instead of as a secure protocol. We have
shown using the running example of median computation
that our optimization technique can match (and even ex-
ceed) those performed manually by the programmer. Using
our implementation we were able to compile and execute an
SFDL program as Aggarwal et al.’s protocol.

As the performers of an automated analysis related to
Aggarwal et al.’s protocol we would like to make a few com-
ments on this protocol. First, our analysis underpins that
the protocol is secure. Our analysis is crafted carefully to
be safe and resulted in a slightly more revealing protocol
than the manually designed one. Second, our analysis shows
that protocol is very slightly inefficient. Our analysis con-
cludes — and it is very easy to verify manually — that the last
comparison can also be implemented as a Yao’s millionaire’s
protocol. Aggarwal et al. recommend to use a minimum
computation that outputs the minimum element. This is
very slightly less efficient, but avoids sending the output by
one party. Our compiled protocol is therefore slightly more
efficient.

For future work we see two open problems. First, our
analysis works on protocols secure in the semi-honest model.
We would like to extend this to protocols secure in the ma-
licious model. One can adapt the compiler from the semi-
honest to the malicious model by Goldreich [14], but this
could be too inefficient. Second, our prototypical implemen-
tation uses the ModLeanTab theorem prover [5]. We can
perform the compilation of the median example in roughly
one minute, but the majority of the time is spent on proving
the theorems. A more efficient algorithm that scales to large
programs and maybe avoids theorem proving is desirable.

7. ACKNOWLEDGEMENTS

We are grateful to Axel Schropfer for implementing the
L1 examples and performing the experiments and to Achim
Brucker and Marcel Jiinemann for implementing SSA and
the transformation.

8. REFERENCES

[1] G. Aggarwal, N. Mishra, and B. Pinkas. Secure
computation of the k-th ranked element. In
EUROCRYPT’04: Advances in Cryptology, 2004.

[2] R. Agrawal and R. Srikant. Privacy-preserving data
mining. ACM SIGMOD Record, 29(2), 2000.

[3] A. Banerjee. A joint economic-lot-size model for buyer
and supplier. Decision Sciences, 17, 1986.

[4] D. Beaver, S. Micali, and P. Rogaway. The round
complexity of secure protocols. In STOC"90:
Proceedings of the 22nd ACM Symposium on Theory
of Computing, 1990.

[5] B. Beckert and R. Gore. In CADE’98: Proceedings of
the International Conference on Automated Deduction,
1998.

[6] A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a
system for secure multi-party computation. In
CCS’08: Proceedings of the 15th ACM Conference on
Computer and Communications Security, 2008.

[7]

8]

[9]

(10]

(11]

(12]

(14]

(15]

(16]

(17]

(18]

(19]

M. Ben-Or, S. Goldwasser, and A. Wigderson.
Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In STOC’88:
Proceedings of the 20th ACM Symposium on Theory of
Computing, 1988.

D. Bogdanov, S. Laur, and J. Willemson. Sharemind:
a framework for fast privacy-preserving computations.
In ESORICS’08: Proceedings of the 13th European
Symposium on Research in Computer Security, 2008.
R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Transactions Programming Languages and
Systems, 13(4), 1991.

I. Damgard, M. Geisler, M. Krgigaard, and J. B.
Nielsen. Asynchronous multiparty computation:
theory and implementation. In PKC’09: Proceedings
of the 12th International Conference on Practice and
Theory in Public Key Cryptography, 2009.

S. Even, O. Goldreich, and A. Lempel. A randomized
protocol for signing contracts. Communications of the
ACM, 28(8), 1985.

C. Fournet, G. L. Guernic, and T. Rezk. A
security-preserving compiler for distributed programs:
from information-flow policies to cryptographic
mechanisms. In CCS’09: Proceedings of the 16th ACM
Conference on Computer and Communications
Security, 2009.

C. Gentry and Z. Ramzan. Single-database private
information retrieval with constant communication
rate. In ICALP’05: Proceedings of the 32nd
International Colloquium on Automata, Languages
and Programmaing, 2005.

O. Goldreich. Foundations of Cryptography, volume 2.
Cambridge University Press, 2004.

O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In STOC’87: Proceedings of the
19th ACM Symposium on Theory of Computing, 1987.
J. Y. Halpern. Reasoning about knowledge: a survey.
In D. M. Gabbay, C. J. Hogger, and J. A. Robinson,
editors, Handbook of Logic in Artificial Intelligence
and Logic Programming, volume 4. Oxford University
Press, 1995.

W. Henecka, S. Kogl, A.-R. Sadeghi, T. Schneider,
and I. Wehrenberg. Tasty: tool for automating secure
two-party computations. In CCS’10: Proceedings of
the 17th ACM Conference on Computer and
Communications Security, 2010.

Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled circuits.
In Proceedings of the 20th USENIX Security
Symposium, 2011.

J. Kilian. Founding crytpography on oblivious
transfer. In STOC’88: Proceedings of the 20th ACM
Symposium on Theory of Computing, 1988.

20]

(21]

(22]

23]

S. Kripke. A semantic analysis of modal logic i:
normal modal propositional calculi. Zeitschrift fiir
Mathematische Logik und Grundlagen der
Mathematik, 9, 1963.

Y. Lindell and B. Pinkas. Privacy-preserving data
mining. In CRYPTO’00: Advances in Cryptology,
2000.

H. Lipmaa. An oblivious transfer protocol with
log-squared communication. In ISC’05: Proceedings of
the 8th International Conference on Information
Security, 2005.

D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella.
Fairplay—a secure two-party computation system. In
Proceedings of the 13th USENIX Security Symposium,
2004.

M. Naor and B. Pinkas. Efficient oblivious transfer
protocols. In SODA’01: Proceedings of the 12th
ACM-SIAM Symposium on Discrete Algorithms, 2001.
J. D. Nielsen and M. I. Schwartzbach. A
domain-specific programming language for secure
multiparty computation. In PLAS’07: Proceedings of
the ACM Workshop on Programming Languages and
Analysis for Security, 2007.

A. Paus, A.-R. Sadeghi, and T. Schneider. Practical
secure evaluation of semi-private functions. In
ACNS’09: Proceedings of the 7th International
Conference on Applied Cryptography and Network
Security, 2009.

R. Pibernik, Y. Zhang, F. Kerschbaum, and

A. Schropfer. Secure collaborative supply chain
planning and inverse optimization - the jels model.
European Journal of Operational Research, 208(1),
2011.

B. Pinkas, T. Schneider, N. P. Smart, and S. C.
Williams. Secure two-party computation is practical.
In ASTIACRYPT’09: Advances in Cryptology, 2009.
A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE Journal on Selected
Areas in Communications, 21(1), 2003.

A. Schropfer, F. Kerschbaum, and G. Miiller. L1 — an
intermediate language for mixed-protocol secure
computation. In COMPSAC’11: Proceedings of the
85th IEEE Computer Software and Applications
Conference, 2011.

A. C.-C. Yao. How to generate and exchange secrets.
In FOCS’86: Proceedings of the 27th IEEE Symposium
on Foundations of Computer Science, 1986.

S. Zdancewic, L. Zheng, N. Nystrom, and A. C.
Myers. Untrusted hosts and confidentiality: Secure
program partitioning. In SOSP’01: Proceedings of the
18th ACM Symposium on Operating System
Principles, 2001.

APPENDIX
A. MEDIAN EXAMPLE

Assumptions:

Trace of world Wi:

Inference in world Wj:

Trace of world Ws:

Inference in world Ws:

Trace of world Ws:

Inference in world Ws:

Trace of world Wj:

Inference in world Wy:

a = false

Kin.alice.x

Kin.alice.y

Kout.alice

Klt_ in.alice.x_in.alice.y
Klt_in.bob.x_in.bob.y

W1 E a = true

Wi Eb= A2
W1):C:B
Wi E d = true

Wi E out.alice = A2

d = true out.alice

b b=A2 K(b= A2= a=true)
Wi Ea
Wa Ea = false
Wa Eb= Al
WQ’:C:B
Ws E d = true

Ws E out.alice = Al

d = true out.alice

b b=A1 K(b= Al = a= false)
Ws Ea
Ws E a = true
Ws E b= A2
Wg':C:B
Ws Ed= false

Ws E out.alice = B

d = false out.alice

a = true [¢
in.bob.x

in.alice.x
Ws Ea

Wi Ea = false

WiEb= Al
W4':C:B
Wi E d = false

W, E out.alice = B

out.alice out.alice = B K(out.alice = B = d = false)

d

d = false

a = false

It_c_b

lt_c_in.alice.x

lt_in.bob.x_in.bob.y

lt_in.bob.y_in.alice.x

lt_in.bob.x_in.alice.x

WiEa

Global inference:

Wlka ngza Wg):a W4#a
Ka

